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Abstract—Continuous-time digital signal processors not only
offer significant energy savings in important applications such as
implantable biomedical devices, but can implement asynchronous
procedures. In this paper, we propose an asynchronous signal
decomposition for continuous-time signals based on scale rather
than frequency. Because the implementation of the proposed
procedure does not use a clock it is not affected by aliasing,
and moreover no quantization is involved. Such procedure is
specially applicable to biomedical signals delivering information
in bursts rather than continuously. The decomposer consists of
cascaded modules that expand the signal onto different resolution
scales and each is composed of an asynchronous sigma delta
modulator (ASDM) followed by a local averager and a low-
pass filter. The ASDM is a non-linear feedback system used
to represent the amplitude of a continuous-time signal by a
binary signal whose zero-crossings are used to reconstruct the
original signal. One of the parameters of the ASDM is used as
a scaling parameter, permitting us to represent the signal by its
local means –at different scales– and computed from the zero-
crossing times of the output of the ASDM. We develop a compact
signal representation that is described by a small number of scale
parameters and contains information useful in the continuous-
time processing and transmission of the data. The performance
of the proposed procedure is illustrated using different types of
signals. As a practical application, we consider the non-linear
denoising of swallowing signals. Potentially our procedure will
find application in asynchronous signal acquisition, continuous-
time digital signal processing and transmission in low-power
biomedical applications.

I. INTRODUCTION

Conventional digital signal processors operate
synchronously in time and amplitude. Although the
discretization of amplitude is essential for making possible
the use of digital hardware, discretization of time is not a
necessary for working with digital hardware. Such is the
case with digital signal processing methods that operate in
continuous-time, without using clocks [1], thus avoiding
aliasing and amplitude quantization error. In this paper, we
propose a decomposition procedure similar to the wavelet
decomposition, but that uses scale instead of frequency and
that processes continuous- rather than discrete-time signals.
Our procedure is useful in the continuous filtering of binary
signals [2] and in the compression and transmission of
continuous-time binary signals.

Energy efficiency is significant in biomedical and health-
monitoring applications [3], where the replacement of batteries
cannot be easily done. Asynchronous, i.e., without clocks,
techniques alleviate the power consumption. Instead of using
analog to digital converters to sample and quantize the samples
of a signal, asynchronous systems either acquire samples only
when the signal reaches certain values, as in level-crossing
sampling [4], or convert the amplitude of the signal into a
binary signal with zero-crossing values proportional to the
signal amplitude, as in time-encoding using asynchronous
sigma delta modulators (ASDM) [3], [9]. These encoders are
typically implemented as low power, asynchronous analog
circuits.

Using some of the properties of the time-encoding, it is
possible to show that two consecutive pulses in the binary
output of an ASDM can be used to determine the local average
of the signal. A parameter related to the maximum frequency
of the input of the ASDM can be used to regulate the scale at
which these local averages are computed. By cascading several
modules, each consisting of an ASDM followed by an averager
and a LP filter, we obtain a decomposition of the signal into
multi-level components. Moreover, when zero-mean noise is
present in the signal our procedure is capable of denoising the
signal without the smoothing effects caused by linear filtering.
The performance is very similar to that of a non-linear filtering
method such as median filtering. We develop a compact signal
representation that is described by a small number of scale
parameters and contains information useful in the continuous-
time processing and transmission of the data.

As an application of our decomposition we consider the
denoising of signals obtained from swallowing. Swallow-
ing is a complex process of transporting food or liquid
from the mouth to the stomach [11]. Patients suffering from
dysphagia (swallowing difficulty), usually deviate from the
well-defined pattern of healthy swallowing and are likely to
aspirate. Aspiration (the entry of material into the airway
below the true vocal folds) can have severe consequences
including aspiration pneumonia and death [11], [12]. Current
dysphagia management relies heavily on the videofluoroscopic
swallowing study [11], which is not suitable for day-to-day
monitoring. Cervical auscultation is a promising non-invasive
tool for the assessment of swallowing disorders and enables
daily monitoring of swallowing function. Cervical ausculta-



+ −

1
κ

�
dt

x(t) y(t) z(t)
b

−b

−δ

δ

−1

1

t1

t2

t3

tSchmitt Trigger
Integrator

z(t)

y(t)

t

Fig. 1. Asynchronous sigma delta modulator

tion involves the examination of swallowing signals acquired
via a stethoscope or other acoustic and/or vibration sensors
during deglutition [13]. One such approach is swallowing
accelerometry [14], which refers to an approach employing
an accelerometer as a sensor during cervical auscultation.
Swallowing accelerometry has been used to detect aspiration in
several studies, which have described a shared pattern among
healthy swallow signals, and verified that this pattern is either
absent or delayed in dysphagic swallow signals (e.g., [15],
[16], [17]). Our procedure provides denoising of the bursty
signals obtained from swallowing. Linear filtering applied to
these high frequency signals and affected by noise would
smooth out both signal and noise blurring the information as
to the beginning and end of the signal.

II. TIME-ENCODING OF CONTINUOUS-TIME SIGNALS

To decrease the power consumption as well as possible
data corruption, asynchronous samplers try not to use clocks
simplifying their electronic design. Moreover, the sampling
and quantization strategy is changed by obtaining samples only
when data is present. Since no frequency considerations are
made such samplers do not suffer from aliasing, and by achiev-
ing desired quantization levels they do not cause quantization
error. In this section we present the necessary connection of
our procedure with time-encoding using ASDMs.

A. Asynchronous Sigma Delta Modulator (ASDM)

The asynchronous sigma delta modulator (ASDM), Fig. 1,
is a nonlinear feedback system consisting of an integrator
and a non-inverting Schmitt trigger [3]. The ASDM maps the
amplitude information of the input x(t) into a time sequence
tk which are the zero crossings of its output.

Lazar [6] has proposed a time-encoding algorithm for
continuous–time signals using ASDMs. For an input x(t),
such that |x(t)| < c the desired output of the ASDM is a
binary signal z(t) with values of +b or −b, and zero-crossing
times related to the amplitude of x(t). The bias ±b is chosen
bigger than the bound of x(t) to obtain increasing/decreasing
function of time when integrated. When the output of the
integrator reaches a predefined values ±δ the output z(t) is
triggered to the opposite state. How fast the triggering occurs
is related to the value of κ, which connects with the maximum
frequency of the input signal. The information carried by the
amplitude of x(t) is carried out by the zero-crossing times of
the binary output signal z(t). The zero-crossing times as well
as the design parameters κ, δ, b (strictly positive real numbers)
depend on the nature of the signal.

The output of the integrator in [tk, tk+1] is given by

y(t) = y(tk) +
1
κ

∫ tk+1

tk

[x(τ)− z(τ)]dτ (1)

Assuming that the initial state for [y(tk), z(tk)] is [−δ,−b], at
some time tk+1 > tk the output of the integrator y(t) reaches
the triggering mark δ so that according to (1):

δ = −δ +
1
κ

∫ tk+1

tk

[x(τ) + b]dτ (2)

Similarly starting with [y(tk+1), z(tk+1)] at state [δ, b], we
have at time tk+2 :

−δ = δ +
1
κ

∫ tk+2

tk+1

[x(τ)− b]dτ (3)

Thus, for an increasing sequence {tk}, k ∈ Z, we have from
above

∫ tk+1

tk

x(τ)dτ = (−1)k[−b(tk+1 − tk) + 2κδ] (4)

According to (4) , the input x(t) is connected to the zero-
crossings {tk} and the parameters of the ASDM. As shown
in [8] the input can be recovered from the terms in the right-
hand side of equation (4) by approximating the integral by the
trapezoidal rule.
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Fig. 2. The parameters α1 and β1 in z(t) waveform.

A parameter critical in our decomposition is κ. To obtain
an upper bound for it, we consider that x(t) is bounded by c
and that the bias, b, is bigger than c then

−c(tk+1 − tk) ≤
∫ tk+1

tk

x(τ)dτ ≤ c(tk+1 − tk)

Replacing (4), and solving for tk+1− tk in the above equation
we obtain

2κδ
b+ c

≤ tk+1 − tk ≤
2κδ
b− c

An upper bound for the scaling parameter κ is then

κ ≤ (b+ c)(tk+1 − tk)
2δ

(5)

In the case of non-uniform sampling, a sufficient condition
for reconstruction of band-limited signals is that the maximum



ASDM Averager LPF

ASDM Averager LPF

x(t)
κ1

κ2

z1(t)

z2(t) m2(t)

m1(t) d1(t)

d2(t)

f2(t)

f1(t)
+

+

−

−

Module 1

Module 2

Fig. 3. Decomposer

of {tk+1 − tk} should be less the sampling period Ts. Thus
the relationship between the bandwidth of the signal and the
parameter κ is obtained from (5) as

κ ≤ (b+ c)Ts
2δ

≤ b+ c

4δfmax
(6)

where fmax is the maximum frequency present in x(t).

B. Calculation of Local Averages

Suppose now that we add equations (2) and (3), and let
b = 1, then

∫ tk+2

tk

x(τ)dτ = [(tk+2 − tk−1)︸ ︷︷ ︸
βk

− (tk−1 − tk)︸ ︷︷ ︸
αk

]

If we then let Tk = βk + αk, then the local average

x̄k =
1
Tk

∫ tk+2

tk

x(τ)dτ =
βk − αk
βk + αk

(7)

As shown in Fig. 2, x̄k, the local average in [tk, tk+2] corre-
sponds to the difference of the areas under two consecutive
pulses in z(t) divided by the length of the two pulses.

This result is very important in terms of power consumption
efficiency of the processing system. Clearly if there is no
change in the signal the output of the ASDM becomes periodic
and if we detect this, there is no need to send a signal as the
current input carries no new information.

In terms of our decomposition algorithm, we can easily see
that a change in κ leads to changes in the zero-crossing times,
and hence in αk, βk. We can consider Tk = αk + βk as the
width of the window that is used to estimate the local statistics,
in this case the local average.

Increasing κ indicates that we are calculating the average
of the input over a wider window. All in all, κ is a scale
parameter that defines the width of the time interval over which
we evaluate the local mean of the data.

III. ASYNCHRONOUS DECOMPOSITION

The proposed decomposition is depicted in Fig. 3. It consists
of cascading L modules, each having an ASDM, an averager,
a low-pass filter and an adder. The number of modules, L,
is determined by the scale parameters used to decompose the
input signal. The ASDM maps the input signal, for a certain

scale κi, into a binary signal with sequences {αk} and {βk},
which the averager converts into local averages {x̄k}. The low-
pass filter is used to smooth out the multi-level signal output by
the averager. By doing so, there will not be any discontinuities
inserted by the adder when the multi-level signal is subtracted
from the input signal of the corresponding module. Each of
these modules operates similarly but at a different scale.

We start with a scale factor κ1, corresponding to a wide
window and obtained by considering the maximum frequency
present in x(t) as indicated in equation (6). Then, we use a
fraction of κ1 for the other modules as the scale. The input to
the modules beyond the first one can be written sequentially
as follows,

f1(t) = x(t)− d1(t)
f2(t) = f1(t)− d2(t) = x(t)− d1(t)− d2(t)

...

fL(t) = x(t)−
L∑

l=1

dl(t) (8)

where the di(t) are the outputs of the low-pass filters. We thus
have the decomposition

x(t) =
L∑

l=1

dl(t) + fL(t) (9)

where, fL(t) can be thought as the error of the decomposition.
This decomposition does seem analogous to the wavelet de-
composition, but it is valid for continuous rather than discrete
signal and it uses a scale rather than frequency to implement
the decomposition.

In terms of compression, the input signal x(t) can be
equivalently represented by L sets of values {κi, αik, βik},
i = 1, · · · , L from which we can generate the signal mi(t),i =
1, · · · , L.

A. Simulations

Throughout our simulations we observed that the final error
term, fL(t), goes to zero after a small number of modules
L. That means we can decompose the signal into continuous
waveforms by using small number of scale factors. This is
a promising result for data compression and transmission



applications, beyond the advantage that neither sampling or
quantization distortion is involved in the procedure.
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Fig. 4. Effect of the scale parameter κ: (a) κ = 0.025, (b) κ = 0.01, (c)
κ = 0.005, (d) κ = 0.00125.

It can be clearly seen that as the value of κ decreases the
narrow the window is. This way the statistics of the data can
be obtained in more localized intervals.

After obtaining constant amplitude continuous time binary
waveforms zi(t), i = 1, · · · , L at the output of the ASDMs,
we calculate the local averages by using the zero crossings
according to equation (7). Once we obtain the local average
for each interval, we form a multi-level signal where each level
indicates the local average of the corresponding interval. Fig.
4 displays the multi-level signals at four consecutive modules
for a test signal

x1(t) = sin(2πt) + sin(2π10t) + sin(2π50t)

x The multi-level output of the averager feeds into a low-
pass filter that has a very small cut-off frequency which gets
rid of the high-frequency components of the multi-level signal.
The same low-pass filter is used in each module. In the actual
implementation these filters would be continuous. Finally we
take the difference between the input and the output signal
from the filter and feed that into another identical block con-
sisting of same elements, only with a different scale parameter.
We treat the output of the each block, fi(t), i = 1, · · · , L as
an error term since it is the difference between the original
signal and decomposed parts.

To illustrate the performance of the proposed decomposi-
tion, we consider first a test signal 1 sec. long and sampled at
1 KHz (in order to simulate the continuous-time)

x1(t) = sin(20πt) + sin(10πt) + sin(60πt)

For this signal, we used the following set of κ values consec-
utively,

[0.01, 0.0071, 0.0036, 0.0018, 0.0009, 0.0004, 0.0002, 0.0001]

and L = 8 modules. Figure 5 displays the components fi(t)
of this signal at different modules. After the 8th module,
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Fig. 5. Input to the (a) first, (b) second, (c) 5th and (d) 8th module,
respectively.
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Fig. 6. Reconstruction of test signal x1(t) (dark signal) with additive noise
SNR=3 dB.

decomposition process is terminated since f8(t), looks like
noise as shown in Fig. 5(d). The result for the reconstruction
of the same signal with added noise (SNR= 3 dB) is plotted
in Fig. 6.

As a second simulation illustrating the procedure, we pro-
cess a bursty signal, reconstruct it and obtain the absolute
error which are displayed in Fig. 7. Figure ?? shows the
reconstruction of the same signal under noise.

If we disregard the last term in the decomposition,
equation(8), we observe a smoothing of the noise that is
embedded in the signal. This effect can be seen from Fig.
7 and Fig. 8. The algorithm smooths out the noise by using
appropriate κ values.

B. Application of the decomposition to de-noising of swallow-
ing data

In the analysis of swallowing data is of interest to determine
the starting and the end of the swallowing so difficulties in
swallowing are detected. Because of the bursty nature of the
swallowing signals, as well as the presence of noise and other
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Fig. 7. Bursty signal and its reconstruction error for bursty signal
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Fig. 8. (a) Bursty signal embedded in noise, (b) reconstruction of the bursty
signal

artifacts, denoising these signals is of great interest. Linear
filtering does not work well given the high-frequency nature
of the swallowing signals. The proposed decomposition works
like a non-linear filter given its localized processing.
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SYNTHESIZED DRY DATA

Fig. 9. (a) Recorded and (b) Reconstructed Swallowing Data: type dry

1) Swallowing Data: The recordings considered here were
collected over a three month period from a public science cen-
ter in Toronto, Ontario, Canada. To monitor vibrations associ-
ated with swallowing, a dual-axis accelerometer (ADXL322,
Analog Devices) was attached to the participant’s neck (an-
terior to the cricoid cartilage) using double sided-tape. The
axes of the accelerometer were aligned to the anterior-posterior
and superior-inferior directions. The research ethics boards of
two hospitals in Toronto, Ontario, Canada (Holland Bloorview
Kids Rehabilitation Hospital and Toronto Rehabilitation Insti-
tute) approved the study protocol. All participants provided
written consent and had no documented swallowing disorders.
Additionally, all participants passed an oral mechanism exam
prior to participation.

Data were sampled at 10 kHz and collected using a custom
LabVIEW program running on a laptop computer. Hardware-
based band-pass filters were also used with a pass band of
0.1 − 3000 Hz. Each participant performed three types of
swallows involving saliva and water swallows. The entire
session lasted for about 15 minutes per participant.

2) Results: The sample results shown in Figs. 9 and 10
were obtained using κ = [0.01, 0.005, 0.0025, 0.0013, 0.0006]
and L = 5 modules. These results clearly depict that the
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Fig. 10. (a) Recorded and (b) Reconstructed Swallowing Data: type wet

proposed scheme can provide a denoised version of swallow-
ing accelerometry signals. Specifically, the location and the
duration of swallows is clearer from the synthesized signals.
Such denoised signals can be then used to segment these
recordings more accurately. This is particularly obvious in Fig.
10 where the swallows are not easily observable in the original
signal. Specifically, the presence of five swallows is obvious
from the synthesized signal.

IV. CONCLUSION

A scale-based continuous-time decomposition technique is
presented and its performance illustrated using different types
of signals. It is shown that fine decomposition can be obtained
as long as scale factor keeps under an upper bound defined
by the bandwidth of the signal. We have also shown how
input signal decomposition can lead to smoothing of the noise
present in the signal. By operating in continuous time, the
system avoids aliasing and quantization error. The simulations
illustrate the application of our decomposition for signal
compression, and denoising. As an application, we consider
the denoising of bursty signals obtained from swallowing.
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