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Background: Sensing the effects of alcohol consumption in real time could offer numerous 

opportunities to reduce related harms. This study sought to estimate accuracy of gait-related 

features measured by smartphone accelerometer sensors on detecting alcohol intoxication (breath 

alcohol concentration [BrAC]>0.08 g%). 

Methods:  In a controlled laboratory study, participants were asked to walk 10 steps in a straight 

line, turn, and walk 10 steps back prior to drinking and each hour for up to 7 hours after drinking 

a weight-based dose of alcohol to reach a BrAC =0.20 g%.  Smartphones were placed on the 

lumbar region and 3-axis accelerometer data was recorded at a rate of 100- Hz. Accelerometer 

data was segmented into task segments (i.e. walk forward, walk backward). Features were 

generated for each overlapping 1-second window and the dataset was split into training and 

testing datasets. Logistic regression (LR) models were used to estimate accuracy for classifying 

BrAC<=0.08 g% from BrAC>0.08 g% for each subject. 

 

Results: Across 17 participants, BrAC>0.08 g% was predicted with a mean accuracy of 92.5% 

using LR, an improvement from a naïve model accuracy of 88.2%. Mean sensitivity= 0.89, 

specificity= 0.92, PPV=0.77, and NPV=0.97. The two most informative accelerometer features 

were mean signal amplitude in and variance of the signal in the x-axis (i.e. gait sway). 

 

Conclusion: We found preliminary evidence supporting use of gait-related features measured by 

smartphone accelerometer sensors to detect alcohol intoxication. Future research should 

determine whether these findings replicate in situ. 

 



1. INTRODUCTION 

Sensing alcohol intoxication in real time could offer opportunities for triggering just-in-time 

interventions aimed at improving prevention and treatment of alcohol use disorders. For 

individuals in treatment, it could trigger immediate remote support from a sponsor, which could 

reduce relapse risk. For an individual with heavy drinking, it could trigger just-in-time resources 

aimed at reducing further alcohol consumption or other related risks like drinking and driving, 

potentially mitigating individual and public health harms.  

 Several methods exist for remote real-time monitoring of alcohol consumption.  

Transdermal alcohol monitoring (e.g. SCRAM) provides approximation of blood alcohol content 

(Marquez & McKnight, 2009). Portable breath analysis of exhaled alcohol metabolites 

(breathalyzers) are also commercially available.  Barriers to use these methods include costs of 

device purchase and stigma associated with use in public. Even if these barriers are overcome, 

differences in physiology across individuals, especially those with routine alcohol consumption, 

results in varying physiological effects (and thus associated risks) for a given amount of alcohol 

consumed.  

 Measuring altered human function due to alcohol consumption may provide a more useful 

method for longitudinal monitoring. Alcohol, especially at levels >0.08 g%, produces 

psychomotor changes, manifested primarily through impaired speech, gross- and fine-motor 

function. One measure of psychomotor performance that is particularly sensitive to alcohol is 

gait, which requires coordination of multiple sensory and motor systems (Jansen et al., 1985; 

Nieschalk et al., 1999).  

 Smartphones could offer a convenient and scalable way to measure gait features in the 

real world. Over 96% of Americans own a smartphone (Pew, 2019) almost universally with 

embedded sensors that allow for inertial measurements of gait. Researchers have begun to model 



the associations between gait abnormalities detected using smartphone sensors and either real or 

simulated alcohol consumption (Arnold et al., 2015; Aiello et al., 2016). Our group has shown 

that gait-related phone sensor features correlate strongly with estimated alcohol concentrations 

(Suffoletto et al., 2018).  In this pilot study, we sought to determine accuracy of gait-related 

features measured by smartphone accelerometer sensors on detecting an objective measure of 

alcohol intoxication (breath alcohol concentration [BrAC]>0.08 g%). We hypothesized that gait 

would show evidence of instability when BrAC >0.08 g%. Results from this study are critical to 

building an evidence base for smartphone-based digital interventions that deliver just-in-time 

support to reduce risks associated with excessive alcohol consumption. 

2. METHODS 

2.1. Participants 

From August to December, 2018, we recruited 22 adults for a controlled laboratory study. 

Participants were recruited via word of mouth and locally-posted advertisements for a study to 

examine the effects of alcohol on psychomotor tasks. We conducted an initial screen by 

telephone to ensure they were at least 21 years old and consumed alcohol at least once per week. 

Consented participants then made appointments to come to the laboratory for 1 session which 

would last at least 7 hours and were instructed to abstain from consuming alcohol or using other 

psychoactive drugs during the 24 hours preceding the session. They were also told to fast and 

refrain from caffeine consumption at least 4 hours prior to the session.  On the day of the session, 

participants were screened in person to verify age at least 21 years using their driver license and 

a brief health survey. Individuals who reported any positive responses on the CAGE 

questionnaire (Bush et al., 1987), reported hepatic/renal impairment or peptic ulcer disease were 



excluded. Urine samples were also tested for pregnancy in female participants. Females who 

were pregnant or breastfeeding were excluded.  

 

2.2. Procedures  

Participants presented to the Department of Emergency Medicine Applied Physiology Lab at the 

University of Pittsburgh at 8am.  After completing informed consent, Participants completed a 

questionnaire including the 10-quesiton AUDIT (Saunders et. al, 993). Body weight and height 

were measured and an intravenous line was placed to draw blood alcohol measurements and to 

administer nausea medicine (ondansetron 4mg).  

 

Alcohol: Investigators prepared ethanol oral dosing to achieve a goal peak breath alcohol content 

(BrAC) 0.20 g% using the Widemark formula as follows: 2 g/L * (0.7 l/kg (for men) or 0.6 l/kg 

(for women) * Participant weight kg) = dose of EtOH in grams/0.3156 g EtOH per mL = mL 

liquor. Vodka was mixed with lime juice  and simple syrup and administered according to 

standard procedures (Fillmore et al., 2000). Participants were given a maximum of one hour to 

finish alcohol consumption. At baseline and each half-hour hour (for up to 7 hours), we 

measured BrAC (BACtrac s80 Pro). At baseline and at 2,4, and 6 hours, we measured blood 

alcohol content (BAC). Participants left the lab after 7 hours when they could ambulate safely 

and had someone to drive them home. 

 

Walking trial: Participants completed a walking trial at baseline and each hour for up to 7 hours 

following alcohol administration. Prior to beginning the walking trial, we placed a smartphone 

on the lower back using an elastic belt. We then instructed the participant to walk 10-steps in a 



straight line on a flat, carpeted but non-compliant surface, turn around and walk 10-steps back to 

the beginning spot.  When they indicated that they were ready, we started recording 

accelerometer data from the phyphox app (www.phyphox.org). When the participant completed 

the walking trial, the phone was removed from the belt and data downloaded to a secure file 

coded by an ID. 

 

2.3. Measures 

Alcohol intoxication. We chose to use a threshold of BrAC>0.08% as our classifier of alcohol 

intoxication as it has been used in prior studies of acute alcohol effects on psychomotor 

performance (Cash C et al., 2015) and represents the legal limit of blood alcohol in adult drivers 

in the United States.  

 

Gait Feature Extraction. Smartphone sensors and app captured linear accelerations (in units 

of ms2) at a frequency of 100 Hz from the x, y, and z directions which correspond to the 

mediolateral (ML), vertical (V), and anteroposterior (AP) directions. We first labeled 

accelerometer time-series data into the following segments: walk forward, turn, walk back.  

Accelerometry data for each segment was further segmented into 1-second windows with a 50% 

overlap consistent with prior machine learning studies (Preece et al.,2009; Mannini et al., 2010). 

Features were chosen based on prior research (Sejdic et al., 2014; Dasgupta et al., 2018) and 

generated for each window (feature selection shown in Table 1). 

 

Table 1. Accelerometer Gait Features  

Feature Formula 

Mean of Acceleration Signal (ML, AP, V) 𝜇𝑀𝐿, 𝜇𝐴𝑃, 𝜇𝑉 



Variance of Acceleration Signal (ML, AP, V) 𝜎𝑀𝐿
2 , 𝜎𝐴𝑃

2 , 𝜎𝑉
2 

Correlation of Pairwise Acceleration Signals 𝑐𝑜𝑟(𝑀𝐿, 𝐴𝑃), 𝑐𝑜𝑟(𝑀𝐿, 𝑉), 𝑐𝑜𝑟(𝑉, 𝐴𝑃) 

Covariance of Acceleration Signal (ML, AP, V) 𝑐𝑜𝑣(𝑀𝐿, 𝐴𝑃), 𝑐𝑜𝑣(𝑀𝐿, 𝑉), 𝑐𝑜𝑣(𝑉, 𝐴𝑃) 

Maximum Difference of Acceleration Signal (ML, AP, 

V) 

𝑑𝑀𝐿 , 𝑑𝐴𝑃, 𝑑𝑉 

Maximum Difference of Pairwise Acceleration Signals  √𝑑𝑀𝐿
2 + 𝑑𝐴𝑃

2 , √𝑑𝑀𝐿
2 + 𝑑𝑉

2 , √𝑑𝑉
2 + 𝑑𝐴𝑃

2 , 

√𝑑𝑉
2 + 𝑑𝐴𝑃

2 + 𝑑𝑀𝐿
2  

Mean Trend of Acceleration Signal (ML, AP, V) of 0.1 

sec windows within the window 𝜇𝑇 = ∑(|𝜇𝑖 − 𝜇𝑖−1|)

𝑛

𝑖=2

  

Windowed Mean Trend of Acceleration Signal (ML, 

AP, V) of 0.1 sec windows within the window 𝜇𝐷 = ∑(|𝜇 − 𝜇𝑖|)

𝑛

𝑖=2

 

Variance Trend of Acceleration Signal (ML, AP, V) 
𝜎2𝑇 = ∑(|𝜎𝑖

2 − 𝜎𝑖−1
2 |)

𝑛

𝑖=2

  

Windowed Variance Trend of Acceleration Signal (ML, 

AP, V) 𝜎2𝐷 = ∑(|𝜎2 − 𝜎𝑖
2|)

𝑛

𝑖=2

 

 

Table 1 Legend: Abbreviations: ML=mediolateral; AP=anteroposterior; V=vertical 

 

2.4. Statistical Analyses 

To ensure validity of BrAC values, we compared them with BAC values using correlation 

coefficients. We first generated a population-based model using leave-one-out methods for 

detecting BrAC>0.08 g% which showed poor discrimination.  We then chose to generate and test 

model accuracy for each participant separately. First, we used correlation matrix to identify 

highly correlated feature pairs (r > 0.75) and removed features with the highest mean absolute 

correlation. Each dataset was split into a “training” and “testing” dataset using an 80/20% split. 

Logistic regression (LR) models were trained using a repeated 10-fold cross validation, where 

10-fold cross validation was repeated 3 times. We calculated the range of accuracies across 

individuals (with 95% confidence intervals [95% CI]), sensitivity, specificity, positive predictive 



and negative predictive values.  We compared the mean model accuracy with and without gait 

features using a 2-sample t-test. We identified accelerometer features with the highest 

information gain using variable importance function in the caret function in R where the 

algorithm takes the absolute value of the t-statistic for each model parameter is used. We 

explored association of individual characteristics (i.e. age, sex, AUDIT score) with model 

accuracy using univariate regression models.  Analyses were conducted using R version 3.5.2 

and Stata 15.0. 

 

3. RESULTS 

3.1. Participants 

17 individuals were included in the analysis. Mean age was 27.5 (SD 5.5) with a range of ages 

from 21 to 43 years. A quarter (29.4%) of participants were women and all participants were 

White race, non-Hispanic. Mean AUDIT score was 3.5 (SD 2.8) with 4 participants meeting 

criteria for risky drinking based on a score between 7 and 15. Mean weight was 76 kg (range 51-

102) and mean height 68 inches (range 62-73).  

 

3.2. Breath alcohol concentrations (BrAC) 

The BrAC was confirmed at 0 g% at baseline and increased above 0.08 g% in all participants by 

1 hour. The BrAC began to decline gradually starting at 2 hours 30 minutes. The correlation 

between BrAC and BAC values was high (r=0.96).  

 

3.3. Model output for predicting BrAC based on Accelerometry Data during Gait Task 



Across 17 participants, BrAC>0.08 g% was predicted with a mean accuracy of 92.5%, an 

improvement from a naïve model accuracy of 88.2% (2-sample t-test p<0.0001). Mean 

sensitivity= 0.89, specificity= 0.92, PPV=0.77, and NPV=0.97. There were no significant 

differences in prediction accuracy based on using data from “walk forward” versus “walk back” 

segments.   In Table 1, we show the number of 1-second windows of accelerometer data used for 

LR classification and the variability of predictive metrics for the “walk back” segment by 

participant.  We could not identify any participant characteristics (e.g. age, sex, AUDIT score) 

associated with model accuracy. 

 

Table 2. Logistic Regression Models by Participant  

 Number of 1-sec windows          

Participant BrAC<0.08 BrAC>=0.08 Accuracy 95% CI Sens Spec PPV NPV 

1 9 79 0.88 0.64 0.99 1.00 0.87 0.50 1.00 

2 11 9 1.00 0.40 1.00 1.00 1.00 1.00 1.00 

3 10 70 1.00 0.79 1.00 1.00 1.00 1.00 1.00 

4 10 37 0.78 0.40 0.97 0.67 0.83 0.67 0.83 

5 10 20 1.00 0.54 1.00 1.00 1.00 1.00 1.00 

6 17 25 0.88 0.47 1.00 1.00 0.83 0.67 1.00 

7 7 50 1.00 0.72 1.00 1.00 1.00 1.00 1.00 

8 10 62 0.93 0.66 1.00 1.00 0.92 0.50 1.00 

9 10 58 1.00 0.75 1.00 1.00 1.00 1.00 1.00 

10 10 80 1.00 0.81 1.00 1.00 1.00 1.00 1.00 

11 9 45 0.90 0.55 1.00 1.00 0.88 0.67 1.00 

12 8 50 1.00 0.72 1.00 1.00 1.00 1.00 1.00 

13 33 11 1.00 0.63 1.00 1.00 1.00 1.00 1.00 

14 7 55 1.00 0.74 1.00 1.00 1.00 1.00 1.00 

15 32 24 0.82 0.48 0.98 1.00 0.71 0.67 1.00 

16 9 49 0.91 0.59 1.00 0.50 1.00 1.00 0.90 

17 8 37 0.78 0.40 0.97 1.00 0.75 0.33 1.00 

Total 210 761 0.93 0.61 0.99 0.95 0.93 0.82 0.98 

 

Table 1 Legend: Abbreviations: BrAC=breath alcohol content (measured in g%); 



Sens=sensitivity; Spec=specificity; PPV=positive predictive value; NPV=negative predictive 

value. 

 

 

3.4. Top Accelerometry Features for predicting BrAC  

As shown in Table 3, the two most informative accelerometer features were mean signal 

amplitude in the x-axis and variance of the signal in the x-axis. 

Table 3. Top Accelerometer Features by Participant  

  Features 

Participant 1 2 3 4 

1 mean_x mean_z variance_x variance_y 

2 mean_x mean_y mean_z variance_x 

3 mean_y mean_z variance_x variance_y 

4 mean_x mean_y variance_x correlation_xy 

5 mean_y mean_z variance_x variance_z 

6 mean_x mean_y mean_z variance_y 

7 mean_x mean_y mean_z variance_x 

8 mean_x mean_y mean_z variance_x 

9 mean_y mean_z variance_x variance_y 

10 mean_x mean_y mean_z variance_y 

11 mean_x mean_y mean_z variance_x 

12 mean_y variance_x variance_y maxdiff_x 

13 mean_x mean_z variance_x variance_z 

14 mean_y mean_z variance_x variance_y 

15 mean_x mean_y mean_z variance_z 

16 mean_x mean_y variance_y correlation_yz 

17 variance_x variance_z correlation_xy correlation_yz 

 

4. DISCUSSION 

In this laboratory study, we found that smartphones can capture unique gait features that 

are sensitive to alcohol intoxication, classifying alcohol intoxication within individuals with an 

accuracy of around 90%.  These findings extend prior published research examining the use of 



phone sensors to detect gait changes related to alcohol. Kao et al. (2012) recorded 3-axis 

accelerometry data from 3 healthy volunteers during a gait task and found that there was larger 

step time variance and longer gait stretch measured after alcohol consumption. Arnold et al. 

(2015) recorded 3-axis accelerometry data from naturalistic gait samples from 6 healthy 

volunteers and was able to classify 0-2 drinks from 3-6 drinks and >6 drinks with an accuracy of 

56% in the training set and 70% in the validation set. Aiello & Agu (2016) simulated alcohol 

intoxication in 34 healthy volunteers and measured accelerometry signals during lab-based gait 

tasks, finding that they could classify simulated impairment with an accuracy of 89.45% when 

incorporating gyroscope to accelerometer features. This is the first study to our knowledge that 

objectively measured circulating alcohol levels to train detection models. 

One significant strength of this study is we found high accuracy can be achieved using 

logistic regression models.  This allowed us to examine the relative contribution of individual 

gait features in models (not directly possible using machine learning) where we found that 

amplitude and variance along the x-axis of the phone were key predictors. In this study, based on 

the position of the phones, the x-axis represents side-to-side sway during walking. This finding is 

consistent with prior research examining the effect of alcohol on balance (Fiorentino, 2018; 

Marczinski et al., 2019).  Another study strength is that we used very brief walking samples (i.e. 

10 steps). This suggests that it would be feasible to collect this type of sample in naturalistic 

settings to deliver just-in-time support. A third strength is the use of objective alcohol 

concentration (i.e. breath alcohol) to classify legal intoxication instead of drink amount, which 

can be subject to variability due to reporting biases and will not always accurately represent 

blood alcohol content.  

This study’s findings are limited by the relatively small sample size, the use of a cohort 



that largely drinks below risky levels, and controlled setting of data measurement.  Given the 

limited number of data points where gait tasks were completed below a BrAC of 0.08 g%, we 

did not examine whether gait-related features discriminate lower levels of drinking. Our 

procedures allowed for individuals to drink alcohol over one hour, however, there was variability 

even within this limited period which likely impacted variability in peak BrAC. Another 

limitation to consider is that we placed the smartphone on the lower back, which may not 

represent where individuals keep their phones in natural environments. We plan to examine how 

models differ when phones are carried in hand, in front pocket, or side pocket. Finally, we did 

not find that population-based models were accurate in predicting intoxication. We believe that 

this is due to the variability between-individuals in gait patterns and suggests that any application 

would either need to collect individual gait measures during sober and drinking periods or 

incorporate some normalization procedures as performed by Arnold et al. (2015).  

Despite these limitations, this proof-of-concept study provides a foundation for future 

research on using smartphones to remotely detect alcohol-related impairments. Current tools to 

measure alcohol consumption and/or impairment remotely either require the purchase of 

additional hardware (e.g. SCRAM, breathalyzers) or the burden of manual recording of alcohol 

consumption. A mobile application could be built to sense periods of walking (using Google 

API: “on foot” classification), measure accelerometer signals, and when sway patterns are 

recognized, trigger either just-in-time support or employ further techniques to further improve 

classification. 
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