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Abstract

Judging swallowing kinematic impairments via videofluoroscopy represents the

gold standard for the detection and evaluation of swallowing disorders. How-

ever, the efficiency and accuracy of such a biomechanical kinematic analysis

vary significantly among human judges affected mainly by their training and

experience. Here, we showed that a novel machine learning algorithm can with

high accuracy automatically detect key anatomical points needed for a routine

swallowing assessment in real-time. We trained a novel two-stage convolutional

neural network to localize and measure the vertebral bodies using 1518 swal-

lowing videofluoroscopies from 265 patients. Our network model yielded high

accuracy that mean distance between predicted points and annotations achieved

4.20 ± 5.54 pixels
::::::
against

:::::::
human

:::::::::
inter-rater

::::::
errors

:::::
(4.35

::
±

::::
3.12

::::::
pixels)

:
and 93%

of predicted points are less than five pixels of distance when tested on an in-

dependent dataset from 70 subjects. Our model offers more choices for speech

language pathologists in their routine clinical swallowing assessments as it pro-

vides an efficient and accurate method for anatomic landmark localization in

real-time, a task previously accomplished using an off-line time-sinking proce-

dure.
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detection

Oropharyngeal dysphagia poses serious health risks to people who suffer from

stroke, head and neck cancer, older adults with multiple medical conditions, pre-

maturely born infants and children with neurological, airway and developmental

disorders Jones et al. (2018); Leslie et al. (2007). Among the consequences of

dysphagia are pneumonia, airway obstruction, inadequate nutrition and hydra-5

tion, and compromised quality of life He et al. (2019); Arnold et al. (2016); Steele

et al. (2019). The evaluation of swallowing function is most often carried out

with imaging based instrumental assessment that quantify swallowing function

by recording and measuring important physiological events and connecting im-

pairments to swallow outcomes such as inhalation of food/liquids (aspiration)10

and misdirection of swallowed material. These evaluation tests may include

videofluoroscopy swallow studies (VFSS) Zhang et al. (2020), fiberoptic endo-

scopic evaluation Leder et al. (1998), ultrasound Lopes et al. (2019), CT scans

and MRI scans Kumar et al. (2013); Carucci and Turner (2015). The VFSS

is the most commonly used radiographic imaging method in clinical practice15

to confirm the presence and characteristics of dysphagia and assist with inter-

vention planning to mitigate the negative impact of dysphagia. Additionally,

manual kinematic measurements, completed by clinicians trained in kinematic

analysis, provides the key details in VFSS about the biomechanical nature of

swallowing impairments providing clinicians with ideas of potential interven-20

tions to improve swallow function. Manual analyses of swallow kinematics and

physiology require frame-by-frame denotation of anatomic landmarks, quantifi-

cation of the duration of key physiologic events and their timing in relation

to one another, scoring of airway protection severity, and several other impor-

tant measurements in order to accurately diagnose the swallowing disorder and25

derive logical treatment to alleviate it.

In addition to physiologic measurements, scaling of images to compensate

for size differences among different patients is a crucial component of the anal-

ysis that enables each patient’s swallowing function to be compared to norms
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that would be expected of a healthy person of the same size. For example, Seo30

& Molfenter developed a method of scaling images by using the distance be-

tween antero-inferior margin of the second and fourth cervical vertebral bodies,

in order to correct influence from patient head movement and participant size

Molfenter and Steele (2014); Seo et al. (2016). Without scaling, the distance of

structural displacements can be over- or under-estimated, leading to inaccurate35

diagnosis. In practice, each of these landmarks is manually marked on VFSS

images, not in real-time but following the examination to serve as the anatomic

scalar. The value of kinematic analysis can be exploited only for patients for

whom VFSS is available, and unfortunately, kinematic analysis and physiologic

measurement are also largely inaccessible in a timely manner in undeserved re-40

gions due to the lack of adequate clinical experts. This clinical limitation also

leads to the reduction of VFSS analysis into a gestalt judgment of overall func-

tion and oversimplified analyses that unnecessarily focus on the completeness

of flow of swallowed material instead of on the physiological impairments that

lead to misdirection of swallowed food and liquids. Automation of kinematic45

analyses would provide a needed and important adjunct to swallowing physio-

logic assessments that could speed up treatment and lower the rates of adverse

health consequences associated with dysphagia. The first step in automating

kinematic analysis of VFSS images is to develop methods that autonomously

produce the image scaling measurements and corrections currently possible only50

with manual annotation of images.

Automation of vertebrae detection and labeling has been widely investigated

in static single-frame imaging such as computed tomography and magnetic res-

onance imaging Koompairojn et al. (2006); Lessmann et al. (2019); Forsberg

et al. (2017); Galbusera et al. (2019); Chen et al. (2019). However, efforts by55

researchers to quantify and measure kinematic parameters during the swallow

process in fluoroscopy, which generates thirty images per second, using com-

puter vision are quite limited. Recent computer vision contributions are mainly

involved in a semi-automatic frame-to-frame tracking of the hyoid bone, one

important component in swallow kinematic analysis. Typical methods for hyoid60
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bone tracking include Sobel edge detection Kellen et al. (2010), Haar classifier

matching Hossain et al. (2014), and local binary patterns Lee et al. (2017).

However, these algorithms are still labor-intensive and time-consuming as they

require a selection of a specific time interval from videos and manually defining

region of interests in several frames in order to select the correct features in the65

images and then calculate the coordinate system based on anatomical landmark

needed to adjust the subjects movement in each frame. Thus, it is impossible to

deploy these methods in real-time during VFSS examinations. However, given

recent hardware advances, deep learning techniques have enabled researchers to

make a significant progress for various imaging tasks in an efficient and inex-70

pensive way Zhang and Sejdić (2019). Among these techniques, convolutional

neural network and or with ResNet block He et al. (2016) is one of state of

art architectures that showed prominent achievement in facial, pose detection

Angulu et al. (2017); Dong et al. (2018); Zadeh et al. (2017), medical imaging

analysis Litjens et al. (2017), segmentation of brain lesions in multi-channel75

MRI image data Nie et al. (2016), left ventricle segmentation Ngo et al. (2017),

micro- and macro-metastases of breast cancer Litjens et al. (2016), blood vessel

identification Fu et al. (2016), tissue identification Chang et al. (2017), glomeruli

localization, and nucleus detection Xie et al. (2018). Unfortunately, the dys-

phagia community has yet to utilize the full potential of deep neural network80

techniques in VFSS analysis. Only few studies achieved preliminary results via

deep learning techniques. To investigate the four stages during swallows, Jone

et al. proposed inated 3D neural network, a state of art architecture, to detect

the pharyngeal phase in VFSS videos, yielding on an accuracy of 95% Lee and

Park (2018). Zhang et al. applied deep learning techniques to detect the hyoid85

bone location automatically on each VFSS frame of the dysphagia examination

and achieved an accuracy of 89% Zhang et al. (2018). Therefore, algorithms

to automatically evaluate and assess VFSS dysphagia studies are highly sought

after in the dysphagia clinical and scientific communities.

The purpose of this study is to demonstrate how deep learning neural net-90

works can achieve high accuracies which are comparable to human annotators
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Figure 1: Data acquisition and annotation procedure Our dataset included annotated

swallows collected from 335 subjects for the model training and evaluation. Video clips were

recorded directly during VFSS examination. C2, C3, C4 vertebra locations were manually

labeled by one main experienced expert during analysis. Inter-rater reliability test was imple-

mented one month later and intra-rater reliability was tested with two other raters to ensure

the accuracy of the judgment.

in anatomical landmark localization that can change the clinical assessment of

dysphagia. Most importantly, our models maintain excellent performance even

when validated on an independent test dataset, demonstrating its robustness

and the generalizability needed for clinical settings. Specifically we present95

an investigation of deep learning in identifying the necessary anatomic scalar,

the distance between the 2nd and 4th cervical vertebral bodies used to correct

for size differences among patients, on all frames of a VFSS examination. We

further sought to investigate how closely individual vertebral lengths (e.g,, C3

alone) corresponded to the longer C2-C4 segment currently used in kinematic100

analysis but whose most inferior landmark may not always be visible in VFSS

images due to patient posture.

Methods

Videofluoroscopic swallow study dataset

Our dataset was collected from 265 patients with swallowing difficulty and 70105

healthy volunteers who underwent videofluoroscopic examination at the Pres-

byterian University Hospital of the University of Pittsburgh Medical Center
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(Pittsburgh, Pennsylvania, USA). The Institutional Review Board at the Uni-

versity of Pittsburgh approved the protocol of this study and all participants

provided informed the consent. The first part of the dataset was collected from110

265 patients. We didn’t use statistical methods to predetermine sample size

or subject age range. In this preliminary feasibility study, a convenience sam-

ple was used because there are no data upon which to base power calculations

for sample size. The age range of these subjects was from 19 to 94 (148/265

males), and the average age was 64.83 ± 13.56 years old. Forty-four subjects115

(32/44 males, age: 66.6 ± 13.7) were diagnosed with stroke. All experiments in

this data collection were performed in accordance with relevant guidelines and

regulations. Participants in this study include During the VFSS examination,

patients were required to swallow liquid boluses of various consistencies and vol-

umes as well as pureed food and cookies, all containing barium. A standard data120

collection protocol was not followed for the patient data set. Instead, clinicians

who conducted the VF modified the protocol for the administration of boluses

(e.g. number of swallows, bolus consistencies, bolus volume and patient’s head

position) based on clinical appropriateness. The following consistencies were

used in our studies: Varibar (Bracco Diagnostics, Inc.) thin liquid (<5cPs125

viscosity), Varibar nectar (300 cPs viscosity), Varibar pudding (5000 cPs vis-

cosity), and Keebler Sandies Mini Simply Shortbread Cookies (Kellogg Sales

Company). Patients were seated in the lateral plane with the 9 inch ( 22cm)

image centered on the area of hyoid bone at rest to enable imaging capture of

all necessary landmarks for the analyses. Patients were administered barium130

sulfate boluses either by the examining clinicians in the thin liquid texture from

a spoon containing 3-5mL volumes for all consistencies, or self-administered liq-

uid boluses from a cup while instructed to remain as still as comfortable. The

second part of the dataset was collected from healthy subjects. The subjects

signed up through a research registry. We recruited them based on age deciles135

and selected them via exclusion criteria questions to determine their eligibility.

The questions include whether they have history of dysphagia, and history of

head and neck, current pregnancy, or neurological disorders. The age range of
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these subjects was from 21 to 87 (31/70 males), and the average age was 62.6

± 14.70 years old. The subjects were asked to swallow varibar thin via spoon140

and self-selected volume from a cup.

In our investigation, we analyzed images from two data sets. The first dataset

consisted of 265 patients referred for VFSs studies was collected from 2012 to

2015 using the Ultimax system (Toshiba, Tustin, CA) and the second dataset

of 70 volunteers was acquired through Precision 500D system (GE Healthcare,145

LLC, Waukesha, WI) from 2018 to 2019. The videofluoroscopy system was set

at a pulse rate of 30 pulses per second (full motion), and data were accrued at

a sampling rate of 60 frames per second by a video card (AccuStream Express

HD, Foresight Imaging, Chelmsford, MA) and saved into a hard drive with a

LabVIEW program. We down-sampled the video clips to 30 frames/second to150

eliminate duplicated frames. The first (patient) data set was recorded with 720

× 1080 resolution in real time while the second (healthy) dataset was captured

with 1280 × 1024 resolution. Given the change in resolution between fluoroscopy

units, we performed a laboratory comparison of multiple judgments of both spa-

tial and temporal measurements of sets of videos resampled at both resolutions155

and found no significant differences in judgments between the two viewing con-

ditions. In some videos, patient motion or anatomic opacification of the land-

marks of interest due to patient posture (e.g., patient’s shoulder region obscured

visualization of the inferior landmark of C4) and underexposure/overexposure

of x-ray dose (e.g., lack or saturation of vertebrae information) rendered some160

data unusable for this study, and those videos (more than half of them) were

excluded from analyses, leaving a final data set of 1518 swallow video clips.

Human experts who were trained as previously described in swallow kine-

matic analysis identified anatomical points of interest (second vertebra and

fourth vertebra) in 1518 swallow videos and annotated the landmark frame165

by frame in MATLAB (R2015b, The MathWorks, Inc., Natick, MA, USA). In

addition, the head and tail of third vertebra were labeled on only first three

frames of each subjects. Each swallow was segmented to include ll activity

beginning with the frame in which the head of the bolus reached the lower
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mandibular margin to when the tail end of the bolus passed through the upper170

esophageal sphincter (UES). Our annotation procedures include ongoing assess-

ment of intra- and inter- reliability by requiring primary judges to repeat blinded

annotations on 10% of randomly selected videos on an ongoing basis, and hav-

ing a second trained ongoing and continuous stability of rater judgments and

identifies judges in need of retraining. In our whole procedure, we maintained175

intraclass correlation coefficient over 0.9 to avoid judgment drift over time.

Image preprocessing and data augmentation

The total number of frames extracted from videos with annotations is 59810

images for our dataset. As we only collected the data from 335 subjects, the

head position and image condition of VFSS images from the same patient were180

quite similar. The problem with the data set from the limited patients is that

the trained model may suffer from overfitting and whould not generalize to test

dataset. The data augmentation is well accepted practice to directly augment

the input data to the model to increase the variety of perturbations in train-

ing data information, which more stringently trains the algorithms in detecting185

events during various common clinical testing conditions. In our dataset, we

preprocessed the images from each patient. The augmentation methods in-

cluded: random flipping half of images horizontally, rotating the images from

-45 degree to 45 degree, shearing all images by -10 to 10 degrees, random crop-

ping or padding 75% to 125% to original images, and changing the brightness190

of the images by multiplying 0.8 to 1.2.
::
To

:::
be

::::::
noted

:::::
here,

::::::::
shearing

:::::::::
technique

::::
may

:::::::::
introduce

::::::::
incorrect

::::::::
anatomy

::::::::::
structures;

:::::
thus,

::::
it’s

::::::
rarely

::::
used

:::
in

::::::::
majority

::
of

:::::::
medical

:::::::::::
applicationsNalepa et al. (2019).

::::::::
However,

:::
in

:::
our

::::::
study,

:::
we

::::
find

::::
that

:::::
many

::::::::
subjects

::::
have

:::::::::
abnormal

:::::::::
vertebrae

::::::
shape

::::::
which

::
is

:::::::
visually

:::::::
similar

::
to

::::
the

::::::
results

::
of

::::::::
shearing

:::
on

:::::::
normal

:::::::::
vertebrae.

::
After data augmentation, all of aug-195

mented images still contain the C2 - C4 landmarks and the total number of the

training images remains unchanged. The deep learning networks highly require

computation resources, we resized the input images into 448 × 448 considering

the model training time. The original landmark point is shifted with respect to
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the image center, and normalized by (w, h) as given by:200

(x′i, y
′
i) = (

xi − 0.5w

w
,
yi − 0.5h

h
) (1)

where (xi, yi) are given ground truth coordinate of landmark points and (x′i, y
′
i)

are normalized and centered coordinates, treated as labels for networks training.

Overview of model development

Convolutional neural networks are commonly applied in medical imaging

field, which can be used to discover the subtle patterns in a dataset. The main205

architecture tested in this study was a convolutional neural netwroks which

used ResNet blocks followed by two convolutional layers. We implemented a

two-stage networks architecture for vertebrae landmark detection. The basic

idea of our two-stage network was inspired by Lv et al. (2017). In our design,

the netwroks consist of two stages, the global detection network and the lo-210

cal detection network. The global stage provides the rough detection results

of vertebrae locations and crops the vertebrae regions. We employed a CNN

structure, which contains ResNet block, as our localization model to predict the

coarse locations. ResNet block is popular architecture that makes use of the

idea of ’short connection’, skipping one or several layers and carrying input to215

the output, which allows to prevent vanishing gradient problem and fasten the

training of the networks. We adopt the structure of ResNet-50 in global stage,

which performs identity mapping for shortcut connections. We adjusted the last

fully connected layer, which was originally designed for classification, to predict

the vertebrae region.220

Due to the various shape of vertebrae across the population, the global

network may not capture all the variations of these difference, especially for the

edge and the order of the vertebrae. To overcome the errors of local parts, we

introduce the local network for the finer landmark localization, which is essential

for accuracy improvement. Images are cropped via the prediction results from225

the global stage network, then scaled and fed into the local stage network.

Similar with the global stage network, we adopt ResNet-34 structure, with the
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last fully connected layer adjusted to directly regress the landmark locations on

the input images. The inverse transformation function is applied to map the

predicted points to the original
:::::
input image.230

Normalization is widely adopted techniques that enables more stable and

faster training of deep learning models. In our study, we found that the switch-

able normalization showed better performance than batch normalization lay-

ers in ResNet blocks in the training phase. Switchable normalization com-

bines batch normalization, layer normalization and instance normalization using

weight average, which allows the custom choice of normalization depending on

the depth of the layer and training batch size (Fig. 3). Batch normalization was

proposed and widely implemented in ResNet and similar convolutional network

architecture. It reduces internal covariate shift by using mini-batch mean and

variance to normalize each mini-batch of data. The normalized version of a

mini-batch of inputs {x1, ..., xm} is computed as follows:

x̂i =
xi − µ√
σ2 + ε

with µ =
1

m

m∑
i=1

xi σ2 =
1

m

m∑
i=1

(xi− µ)2

The layer normalization normalizes features within each sample, instead of nor-

malizing across samples. The layer normalization is computed over all hidden

units (H) in the same layer:

µl =
1

H

H∑
i=1

ali σ2 =
1

H

H∑
i=1

(ali − µl)2

Similar to layer normalization, instance normalization normalizes features within

channels.

The loss function was defined as Euclidean loss for landmark location pre-

diction, which is computed from

loss =
1

2

i=1∑
N

((x̂i − x′i)2 + (ŷi − y′i)2) (2)

where (x̂i, ŷi) are landmark location predicted by the network. We computed the235

loss function on the training and validation data, and we selected the model with

best loss function score on validation dataset as our final model. We fine-tune
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the ResNet via transfer-learning and also trained networks from the scratch.

The advantages of normalization layers is to regularize the model, reduce the

overfitting and improve the model performance. Normalization layers change240

the distribution in network weights during training.

Training the two-stage network model

In this investigation, two dataset were utilized in the model training and

evaluation. The first data was collected from 265 patients using Ultimax sys-

tem, with 70% of subjects for training, 30% for validation. An extra independent245

data collected from 70 volunteers was applied for the final testing. We ensure

that no person in the training group is in the validation and test group to make

it a truly independent group. We also implemented the 5-fold cross-validation

on data set collected from patient group and evaluated model performance on

patient dataset and independent healthy subjects. In the original paper, the250

ResNet block utilized the batch-normalization layer. In our model, we im-

plement and tested the residual block using switchable normalization instead

of batch-normalization layer. The training curve of batch-normalization and

switchable normalization is listed in supplemental files. We trained our two-level

neural network models via fine-tune of original ResNet and fully trained switch-255

able ResNet block. The model that performs best on the validation dataset is

selected for testing. The switchable normalization showed slight better accuracy

compared to the transfer fine-tuning using original ResNet structure. In this

study, training and Testing procedures were implemented using Pytorch on the

NVIDIA Tesla M40 GPU. We utilized Xavier initialization to initialize weights260

in the networks, and we used exponential decay learning rate starting from 0.01

and the learning rate was scale by 0.95 after each epoch. The whole-images

were resize into 448 ×448 and the models were trained over 80 epochs on the

first patient dataset with 80 % for training and 20 % for validation. Due to the

limitation of C3 annotations, we trained first stage network only with C2 and265

C4 labels, then the second network were trained with all annotations.
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Testing and Analysis

Once the model finished the training, the evaluation of model was imple-

mented on the testing dataset, which independent and not included in the

training dataset. All parameters in the models were frozen and we predict270

landmark points by a forward-pass through the networks. As we rescaled and

shifted the landmark points during training phase, these points should be scaled

and shifted back to the original image coordinates:

(xi, yi) = (x̂′iw + 0.5w, ŷ′iw + 0.5w) (3)

The purpose of this study is to locate the key points of vertebrae in the vide-

ofluoroscopic images, whose information can be used as an important reference275

in clinical kinematic analysis. First, we evaluate the mean and standard devia-

tion of location pixel difference between ground truth and points predicted by

the models. We also evaluate the percentage of pixel difference compared to

whole image size. In addition, we checked how the results were affected when

various normalization layers and different input size were applied during model280

training. We asked three well-trained pathologists (intra- and inter- reliability

score greater than 0.9) to manually label the C2-C4 landmarks points, compar-

ing the results tolerance within human and the error distance between humans

and machine predictions. Vertebrae information are used to build a coordi-

nate for kinematic analysis in dysphagia field. To evaluate the performance of285

model, we calculated and compared the ratio of C2, C4 unit, and angle of C2-C4

coordinate. The ratio of C2-C4 is calculated by predicted C2-C4 length over

annotated C2-C4 length. The angle of C2-C4 indicates angle between vector of

predicted C2-C4 and vector of annotated C2-C4.

Results290

We demonstrated an automated pipeline to measure the location, length

and orientation of several cervical vertebrae in videofluoroscopic images. First,

experienced raters conducted manual anatomic annotation of frame-by-frame
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videofluoroscopic data, which was collected from 265 subjects with suspected

dysphagia and 70 healthy participants (Method). Raters annotated the location295

of antero-inferior corner of C2, and the anterior-superior and anterior inferior

corners of the C3 and C4 vertebral bodies, as shown in Fig. 1. These measure-

ments served as the ground truth for determining the length of this vertebral

axis. Given an input image, the first step is to crop the image by removing the

patient information and baffle region (black regions shown in Fig. 1) around300

the patient’s neck region which was used to reduce the radiation during ex-

amination. Then the cropped region is scaled to a fixed size and fed into a

two-stage network (Fig. 2). The convolutional networks were trained to learn

features and patterns from images and mathematically describe the relationship

between human annotations and the input images. After training the networks,305

these parameters were frozen in order to make the prediction on the validation

dataset and the test dataset. The first stage network predicted the coarse lo-

cation of vertebrae landmark regions and the second network finely improved

the landmark regions. The model performance is evaluated by measuring mean

localization distance, length ratio and angle error. Localization distance mea-310

sures the actual distance in pixels between predicted landmark coordinates and

the labeled landmark coordinates. Length ratio measures the ratio between pre-

dicted C3/C2-C4 length and the labeled length while the angle error measures

the angles between predicted C3/C2-C4 vector and manually labeled vector.

These two metrics are important parameters in the dysphagia analysis, which315

are widely used to reduce the bias among population in decision making. Thus,

we mainly focus on the accuracy of length and orientation measurement.

In the experiment, the model was trained using swallows from 265 consenting

patient subjects, and then tested on the second dataset from 70 additional

healthy volunteers, which were treated as unseen samples for the deep learning320

model to evaluate generalization. Notably, our second data was collected three

years later and used a different videofluoroscopy machine, which can present

the challenge of the invariant performance of our method on vertebrae location

given different imaging resources.
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In this study, the performance of our model referred to how closely the pre-325

dicted vertebral locations corresponded to human judgment. An example of a

continuous swallowing video captured at 30 images per second, is shown in Fig.

4(a). At each time point, the two-stage model localizes the location of C2, C3

and C4 vertebra. The images on the left show the ground truth and the frame

with the largest distance error in vertical direction and the right images right330

images are those with largest localization error in horizontal direction. Over-

all, the location results from our model for one subject are reliable. Fig. 4(b)

presents several location detection results on the test dataset, with orange for

the ground truth, blue for the first stage results and red for our model’s final

results. The model was applied to the testing set, an independent dataset in-335

volving 70 subjects, and mean localization distance (MLD) achieved 4.20 ± 5.54

pixels. In order to verify the advantages of using two-stage networks, we com-

pared the results with the model which uses ResNet50 for training. ResNet50

architecture led to a MLD at 7.44 ± 5.38 pixels. The summaries of localiza-

tion distance distribution in testing the dataset compared to the human raters’340

annotations is shown in Fig. 5(b). As there were no established gold standard

or previous experiences that could inform our methods. Regarding the accept-

able localization distance tolerance, we chose 1 % of the whole image size as

our criteria (i.e error less than 5 pixels range). The percentage of acceptable

predicted locations via ResNet50 is 49.66% while the two-stage networks gave345

87.36 %. The variability across multiple raters is unavoidable due to the limited

quality of VFSS images, which is why the reliability test is deployed in routinely

in research and routine clinical practice. In this study, the overall kappa ICC

between two human raters and between the rater and the model both achieved

over 0.9, showing that our model is comparable to human raters. Fig. 5(a)350

compared the model’s predictions errors and one human rater judgment bias on

the test data. Ninety percent of the predicted data shows comparable predic-

tions to the second rater judgment while the model still has about 5% of results

which demonstrated larger locations errors than the likely errors produced by

the human rater during the manual annotation process.355
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Table 1: Model performance with 5-fold cross validation The performance of the

model was evaluated with 5-fold cross-validation and each trained model was also tested on

the healthy data set.

Patient Data Healthy Data

MLD Angle Error Length Ratio MLD Angle Error Length Ratio

fold1 4.19 ± 4.77 0.04 ± 0.05 1.02 ± 0.04 4.14 ± 5.65 0.03 ± 0.04 1.00 ± 0.05

fold2 4.00 ± 4.26 0.03 ± 0.04 1.01 ± 0.04 4.54 ± 5.66 0.04 ± 0.04 1.00 ± 0.03

fold3 4.13 ± 4.51 0.03 ± 0.05 1.03 ± 0.04 5.37 ± 7.76 0.04 ± 0.04 1.00 ± 0.05

fold4 4.17 ± 6.64 0.02 ± 0.02 0.99 ± 0.03 4.85 ± 5.68 0.05 ± 0.04 0.99 ± 0.05

fold5 3.82 ± 4.90 0.03 ± 0.07 1.00 ± 0.03 4.49 ± 5.44 0.04 ± 0.03 1.01 ± 0.06

Compared to the exact location of vertebrae, estimating the cervical ver-

tebrae length and orientation is highly desired in the clinical settings as these

information are usually served as patient-specific criterion referenced correction

factor. In our study, we measured the length between C2-C4 and the length of

C3 unit. Fig. 5(c) and (d) present the length ratio distribution and angle er-360

ror distribution between estimated cervical vector and label vector respectively.

The mean estimated length ratio from ResNet50 is 1.04 ± 0.09 and 45.95% of

them are located in the length ratio range 0.95 to 1.05 while 93.76 % of predic-

tions from two-stage model are located in the same range with mean estimated

length ratio 0.99 ± 0.04. The mean absolute angle errors from ResNet 50 is 0.06365

± 0.05 rads and 0.03 ± 0.03 rads for our two-stage model.

To evaluate the performance of the model, we implemented 5-fold cross-

validation on patient data and tested each model on healthy data as well. Table

1 presents the MLD, angle error and C2-C4 length ratio for each fold. The

average of MLD is 4.07 pixels on patient group and 4.67 pixels on healthy370

group. The results indicate that the model generalized well on both data set

while they were collected from two different video fluoroscopic machines.

15



Discussion

This study is the first step toward a fully automatic diagnostic image anal-

ysis system based upon computational methods, rapidly offering the vertebral375

scaling information that facilitates objective and accurate measurement in real

time. The finding that our two-stage model could accurately and autonomously

determine the anatomic scalar necessary for accurate measurements kinematic

sets the stage for advancing automated analysis methods from VFSS images.

The potential for speeding VFSS interpretations with automated data reduction380

methods while maintaining precise measurement is broad can improve the con-

sistency of interpretations of VFSS images by providing standard measurements

of swallow physiology that lower subjectivity in judgment leading to interven-

tions for dysphagia. In current clinical setting, the importance of an anatomic

scalar in VFSS measurement cannot be understated. Given the differences in the385

sizes of different patients and the direct association between a person’s height

and the dimensions of the upper aerodigestive tract Steele et al. (2011), the abil-

ity to equalize measurements for differences in patient size provides the ability

to compare results across patients of different dimensions. Moreover, real-time

scaling of images provides immediate raw data for clinical interpretations which390

accelerates decision-making and increases efficiency of clinical workflow. In dys-

phagia diagnosis, the use of the vertebral scalar serves as the reference scale

for linear measurements commonly used to infer about the nature of a patient’s

swallowing disorder (e.g., hyoid bone displacement, upper esophageal sphincter

opening) that are the basis for determining appropriate treatments and judging395

the effects of those treatments objectively Molfenter and Steele (2014). In turn,

researchers investigating differences in swallow physiology in different disease

states, and generation of population-based against which to compare patient

function in disease states, provides for accurate determination of the magnitude

of various kinematic impairments and a roadmap for determining the success or400

failure of treatments that restore that function.

Our two-level framework demonstrates the efficacy of using a large dataset
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and deep learning architectures for vertebrae landmark localization in videoflu-

oroscopy images. Unlike previous semi-automation attempts for dysphagia key-

points Lee et al. (2017), we conducted our model on a relatively large dataset,405

including over 300 subjects. Compared to other studies, we included the sub-

jects across the adult age span varying from 19 to 94 years old and included

both people with dysphagia and healthy subjects, showing the robustness of

the algorithms. Additionally, our dataset not only collected single swallows,

but also multiple sequential swallows and swallows in neutral and chin down410

head positions, all factors that are known to alter judgment of kinematic events

when there is large scale motion of the patient during testing. Such diverse

dataset prompted us to utilize deep learning approaches, avoiding the attempts

of unstable, less powerful traditional image processing methods and classifiers.

Traditional image processing methods focuses on matching local edge and415

corner features. However, specific frames are rendered unmeasurable with these

methods due to noisy edge and corner information in cases of patient motion

during the exam, and the effect of the flowing bolus through the video field,

influencing the performance of feature matching. In addition, these corner and

edge features are influenced by image quality and various vertebral shape across420

different subjects. To overcome these limits and accurately detect the vertebrae

shape with various location and edge shape, we adopted the two level frame-

work in our study, which leverages deep learning technology and learns coarse

representation from the VFSS dataset, followed by fine learning from the sub-

regions to localize the keypoints on vertebrae. The coarse detection provides425

the approximate region of interest which contains C2, C3, C4 vertebrae infor-

mation, removing the irrelevant information and also reducing the burden of

computation for the second stage network. As shown in Fig. 4(b), the second

stage network well improved the detection performance from the first network,

which shows the importance of the usage of local network structure.430

In this study, we have also demonstrated that the current framework can

cope with the vertebral locations from videofluoroscopic images via two different

videofluoroscopy systems and perform better than transfer learning techniques.
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Our framework was built based on ResNet-like structures with switchable-

normalization, which is beneficial to the model generalization and stability. To435

compare the performance, we also trained our model using transfer learning

techniques via the pre-trained network on Image-Net, a huge image database

which contains various natural images. Transfer learning is a popular method

that allows deep learning transferred the pre-knowledges to the new dataset,

usually lower training burden and achieve better results. However, our results440

suggested that the usage of ResNet with switchable normalization instead of

batch normalization and training the network from the scratch shows better

performance to transfer learning techniques. Shown in the supplement figure,

switchable normalization trained from scratch converged better than transfer

learning with batch normalization . Furthermore, deeper ResNet structure445

proved a better accuracy.

Our study has some limitations, notably for the size of individual subjects

and imaging resources. While our dataset is relatively large in the dyspha-

gia community, it is still small compared to the popular medical imaging re-

search on organs such as brain and lungs. The
:::::
First,

::::
our

:::::
data

::::
may

::::::
suffer450

::::
from

::::
the

::::
bias

:::
of

:::
sex

:::::
with

::::::
32/44

:::::
male

:::::::
stroke

::::::::
patients.

::::::::
Studies

:::::::
showed

:::::
that

::::::
females

::::
had

::::::
higher

::::::
upper

:::::::
cervical

:::::::
lordosis

:::::
than

::::::
males,

:::::::
whereas

:::::
male

::::
had

::::::
higher

:::::
lower

:::::::
cervical

:::::::
lordosis

:::::
than

:::::::
female

:
Been et al. (2017). The intention of a di-

agnostic application should be gender-neutral Mehrabi et al. (2021),
:
it
::::::::

remains

::::::::
unknown

::::::::
whether

:::
the

::::::::
models’

::::
bias

::
is

:::::
from

::::
the

:::::::::
unbalance

:::
of

:::
the

::::::::::::
demography.455

::::::
Future

::::::::::::
investigations

:::::
could

::::::::
consider

:::
the

:::::::
fairness

::
of

:::
the

::::::
model

:::::::::::
performance

::::::
across

:::::::::::
demography

:::::::::
difference.

::::
In

::::::::
addition,

::::
the

:
sample in this study may not be in-

clusive of the entire range of variety of anatomic information, which resulted

in mis-localization in several cases. As shown in the figure 6, blue dots are the

predictions from first stage network, and red/green dots are from second stage460

network. While second network improved the predictions from first network, its

prediction were shifted in both case (a) and (b). In case (a), the C2 and C3

vertebrae contacted in the image due patient’s head direction. The model cor-

rectly predicted the C2 tail but not other points. In case (b), the model failed
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to predict C4 tail due to abnormal C4 and C5 structure. The deep networks465

not only learned the features from the input image itself and the connection

between input and output, they are able to learn the potential relationship be-

tween outputs, which might be the reason for this shifted wrong predictions.

These abnormal cases such as abnormal bone shape (e.g., cervical osteophytes),

postoperative anatomic disruption (e.g., anterior cervical fusion with graft or470

hardware), altered spinal configuration (e.g., kyphosis, excessive lordosis), or

presence of feeding tubes or tracheostomies, provide direction for future re-

search in model training that leads to better generalization of our model across

more patient populations. We expect that the model performance will increase

as more subjects are included and images are collected from multiple videoflu-475

oroscopic machines. On the other hand, other techniques such as multi-stage

networks and cascade network have been proposed in facial detection and pose

estimation Li et al. (2019); Fan and Zhou (2016). These methods are not con-

strained by the global and local networks and use several networks to improve

landmark locations step by step and may provide advantages that improve de-480

tection. However, whether these architectures can improve the performance for

the VFSS detection with a larger dataset can improve the performance for the

VFSS detection remains an opening question.

In the future, we would ideally extend the localization to other landmarks

commonly considered in dysphagia studies (e.g., hyoid bone, arytenoid carti-485

lages, valleculae, and epiglottis) as well as other parameters for swallow mea-

surements. By extending our framework to study a wider range of features

and providing a quantitative assessment in swallow videos, we hope that this

deep learning approach is able to aid language pathologists’ routine evaluation

by automating some aspects of daily data analysis. This will enable clinicians490

to allocate their limited clinical resources on higher-level interpretations of the

measurements to provide top-of-license services rather than spending valuable

time performing the rote measurement necessary for these interpretations. We

also hope that our framework could play an important role in research in or-

der to develop more precise benchmarks for separating disordered from typical495
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function that aids clinical interpretations, and in characterizing the properties

of dysphagia in various disease states.

Conclusion

In this research, we introduced a deep learning neural network-based method

for anatomic landmarks localization in videofluoroscopic images. We showed500

that our two-stage framework are able to accurately estimate the length and

angle of cervical vertebrae with mean localization distance comparable to human

annotators. We believe that deep learning approach will lead to automation of

kinematic analyses that could speed up time to diagnosis and treatment.
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D., Rêgo, T., Pernambucano, L., Santos, A., 2019. A deep learning approach

to detect hyoid bone in ultrasound exam, in: 2019 8th Brazilian Conference

on Intelligent Systems (BRACIS), IEEE. pp. 551–555.

Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X., 2017. A deep regression archi-605

tecture with two-stage re-initialization for high performance facial landmark

detection, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3317–3326.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A., 2021. A

survey on bias and fairness in machine learning. ACM Computing Surveys610

(CSUR) 54, 1–35.

Molfenter, S.M., Steele, C.M., 2014. Use of an anatomical scalar to control for

sex-based size differences in measures of hyoid excursion during swallowing.

Journal of Speech, Language, and Hearing Research 57, 768–778.

Nalepa, J., Marcinkiewicz, M., Kawulok, M., 2019. Data augmentation for615

brain-tumor segmentation: a review. Frontiers in computational neuroscience

13, 83.

Ngo, T.A., Lu, Z., Carneiro, G., 2017. Combining deep learning and level set

for the automated segmentation of the left ventricle of the heart from cardiac

cine magnetic resonance. Medical Image Analysis 35, 159–171.620

Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D., 2016. Estimating CT image

from MRI data using 3D fully convolutional networks, in: Deep Learning and

Data Labeling for Medical Applications. Springer, pp. 170–178.

Seo, H.G., Oh, B.M., Han, T.R., 2016. Swallowing kinematics and factors

associated with laryngeal penetration and aspiration in stroke survivors with625

dysphagia. Dysphagia 31, 160–168.

24



Steele, C.M., Bailey, G.L., Chau, T., Molfenter, S.M., Oshalla, M., Waito, A.A.,

Zoratto, D.C., 2011. The relationship between hyoid and laryngeal displace-

ment and swallowing impairment. Clinical Otolaryngology 36, 30–36.

Steele, C.M., Mukherjee, R., Kortelainen, J.M., Pölönen, H., Jedwab, M.,630

Brady, S.L., Theimer, K.B., Langmore, S., Riquelme, L.F., Swigert, N.B.,

Bath, P.M., Goldstein, L.B., Hughes, R.L., Leifer, D., Lees, K.R., Meretoja,

A., Muehlemann, N., 2019. Development of a non-invasive device for swal-

low screening in patients at risk of oropharyngeal dysphagia: Results from a

prospective exploratory study. Dysphagia , 1–10.635

Xie, W., Noble, J.A., Zisserman, A., 2018. Microscopy cell counting and de-

tection with fully convolutional regression networks. Computer Methods in

Biomechanics and Biomedical Engineering: Imaging & Visualization 6, 283–

292.

Zadeh, A., Chong Lim, Y., Baltrusaitis, T., Morency, L.P., 2017. Convolu-640

tional experts constrained local model for 3d facial landmark detection, in:

Proceedings of the IEEE International Conference on Computer Vision, pp.

2519–2528.
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Figure 2: The pipeline of the proposed two-stage network architecture for verte-

brae landmark localization First, a new input image is preprocessed to remove the patient

information and dark regions in the videofluoroscopy image. After preprocessing process, the

input image is fed into the first stage of the network to achieve the coarse detection, which

allows to crop the image for finer detection. Then, the cropped image, which covers the verte-

brae region, is fed into the local stage network for a better landmark localization. The output

vectors from the network, which indicates the location of the vertebrae in the cropped image,

are projected back to the initial image. The two-stage network consists of several ResNet

blocks in each stage network. The first stage network follows the idea of ResNet50 while

ResNet34 structure is implement in the second stage network. The ResNet block include sev-

eral Convolutional layers, followed by normalization layers and a rectified linear unit(ReLU),

then an extra identity map create a shortcut between input layer and output layer of the

block. Different from the traditional ResNet block, we implemented switchable normalization

layers instead of batch normalization layers, which allows to adaptively switch among various

normalization techniques.
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Figure 3: Switchable normalization Switchable normalization combines batch normaliza-

tion, layer normalization and instance normalization using weighted average the means and

variances. It allows networks to find the suitable ratios among three normalizations for each

layer during training.
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Ground Truth One-stage model Two-stage model

(a) (b)

Figure 4: Landmark localization results demonstrating the two-level model’s ro-

bustness to variations among patients (a) localization results predicted on a continuous

swallowing video. Blue lines indicate the prediction from predictions, which show larger er-

ror variance comparing to red lines (the two-stage model), demonstrating the benefit of our

model. Left images illustrates the largest error in y direction and the right images corresponds

to the x direction. (b) Examples of the selected videofluoroscopic images with manually an-

notations, predictions from ResNet50 (first stage) and final prediction results. Note how the

second stage achieved invariance to the scale and is able to perform localization despite head

pose, vertebrae shape and lighting for different individuals.
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Figure 5: Human judgment and landmark localization results(a) The curve indicates

the accumulative sum of locations distance errors. Yellow line indicates pixel distances between

two human rater judgment and orange line indicates pixel distances between model prediction

and one of human raters. (b) Distribution of localization distance errors between predicted

and labeled annotation from first stage network and second stage network (c) Length ratio

between predicted C2-C4 vector length and the manual annotation (d) Angle errors between

predicted vector and manual annotation
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a) b)

Figure 6: Failure cases on testing dataset Blue dots: predictions from one stage network.

Green dots: C3 prediction from two stage networks. Red dots: C2, C4 tail edge detection

from two statge networks. While two stage networks shows better results in numerical errors,

we still can find that the landmark predictions are shifted when subjects are in a extreme

posture or with an abnormal vertebra shape.
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Figure 7: Validation loss during training phase Orange: model was trained based

on pretrained ResNet50 network. Blue: model was trained from scratch using switchable

normalization

We first implemented a preliminary study for our model selection, we com-

pared the model performance with batch normalization trained with inputs

without any augmentation and the inputs with augmentation. We used the655

combination of focal loss and dice coefficient function as our loss function. The

input without augmentation led to 0.0074 (training) and 0.0102 (validation),

and the input with augmentation led to 0.0060 (training) and 0.0065 (valida-

tion). The model with augmented input shows lower loss value in both training

and validation dataset. Next, we trained our model with augmented input and660

switchable normalization on the same data, the model with switchable normal-

ization, it achieved 0.0050 (training) and 0.0054 (validation). Figure 7 shows

the training curve for batch normalization and switchable normalization.
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