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Abstract

Monitoring physiological functions such as swallowing often generates large volumes of sam-

ples to be stored and processed, which can introduce computational constraints especially if

remote monitoring is desired. In this paper, we propose a compressive sensing (CS) algorithm

to alleviate some of these issues while acquiring dual-axis swallowing accelerometry signals. The

proposed CS approach uses a time-frequency dictionary where the members are modulated dis-

crete prolate spheroidal sequences (MDPSS). These waveforms are obtained by modulation and

variation of discrete prolate spheroidal sequences (DPSS) in order to reflect the time-varying

nature of swallowing acclerometry signals. While the modulated bases permit one to repre-

sent the signal behavior accurately, the matching pursuit algorithm is adopted to iteratively

decompose the signals into an expansion of the dictionary bases. To test the accuracy of the

proposed scheme, we carried out several numerical experiments with synthetic test signals and

dual-axis swallowing accelerometry signals. In both cases, the proposed CS approach based on

the MDPSS yields more accurate representations than the CS approach based on DPSS. Specif-

ically, we show that dual-axis swallowing accelerometry signals can be accurately reconstructed

even when the sampling rate is reduced to half of the Nyquist rate. The results clearly indicate

that the MDPSS are suitable bases for swallowing accelerometry signals.
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1 Introduction

Continuous monitoring of physiological functions such as swallowing can pose severe constraints

on data acquisition and processing systems. Even when sampling physiological signals at low rates

(e.g., 250 Hz), we end up with close to a million of samples in the first hour of monitoring. Similar

computational burdens are ever-present in telemedicine, and in recent years we have witnessed

numerous efforts to deal with this problem. One such effort is to compress the acquired signals

immediately upon sampling using various schema (e.g. [1]). The other is to rethink the way we

acquire the data, and a number of recent publications have begun looking at this approach (e.g.,

[2], [3], [4], [5]).

The idea of compressive sensing (CS) has gained considerable attention in recent years. The

main idea behind CS is to diminish the number of steps involved when acquiring data by combining

sampling and compression into a single step [3], [4]. Specifically, CS enables one to acquire the

data at sub-Nyquist rates, and recover it accurately from such sparse samples [3].

In this paper, we propose an approach for CS of swallowing accelerometry signals based on

a time-frequency dictionary. In particular, the members of the dictionary are recently proposed

modulated discrete spheroidal sequences (MDPSS) [6], [7]. The bases within the time-frequency

dictionary are obtained by modulation and variation of the bandwidth of discrete prolate spheroidal

sequences (DPSS) to reflect the vaying time-frequency nature of many biomedical signals, including

the swallowing acclerometry signals considered in this paper. Using the proposed approach, we carry

out a numerical analysis of synthetic test signals and real swallowing accelerometry signals. The

numerical analysis using the synthetic test signals showed that the CS approach based on MDPSS

was more accurate than the CS approach based on DPSS (e.g., [7], [8]). Additionally, the analysis

of swallowing accelerometry signals showed that we can obtain 90% cross-correlation between the

reconstructed signals and the actual signals using only 50% percent of samples. This has been

observed for three different types of swallowing tasks.

The paper is organized as follows: Section 2 describes swallowing accelerometry and outlines

the advantages of this approach for detecting swallowing difficulties. In Section 3, we describe the

proposed approach for CS using the time-frequency based dictionary consisting of MDPSS bases.

Section 4 reports the data analysis steps that we carried out to obtain the reported results, which

are presented in Section 5 along with the discussion of the same results. The conclusions are drawn

in Section 6.
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2 Swallowing accelerometry

Swallowing (deglutition) is a complex process of transporting food or liquid from the mouth to

the stomach consisting of four phases: oral preparatory, oral, pharyngeal, and esophageal [9].

Dysphagic patients (i.e., patients suffering from swallowing difficulty) usually deviate from the

well-defined pattern of healthy swallowing. Dysphagia frequently develops in stroke patients, head

injured patients, and patients with others with paralyzing neurological diseases [10]. Patients

with dysphagia are prone to choking and aspiration (the entry of material into the airway below

the true vocal folds) [9]. Aspiration and dysphagia may lead to serious health sequelae including

malnutrition and dehydration [11], [12], degradation in psychosocial well-being [13], [14], aspiration

pneumonia [15], and even death [16].

The videofluoroscopic swallowing study (VFSS) is used widely in today’s dysphagia management

and it represent the gold standard for assessment [9], [17]. However, VFSS requires expensive X-ray

equipment as well as expertise from speech-language pathologists and radiologists. Hence, only a

limited number of institutions can offer VFSS and the procedure has been associated with long

waiting lists [18], [19]. In addition, day-to-day monitoring of dysphagia is crucial due to the fact

that the severity of dysphagia can fluctuate over time and VFSS is not suitable for such day-to-day

monitoring.

Cervical auscultation is a promising non-invasive tool for the assessment of swallowing disorders

[20] involving the examination of swallowing signals acquired via a stethoscope or other acoustic

and/or vibration sensors during deglutition [21]. Swallowing accelerometry is one such approach

and employs an accelerometer as a sensor during cervical auscultation. Swallowing accelerometry

has been used to detect aspiration in several studies, which have described a shared pattern among

healthy swallow signals, and verified that this pattern is either absent, delayed or aberrant in

dysphagic swallow signals [22]-[34].

However, these previous studies used single-axis accelerometers and exclusively monitored vi-

brations propagated in the anterior-posterior direction at the cervical region. Proper hyolaryngeal

movement with precise timing during bolus transit is vital for airway protection in swallowing [9].

Since the motion of the hyolaryngeal structure during swallowing occurs in both anterior-posterior

(A-P) and superior-inferior (S-I) directions, the employment of dual-axis accelerometry seems well

motivated. Since correlation has been reported between the extent of laryngeal elevation and the

magnitude of the A-P swallowing accelerometry signal [35], it is hypothesized that vibrations in

the S-I axis also capture useful information about laryngeal elevation. From a physiological stand
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point, the S-I axis appears to be as worthy of investigation as the A-P axis because the maxi-

mum excursion of the the hyolaryngeal structure during swallowing is of similar magnitude in both

the anterior and superior directions [36], [37]. Recent contributions have indeed confirmed that

dual-axis accelerometers yield more information and enhance analysis capabilities [38]-[43].

2.1 Data

Sample signals used in this paper were collected from four hundred and eight participants (ages

18-65) over a three month period from a public science centre in Toronto, Ontario, Canada. All

participants provided written consent and had no documented swallowing disorders. The research

ethics boards of the Toronto Rehabilitation Institute and Holland Bloorview Kids Rehabilitation

Hospital (both located in Toronto, Ontario, Canada) approved the study protocol.

To collect data from participants, we used a dual-axis accelerometer (ADXL322, Analog De-

vices), which was attached to the participant’s neck (anterior to the cricoid cartilage) using double-

sided tape. The axes of acceleration were aligned to the anterior-posterior and superior-inferior

directions. Data were band-pass filtered in hardware with a pass band of 0.1-3000 Hz and sampled

at 10kHz using a custom LabVIEW program running on a laptop computer. With the accelerom-

eter attached, each participant was cued to perform 5 saliva swallows (i.e., dry swallows), 5 water

swallows by cup with their chin perpendicular to the floor (i.e., wet swallows) and 5 water swallows

in the chin-tucked position. The entire data collection session lasted 15 minutes per participant.

3 Proposed scheme

Traditional signal processing approaches for sensing and processing of information have relied on

the Shannon sampling theorem, which states that a bandlimited signal x(t) can be reconstructed

from uniform samples {x(kTs)}:

x(t) =
∑
k

x(kTs)
sin (Ωmax(t− kTs)/π)

Ωmax(t− kTs)/π
(1)

where Ts is the sampling period and Ωmax represents the maximum frequency present in the signal.

In other words, the Shannon sampling theorem states that in order to ensure accurate representation

and reconstruction of a signal with Ωmax, we should sample it at least at 2Ωmax samples per second

(i.e., the Nyquist rate). However, many recent publications have challenged this approach for a

number of reasons (e.g., [44], [45]). First, by using the Shannon sampling theorem we rely on bases

of infinite support, while we generally reconstruct signal samples in the finite domain [44]. Second,
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large bandwidth values can severely constraint sampling architectures [45]. Third, even when we

consider signals with a relatively low bandwidth values such as swallowing accelerometry signals,

continuous monitoring of swallowing function can produce large number of redundant samples,

which severely constraints our processing efforts.

A recently proposed idea of compressive sensing (CS) resolves some of the aforementioned issues

[3], [4], [5]. CS is a method closely related to transform coding, since a transform code converts

input signals, embedded in a high-dimensional space, into signals that lie in a space of significantly

smaller dimensions (e.g., wavelet and Fourier transforms) [4]. CS approaches are particularly suited

for K-sparse signals, i.e., signals that can be represented by significant K coefficients over an N-

dimensional basis. Encoding of a K-sparse, discrete-time signal of dimension N is accomplished

by computing a measurement vector y that consists of M << N linear projections of the vector x.

This can be compactly described via

y = Φx (2)

where Φ represents an M × N matrix and is often refer to as the sensing matrix [4]. A natural

formulation of the recovery problem is within an norm minimization framework, which seeks a

solution to the problem

min ||x||0 subject to ‖y − Φx‖2 < η (3)

where η is the expected noise of measurements, ||x||0 counts the number of nonzero entries of x

and ‖•‖2 is the Euclidian norm. Unfortunately, the above minimization is not suitable for many

applications as it is NP-hard [46]. To avoid the computational burden, approaches like thresholding,

(orthogonal) matching pursuit and basis pursuits have been proposed [46]. In this paper, we will

focus on the matching pursuit [47].

Given the CS framework, the immediate question is how to define the sensing matrix Φ, that

is the bases used in the recovery of the signal. Most commonly used sensing matrices are ran-

dom matrices with independent identically distributed (i.i.d.) entries formed by sampling either a

Gaussian distribution or a symmetric Bernoulli distribution [48]. Previous publications have shown

that these matrices can recover the signal with high probability [48]. However, when dealing with

biomedical signals, we would like to “precisely” recover the signals (i.e., with a very small error).

Therefore, we propose to use a time-frequency dictionary (also known as frames [49]) based on

modulated discrete prolate spheroidal sequences (MDPSS).
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3.1 Time-frequency dictionaries based on modulated discrete prolate spheroidal

sequences

To understand MDPSS, let’s begin with a general description of discrete prolate spheroidal se-

quences (DPSS). Given N such that n = 0, 1, ..., N −1 and the normalized half-bandwidth, W such

that 0 < W < 0.5, the kth DPSS, vk(n,N,W ), is defined as the real solution to the system of

equations [50]:

N−1∑
m=0

sin[2πW (n−m)]

π(n−m)
vk(m,N,W ) = λk(N,W )vk(n,N,W ) k = 0, 1, ..., N − 1 (4)

with λk(N,W ) being the ordered non-zero eigenvalues of (4)

λ0(N,W ) > λ1(N,W ), ..., λN−1(N,W ) > 0. (5)

Slepian showed that behaviour of these eigenvalues for fixed k and large N is given by

1− λk(N,W ) ∼
√
π

k!
2

14k+9
4 α

2k+1
4 [2− α]−(k+0.5)Nk+0.5e−γN (6)

where

α =1− cos(2πW )

γ = log

[
1 +

2
√

(α)√
2−
√
α

]

The first 2NW eigenvalues are very close to 1 while the rest rapidly decays to zero [50]. Interestingly

enough, it has been observed that these quantities are also the eigenvalues of N×N matrix C(m,n)

[50], where the elements of such a matrix are

C(m,n) =
sin[2πW (n−m)]

π(n−m)
m,n = 0, 1, ..., N − 1 (7)

and the vector obtained by time-limiting the DPSS, vk(n,N,W ), is an eigenvector of C(m,n).

The DPSS are doubly orthogonal, that is, they are orthogonal on the infinite set {−∞, ...,∞} and

orthonormal on the finite set {0, 1, ..., N − 1}, that is,

∞∑
−∞

vi(n,N,W )vj(n,N,W ) =λiδij (8)

N−1∑
n=0

vi(n,N,W )vj(n,N,W ) =δij (9)
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where i, j = 0, 1, ..., N − 1. The sequences also obey symmetry laws

vk(n,N,W ) =(−1)kvk(N − 1− n,N,W ) (10)

vk(n,N,W ) =(−1)kvN−1−k(N − 1− n,N, 1/2−W ) (11)

where n = 0,±1,±2, ... and k = 0, 1, ..., N − 1.

If these DPSS are used for signal representation, then usually accurate and sparse representa-

tions are obtained when both the DPSS and the signal under investigation occupy the same band

(e.g., [6], [51]). However, problems arise when the signal is centered around some frequency |ωo| > 0

and occupies bandwidth smaller than 2W . In such situations, a larger number of DPSS is required

to approximate the signal with the same accuracy despite the fact that narrowband signals are more

predictable then wider band signals [7], [52]. In order to find a better basis, modulated discrete

prolate spheroidal sequences (MDPSS) were proposed in [6], [7]. MDPSS are defined as

Mk(N,W,ωm;n) = exp(jωmn)vk(N,W ;n) (12)

where ωm = 2πfm is a modulating frequency. It is easy to see that MDPSS are also doubly

orthogonal, obey the same equation (4) and are bandlimited to the frequency band [−W + ωm :

W + ωm].

The next question which needs to be answered is how to choose a proper modulation frequency

ωm. In the simplest case when the spectrum S(ω) of the signal is confined to a known band [ω1;ω2],

i.e.,

S(ω) =

 � 0 ∀ω ∈ [ω1, ω2] and |ω1| < |ω2|

≈ 0 elsewhere
(13)

then the modulating frequency, ωm, and the bandwidth of the DPSSs are naturally defined by

ωm =
ω1 + ω2

2
(14)

W =

∣∣∣∣ω2 − ω1

2

∣∣∣∣ (15)

as long as both satisfy:

|ωm|+W <
1

2
. (16)

However, in practical applications, exact frequency band is known only with a certain degree

of accuracy and usually evolves in time. Therefore, only some relatively wide frequency band is

expected to be known. In such situations, an approach based on one-band-fits-all may not produce

a sparse and accurate approximation of the signal. In order to resolve this problem it was suggested
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to use a band of bases with different widths to account for time-varying bandwidths [53]. However,

such representation once again ignores the fact that the actual signal bandwidth could be much

less then 2W dictated by the bandwidth of the DPSS. In order to provide further robustness to the

estimation problem we suggest to use of a time-frequency dictionary containing bases which reflect

various bandwidth scenarios.

To construct this time-frequency dictionary, it is assumed that an estimate of the maximum

frequency is available. The first few bases in the dictionary are the actual traditional DPSS with

bandwidth W . Additional bases could be constructed by partitioning the band [−ω;ω] into K

subbands with the boundaries of each subband given by [ωk;ωk+1], where 0 ≤ k ≤ K−1, ωk+1 > ωk,

and ω0 = −ω, ωK−1 = ω. Hence, each set of MDPSS has a bandwidth equal to ωk+1 − ωk and a

modulation frequency equal to ωm = 0.5(ωk +ωk+1). Obviously, a set of such function again forms

a basis of functions limited to the bandwidth [−ω;ω]. While particular partition is arbitrary for

every level K ≥ 1, we can chose to partition the bandwidth in any desired way as shown in Figure

1. In this paper, we partition the bandwidth in equal blocks, as shown in Figure 1(d), to reduce

amount of stored pre-computed DPSS. In general, finding the best partitioning approach would be

based on a priori knowledge about the phenomenon under investigation. Unless such knowledge is

available, there is no strong reason for us to believe that non-uniform approaches shown in Figures

1(a)-(c) would yield a better performance than the uniform partitioning scheme shown in Figure

1(d) without extensive optimization procedures. However, such investigations are beyond the scope

of this manuscript.

Figure 1: Different approaches to form a 4-band time-frequency dictionary based on MDPSS.
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3.2 Matching pursuit and MDPSS-based frames

As mentioned at the beginning of Section 3, the CS approaches can be NP-hard, which are not

practically viable. Fortunately, efficient algorithms, known generically as matching pursuit[47], [49],

can be used to avoid some of the computational burden associated with the CS. The main feature

of the algorithm is that when stopped after a few steps, it yields an approximation using only

a few basis functions [47]. The matching pursuit decomposes any signal into a linear expansion

of waveforms that are selected from a redundant dictionary of functions [47]. It is a general,

greedy, sparse function approximation scheme with the squared error loss, which iteratively adds

new functions (i.e. basis functions) to the linear expansion. In comparison to a basis pursuit it

significantly reduces the computational complexity, since the basis pursuit minimizes a global cost

function over all bases present in the dictionary [47]. If the dictionary is orthogonal the method

works perfectly. Also, to achieve compact representation of the signal, it is necessary that the atoms

are representative of the signal behaviour and that the appropriate atoms from the dictionary are

chosen.

The algorithm for the matching pursuit starts with initial approximation for the signal, x̂, and

the residual, R:

x̂(0)(m) = 0 (17)

R(0)(m) = x(m) (18)

where m represent the M time indices that are uniformly or non-uniformly distributed. Then, the

matching pursuit builds up a sequence of sparse approximation by reducing the norm of the residue,

R = x̂− x. At stage k, it identifies the dictionary atom that best correlates with the residual and

then adds to the current approximation a scalar multiple of that atom, such that

x̂(k)(m) = x̂(k−1)(m) + αkφk(m) (19)

R(k)(m) = x(m)− x̂(k)(m) (20)

where αk = 〈R(k−1)(m), φk(m)〉/ ‖φk(m)‖2. The process continues till the norm of the residual

R(k)(m) does not exceed required margin of error ε > 0: ||R(k)(m)|| ≤ ε [47].

Here we can consider two stopping approaches. One is based on the idea that the normalized

mean square error should be below a certain threshold value, γ:∥∥x− x̂(k)
∥∥2

2

‖x‖22
≤ γ (21)
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An alternative stopping rule can mandate that the number of bases, nB, needed for signal approx-

imation should satisfy nB ≤ K. In previous contributions (e.g., [6]), K is set equal to d2NW e + 1

to compare the performance of the MDPSS-based frames with DPSS.

In either case, a matching pursuit approximates the signal using L bases as

x(n) =
L∑
l=1

〈x(m), φl(m)〉φl(n) +R(L)(n) (22)

where φl are L bases from the dictionary with the strongest contributions.

3.3 Estimation of sampling times

Based on the definition of MDPSS, we are expected to know when the sampling times occur in

order to use a proper value of the basis function. However, this assumption is typically not realized

and we need to estimate the time location. Therefore, let us assume that the signal

x(t) =

M−1∑
m=0

x(t̂m)δ(t− t̂m) + n(t) (23)

is a superposition of M delta functions with additive noise n(t) resulting from the nonuniform

sampling. To estimate t̂m let us first consider the period extension of the signal:

x(t) =
∞∑

k=−∞
Xke

jkΩot + n(t) (24)

where Ωo = 2π/T and the Fourier coefficients are given by

Xk =
M−1∑
m=0

x(t̂m)e−jkΩo t̂m =
M−1∑
m=0

x(t̂m)ukm − (M − 1) ≤ k ≤ (M − 1) (25)

where um = e−jΩo t̂m . The problem is them to find the parameters t̂m that satisfy the above equation

from the noisy nonuniform samples, which can be achieved using the annihilating filter [2], [44],

[54]. In particular, if the transfer function of the annihilating filter is defined as

A(z) =

M−1∏
m=0

(1− umz−1) =

M−1∑
m=0

αmz
−m (26)

then by filtering both sides of eqn. (25) using the filter, we get

M−1∑
m=0

αmXk−m =

M−1∑
m=0

N−1∑
n=0

x(t̂n)uk−mn αm =

M−1∑
m=0

x(t̂n)

[
N−1∑
n=0

u−mn αm

]
ukn (27)
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where the last term is due to un being a root of A(z). Then, A(z) can be obtained by solving eqn.

(27) for {αm} (i.e., set eqn. (27) equal to zero and solve for filter coefficients). Using the roots of

A(z), um = e−jΩo t̂m/T , the nonuniform sampling time are estimated by

t̂m =
−T
2πj

log um m = 0, ...,M − 1 (28)

A thorough description of the procedure can be found in Appendices A and B of [2].

4 Data Analysis

Our data analysis consists of two parts. In the first part, we consider the synthetic test signals in

order to examine the accuracy of the scheme in well-known conditions. In the second part, we use

dual-axis swallowing accelerometry signals to examine how accurately we can recover these signals

from sparse samples. In both cases, we will follow the procedure shown in Figure 2.

4.1 Synthetic Test Signals

To analyze the proposed scheme, we assumed the following test signal:

x(n) =
10∑
i=1

Ai sin(2πfinTs) + σζ(n) (29)

where 0 ≤ n < N , Ts = 1/256, N = 256, Ai is uniformly drawn from random values in [0, 2] and

fi ∼ N(30, 102). ζ(n) represents white Gaussian noise and σ is its standard deviation.

The first experiment consists of maintaining 150 samples equally spaced throughout the signal.

The SNR values are varied between 0 dB and 30 dB in 1-dB increments, while the normalized half-

bandwidth W is altered between 0.300 and 0.375 in 0.025 increments. We compared the accuracy

of the proposed approach using 7-band and 15-band MDPSS-based dictionaries against the CS

approach based on DPSS. The accuracy was compared by evaluating the normalized mean square

error:

MSE =
‖x(n)− x̂(n)‖22
‖x(n)‖22

(30)

where x(n) is a realization of the signal defined by eqn. (29) and x̂(n) represents a recovered signal.

The MSE values were obtained using 1000 realizations. To calculate the recovered signal using the

DPSS, we used the following formula

x̂DPSS(n) = U(n, k)
(
U(m, k)TU(m, k)

)†
U(m, k)Tx(m) (31)
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Figure 2: A flow chart for the proposed algorithm.

where A† denotes the pseudo-inverse of a matrix; U(n, k) is the matrix containing K bases (i.e.,

DPSS) and each sequence is of length N ; m denotes the time instances at which the samples are

available.

In the second experiment, we vary the number of available samples from 50 samples to 200

samples in increments of 10 samples in order to understand how the number of samples affects the

overall accuracy of the proposed scheme. The samples are uniformly distributed, and the normal-

ized half-bandwidth is set to 0.30. The lower boundary of 50 samples denotes a very aggressive

scheme, as it represents approximately 20% of the original samples. On the other hand, the upper

boundary of 200 samples represents a very lenient scheme for compressive sampling since it rep-

resents approximately 78% of the original samples. Additionally, we use the following four SNR

values: 5 dB, 15 dB, 25 dB and 35 dB. The accuracy of the proposed CS-approach is examined
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using a 7-band and 15-band MDPSS based dictionaries against the CS-approach based on DPSS.

The accuracy metric is the MSE value defined by eqn. (30) and 1000 realizations are used to obtain

its values.

The third experiment examines the effects of non-uniform sampling times on the overall per-

formance of the CS-based schemes. In particular, we use 100 non-uniform samples and the SNR

values were incremented by 1 dB from 0 dB to 30 dB. Also, the normalized half-bandwidth is varied

in 0.025 increments from 0.30 to 0.375. The accuracy of the proposed approach based on MDPSS

is compared against the CS-approach based on DPSS. Specifically, we use 7-band and 15-band

MDPSS-based time-frequency dictionaries. The accuracy metric is again the MSE value defined by

eqn. (30). 1000 realizations are used again to obtain the MSE values, and for each realization new

100 time positions are achieved.

4.2 Swallowing accelerometry signals

Using the proposed scheme, we analyze how accurately we can recover dual-axis swallowing ac-

celerometry signals from sparse samples. Specifically, we assume two different scenarios: only 30%

of the original samples are available and only 50% of the original samples are available. In both

cases, we examine whether the uniform or non-uniform sub-Nyquist rates have significant effects on

the overall effectiveness of the proposed scheme. In this numerical experiment, we use a 10-band

MDPSS based dictionary with the normalized half-bandwidth equal to 0.15. To evaluate the ef-

fectiveness of the proposed approach when considering dual-axis swallowing accelerometry signals,

we adopted performance metrics used in other biomedical applications (e.g., [5], [55], [56]). Those

metrics are:

• Cross-correlation (CC) - CC is used to evaluate the similarity between the original and the

reconstructed signal, and is defined as:

CC =

∑N
n=1 (x(n)− µx) (x̂(n)− µx̂)√∑N

n=1 (x(n)− µx)2
√∑N

n=1 (x̂(n)− µx̂)2
× 100% (32)

where x(n) is the original signal and x̂(n) represents a reconstructed signal. In addition, µx

and µx̂ denote the mean values of x(n) and x̂(n), respectively.

• Percent root difference (PRD) - PRD measures distortion in reconstructed biomedical signals,

and is defined as:

PRD(%) =

√∑N
n=1 (x(n)− x̂(n))2∑N

n=1 x
2(n)

× 100% (33)
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• Root mean square error (RMSE) - RMSE also measures distortion and is often beneficial to

minimize this metric when finding the optimal approximation of the signal. RMSE is defined

as:

RMSE =

√∑N
n=1 (x(n)− x̂(n))2

N
(34)

• Maximum error (MAXERR) - MAXERR is used to understand the local distortions in the

reconstructed signal, and it particularly denotes the largest error between the samples of the

original signal and the reconstructed signal. The metric is defined as:

MAXERR = max (x(n)− x̂(n)) (35)

In order to establish statistical significance of our results, a non-parametric inferential statistical

method known as the Mann-Whitney test was used [57], which assesses whether observed samples

are drawn from a single population (i.e., the null hypothesis). For multi-group testing, the extension

of the Mann-Whitney test known as the Kruskal-Wallis was used [58]. A 5% significance was used.

5 Results and Discussion

In this section, we present the results of numerical experiments and discuss those results. First, we

will discuss the results based on the synthetic test signals. In the second part, we will discuss the

results of numerical experiments considering the application of the proposed approach to dual-axis

swallowing accelerometry signals.

5.1 Synthetic test signals

The results of the first numerical experiment are shown in Figure 3. Several observations are in

order. First, the proposed approach for CS based on the time-frequency dictionary containing

MDPSS achieved more accurate signal reconstructions than the CS approach based on DPSS. This

can be observed regardless of the initial bandwidth used for discrete prolate sequences. Second,

the CS approaches based on both MDPSS and DPSS bases provide similar accuracy at very low

SNR values (e.g., SNR < 5 dB), which is consisted with previous publications which showed that

the accuracy of CS diminishes as SNR decreases [59].

The results of the second simulation are shown in Figure 4. As expected, CS approaches

based on MDPSS and DPSS have similar accuracies for a low SNR value (i.e., SNR = 5 dB) as

shown in Figure 4(a). Both types of bases (i.e., MDPSS and DPSS) are not suitable for accurate
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Figure 3: The effects of increasing initial bandwidth of discrete prolate sequences: (a) W = 0.300;

(b) W = 0.325; (c) W = 0.350; (d) W = 0.375. The dashed lines denotes MSE obtained with the

DPSS; the solid line indicates MSE obtained with a 15-band MDPSS-based dictionary; and the

solid line with squares denotes a 7-band MDPSS-based dictionary.

representations of random variables, and possibly dictionaries based on random bases would be

a more suitable approach for low SNR values. As SNR increases, the MSE decreases for both

approaches and the CS approach based on MDPSS obtains higher accuracy. The results also

showed that if the percent of available samples is below 30 (i.e., we are acquiring signals at rates

that are 30% of the original Nyquist rate), the DPSS and MDPSS based schemes achieve similar

accuracy.

The results of third numerical experiment are summarized in Figure 5. They clearly depict

the advantage of the CS approach based on the MDPSS over the approach based on DPSS even

non-uniform sampling is used. For all four considered cases, we achieved more accurate results

with MDPSS than with DPSS. Additionally, more accurate results are achieved when we use a 15-

band dictionary than the 7-band dictionary. This is in accordance with the previous results shown
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Figure 4: Increasing number of samples used in CS while altering the SNR values: (a) SNR = 5 dB;

(b) SNR = 15 dB; (c) SNR = 25 dB; and (d) SNR = 35 dB. The dashed lines denotes MSE obtained

with the DPSS; the solid line indicates MSE obtained with a 15-band MDPSS-based dictionary;

and the solid line with squares denotes a 7-band MDPSS-based dictionary.

in Figure 3, which also showed that more comprehensive dictionaries can provide more accurate

results due to the fact that they can account for many different time-varying bandwidth scenarios.

5.2 CS of swallowing accelerometry signals

Tables 1-4 depict the results of the numerical analysis when the proposed scheme is applied to

dual-axis swallowing accelerometry signals. Sample signals are shown in Figure 6.

Several observations are in order. First, we achieved very high agreement between the re-

constructed data and the original signals with uniformly spread out samples. Statistically higher

results were achieved with 50% of samples than with 30% of samples when considering the cross-

correlations results (p << 0.01), which resulted in statistically lower errors with 50% of samples
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Figure 5: The effects of random time positions of samples on the accuracy of the proposed scheme

while altering the bandwidth of discrete prolate sequences: (a) W = 0.300; (b) W = 0.325; (c)

W = 0.350; (d) W = 0.375. The dashed lines denotes MSE obtained with the DPSS; the solid line

indicates MSE obtained with a 15-band MDPSS-based dictionary; and the solid line with squares

denotes a 7-band MDPSS-based dictionary.

when considering the three error metrics (p << 0.01).

Second, statistically worse results have been obtained when using non-uniform (random) sam-

pling times (p << 0.01) in comparison to uniform sampling for both 30% of samples and 50% of

samples. This result is expected, as it becomes more challenging to recover the signal accurately

with non-uniform samples. Additionally, it is difficult to recover swallowing vibrations accurately,

given that these vibrations are short-duration transients. Unless the non-uniform samples capture

the behavior of these short-duration transients, a larger recovery error is achieved. However, with

50% of samples, we still obtain very high agreement between the recovered data and the original

signals. As a matter of fact, the results obtained with 50% of samples with non-uniform sampling

are comparable to the results obtained with 30% of samples when using uniform sampling.
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Figure 6: Sample wet swallow from a healthy participant: (a) the original signal in the A-P

direction; (b) the original signal in the S-I direction; (c) the recovered signal in the A-P direction

(50% samples, CC = 99.7%); (d) the recovered signal in the S-I direction (50% samples, CC =

99.8%); (e) the error between the original and the recovered signal in the A-P direction; (f) the

error between the original and the recovered signal in the S-I direction.

Table 1: Performance of the proposed method for recovery of dual-axis swallowing accleremetry

signals when considering 30% of samples and a uniform sampling scheme.

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 96.6± 4.30 96.8± 4.28 92.8± 9.13 93.3± 8.85 90.5± 11.1 97.4± 5.54

PRD (%) 23.2± 12.3 21.8± 13.2 33.5± 19.6 31.7± 20.2 37.8± 23.4 17.1± 15.6

RMSE 0.04± 0.03 0.06± 0.04 0.05± 0.04 0.10± 0.08 0.12± 0.08 0.11± 0.08

MAXERR 0.34± 0.40 0.67± 0.69 0.56± 0.57 1.15± 1.06 1.51± 1.24 1.36± 1.19
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Table 2: Performance of the proposed method for recovery of dual-axis swallowing accleremetry

signals when considering 30% of samples and a non-uniform sampling scheme.

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 89.5± 7.17 92.5± 6.60 84.5± 11.3 87.8± 11.3 84.3± 13.7 94.4± 7.35

PRD (%) 43.9± 14.9 36.5± 15.7 53.3± 20.2 46.2± 22.5 52.4± 26.1 30.0± 17.4

RMSE 0.07± 0.04 0.10± 0.06 0.09± 0.04 0.15± 0.09 0.17± 0.11 0.23± 0.13

MAXERR 0.55± 0.53 0.88± 0.73 0.72± 0.62 1.35± 1.18 1.93± 1.60 2.38± 1.96

Table 3: Performance of the proposed method for recovery of dual-axis swallowing accleremetry

signals when considering 50% of samples and a uniform sampling scheme.

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 98.1± 2.53 98.1± 2.83 95.8± 5.99 95.9± 5.69 94.1± 7.70 98.5± 3.66

PRD (%) 17.3± 8.87 16.4± 10.0 24.7± 14.1 23.6± 14.8 28.3± 17.6 12.6± 11.5

RMSE 0.03± 0.02 0.04± 0.03 0.04± 0.03 0.08± 0.06 0.09± 0.06 0.08± 0.06

MAXERR 0.26± 0.29 0.51± 0.52 0.41± 0.42 0.87± 0.77 1.12± 0.85 1.02± 0.87

Table 4: Performance of the proposed method for recovery of dual-axis swallowing accleremetry

signals when considering 50% of samples and a non-uniform sampling scheme.

Dry swallows Wet swallows WCD swallows

Metric A-P S-I A-P S-I A-P S-I

CC (%) 95.8± 4.44 96.4± 4.23 92.2± 8.77 93.2± 8.30 90.4± 10.6 97.1± 5.23

PRD (%) 26.4± 11.6 23.8± 12.4 35.4± 17.4 32.1± 18.2 38.4± 21.6 19.7± 14.1

RMSE 0.04± 0.03 0.07± 0.04 0.06± 0.04 0.11± 0.07 0.12± 0.08 0.14± 0.09

MAXERR 0.38± 0.37 0.69± 0.64 0.55± 0.54 1.08± 0.93 1.53± 1.22 1.69± 1.42

Third, amongst the considered swallowing tasks, dry swallows tend to be recovered most accu-

rately, followed by the wet swallows and lastly by the wet chin down swallows. From a physiological

point of view, this is expected since during the dry swallowing manoeuver only small amounts of

liquid (i.e., saliva) are swallowed. It is also expected that wet chin down swallows will be more

difficult to recover due to the complex maneuvering required during these swallows, which may
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introduce signal components otherwise not present during the dry and/or wet swallowing tasks.

Therefore, based on the presented results, we can state with high confidence that CS based

on the time-frequency dictionary containing MDPSS is suitable scheme for dual-axis swallowing

acceleromtry signals. Particularly accurate results have been obtained when we use 50% of samples.

We expect that further improvements can be achieved by optimizing the parameters of the recovery

process with respect to the considered error metrics.

6 Conclusion

In this paper, a compressive sensing algorithm for accurate reconstruction of dual-axis swallowing

accelerometry signals from sparse samples was proposed. The proposed algorithm uses a time-

frequency dictionary based on MDPSS. The modulating of DPSS was performed in order to account

for the time-varying nature of the dual-axis swallowing accelerometry signals. The proposed CS

algorithm was tested using both synthetic test signals and swallowing accelerometry signals. In both

cases, we achieved very accurate representations with MDPSS, which makes these bases suitable

for compressive sensing approaches of swallowing accelerometry signals. Specifically, we showed

that even when the dual-axis swallowing accelerometry signals were subsampled at by 50% below

the Nyquist rate, we still achieved very accurate representations of these signals.
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