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Abstract—Dual-axis swallowing accelerometry is a promis-
ing noninvasive tool for the assessment of difficulties during
deglutition. The resting and anaerobic characteristics of these
signals, however, are still unknown. This paper presents a
study of baseline characteristics (stationarity, spectral fea-
tures, and information content) of dual-axis cervical vibra-
tions. In addition, modeling of a data acquisition system was
performed to annul any undesired instrumentation effects.
Two independent data collection procedures were conducted
to fulfil the goals of the study. For baseline characterization,
data were acquired from 50 healthy adult subjects. To model
the data acquisition (DAQ) system, ten recordings were
obtained while the system was exposed to random small
vibrations. The inverse filtering approach removed extrane-
ous effects introduced by the DAQ system. Approximately
half of the filtered signals were stationary in nature. All
signals exhibited a level of statistical dependence between the
two axes. Also, there were very low frequency oscillations
present in these signals that may be attributable to vasomo-
tion of blood vessels near the thyroid cartilage, blood flow,
and respiration. Demographic variables such as age and
gender did not statistically influence baseline information-
theoretic signal characteristics. However, participant age did
affect the baseline spectral characteristics. These findings are
important to the further development of diagnostic devices
based on dual-axis swallowing vibration signals.

Keywords—Dual-axis swallowing accelerometry signals,

Baseline, Auto-regressive modeling, Stationarity, Information-

theoretic analysis.

INTRODUCTION

The current gold standard for detection and man-
agement of dysphagia (swallowing difficulty) is based

on the videofluoroscopic swallowing study (VFSS).25

Despite its effectiveness, VFSS is not suitable for day-
to-day monitoring because of long waiting lists and
excessive exposure to ionizing radiation.39,47 An alter-
native approach for a noninvasive assessment of
swallowing disorders is swallowing accelerometry,41,40

a technique that involves an accelerometer placed on
the neck to monitor vibrations associated with swal-
lowing activities. Although single-axis accelerometers
were traditionally used,7,12,19,42 recent contributions
showed that dual-axis accelerometers yield more
information and enhance analysis capabilities,20,46

likely because of the two-dimensional movement of the
hyoid and the larynx during swallowing.18,15

Even though accelerometry is becoming a valuable
technique for the assessment of swallowing difficulties,
some fundamental issues remain unaddressed. First, the
baseline characteristics of such signals have not been
studied. For example, baseline stationarity and the
baseline relationship between signals in the anterior–
posterior (A–P) and superior–inferior (S–I) directions
are currently unknown. Answers to these questions are
critical to the further development of diagnostic devices
based on dual-axis swallowing vibration signals. Sec-
ond, while the nonidealities in data acquisition (DAQ)
systems may alter swallowing characteristics, these
effects have not been studied nor mitigated to date.

The main contribution of this paper is the inaugural
analysis of baseline characteristics of dual-axis accel-
erometry signals obtained from 50 consenting healthy
adults. In particular, we examine several statistical
features, including stationarity, entropy rate, and
mutual dependence between the two axes. These fea-
tures have not been previously examined for the dual-
axis cervical vibration signals in the absence of swallows.
To isolate baseline cervical vibrations, we model the
employed DAQ system using a general autoregressive
(AR) approach.
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METHODOLOGY

Mathematical Background

This paper deals with signals acquired by a dual-axis
accelerometer. To simplify notation and avoid repeti-
tion, the formulations in this section are based on a
signal acquired from a single axis only, but apply
equally to signals from both axes.

Autoregressive Modeling of Data Acquisition System

Under the assumption that a system can be char-
acterized by a rational structure, a signal can be
modeled as an output of such a system using para-
metric methods.16 More precisely, the parameters of a
model are evaluated based on the samples of the
acquired signal, x(n), of length N, where 0 £ n £
N � 1. Among various modeling techniques, AR-
based modeling methods are often used since the AR
parameters can be easily estimated by solving linear
equations,29,32 unlike the estimation of AR-moving-
average or moving-average parameters, which require
solving a set of nonlinear equations.16 The AR method
models data, x(n), as output of a causal, all-pole, dis-
crete filter of order q whose input is white Gaussian
noise16,29,32:

xðnÞ ¼ �
Xq

r¼1
arx n� rð Þ þ w nð Þ; ð1Þ

where ar is the AR coefficients and w(n) is the white
Gaussian noise with variance r2. Thus, a complete AR
model consists of the filter coefficients {a1, a2, ..., aq}
and the variance r2 of the driving noise process w(n)
(compactly represented by a real-valued parameter
vector h = [r2, a1, a2, ..., aq]).

Different approaches exist to evaluate the AR
parameters of (1), and for an in-depth review, the
reader is referred to classical references by Kay,16 Kay
and Marple,17 and Marple,28 In this paper, the
so-called modified covariance method is used for sys-
tem modeling,27,28 as it avoids drawbacks (e.g., esti-
mation bias and line splitting) associated with other
well known methods such as Burg’s method and the
Yule–Walker technique.27 The modified covariance
method minimizes the average of the forward and
backward linear prediction errors. For full details of
the algorithm, please refer the studies by Kay,16 and
Marple.27,28

The modified covariance approach yields the un-
known AR parameters (i.e., h), but we still need to
estimate the unknown length of the vector h, i.e., to
select the appropriate model order.24 In this paper, the
Bayesian information criterion (BIC) is used to deter-
mine the model order45:

BICðQÞ ¼ �2 ln p x bh
��� ;Q

� �
þQ lnN; ð2Þ

where Q is the length of the vector bh with bh being the

maximum likelihood estimate of h and pðxjbh;QÞ is the
likelihood of the observed data x given bh and Q.
The model order is found by minimizing the above
equation. The BIC yields a more concise description of
a system3 in comparison to Akaike information crite-
rion (AIC).1 Moreover, BIC provides more consistent
results than AIC, that is, the probability of correct
detection approaches unity as N fi ¥ as long as the
data-generating mechanism belongs to the model class
considered.48,51 Note that in using an approach based
on the minimum description length (MDL), BIC can
be obtained.43

Statistical Characterization of Dual-Axis Cervical
Accelerometry Signals

The previous section outlined the methodology for
the characterization of the DAQ system. In this sec-
tion, we describe the methods used to characterize the
baseline behavior of dual-axis swallowing vibration
signals. We can consider x(n) (defined above) to be a
discrete-time series since the observations are made at
a discrete set of times, !; where the cardinality of ! is
N.5 This time series is then a realization of the family of
real-valued random variables vn; n 2 !f g that are
considered to be a stochastic process defined on a
probability space.5

Stationarity test. Stationarity is a property of a time
series in which the probability distribution of values of
the series are independent of time translations.4,5,33

Specifically, a time series is strictly stationary if the
cumulative distribution function of the joint distribu-
tion, Fv1 ; . . . ;vN x1; x2; . . . ; xNð Þ; is invariant to a shift in
the origin, i.e.,

Fv1 ; . . . ;vN x1;x2; . . . ;xNð Þ ¼ Fv1þs
; . . . ;vNþs

x1;x2; . . . ;xNð Þ
ð3Þ

for all positive s.33 This is also referred to as a strong
stationarity, as opposed to weak or wide-sense sta-
tionarity, in which only the first two moments of the
series are required to be time-invariant4,33:

E vef g ¼ E veþs

� �
ð4Þ

Cov v.; v1

� �
¼ Cov v.þs; v1þs

� �
; ð5Þ

where e; .; 1 2 !: The stationarity of a time series can
be assessed with the reverse arrangement test, a non-
parametric approach for determining weak or wide-
sense stationarity of a time series.4 It has been applied
in several fields,2,6 including the analysis of swallowing
vibration signals.7,19,20 The following steps can thus be
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taken to analyze the stationarity of a time series with
the reverse arrangement test4,7:

1. Divide the time series into K nonoverlaping
segments, with the assumption that the data
within each segment is independent. If the
length of a segment is known, then the number
of segments can be calculated as

K ¼ N

L

� 	
; ð6Þ

where L is the desired segment length and �b c
represents the greatest integer function. It is
noted that N is not necessarily an integer
multiple of K, making it necessary to omit
some of the data points. Previous research on
swallowing signals showed that there are no
significant statistical differences between vari-
ous approaches to data trimming.7 Therefore,
the data will be trimmed from both sides as
suggested by Chau et al.,7 and the trimmed
version of the signal is denoted by xtr(m), where
0 £ m £ M � 1 and M = KL £ N.

2. Form a vector y 2 RK of mean square values
whose points are assigned as follows:

yðkÞ ¼ 1

L

Xðkþ1ÞL�1

j¼kL
x2tr jð Þ for 0 � k � K� 1: ð7Þ

3. A reverse arrangement occurs when y(a)> y(b)
for a< b. Using this rule, an indicator
sequence, x, for y(k) can be formed:

x dð Þ ¼ 1 if yðkÞ>yðlÞ for k<l
0 otherwise



ð8Þ

for k + 1 £ l £ K � 1, 1 £ d £ D where D =

K � k � 1. Therefore, the number of reverse
arrangements for kth value is given by

n kð Þ ¼
XD

d¼1
x dð Þ ð9Þ

and the total number of reverse arrangements
is given by

X ¼
XK�1

k¼0
nðkÞ: ð10Þ

4. For a stationary time series, the distribution of
X is approximately normal and its expected
value is given by Chau et al.7

lX ¼
LðL� 1Þ

4
ð11Þ

and its variance by

r2
X ¼

LðL� 1Þð2Lþ 5Þ
72

: ð12Þ

Therefore, the null hypothesis is that X comes
from a normal distribution with its mean and
variance given by (11) and (12), respectively. The
null hypothesis is rejected at a significance level a
ifX falls outside the corresponding critical values.

In this paper, the test statistic

qX ¼
X� lX

rX
ð13Þ

was used, with the assumption that qX � N (0, 1).7

The critical values at significance level a are then q1-a/2

and qa/2 where q is a standard normal variate, and for
a 5% significance level these are given by qa/2 = �1.96
and q1�a/2 = 1.96. The values of the test statistics, qX,
can fall within one of the three possibilities:

� qX £ qa/2—There are fewer reverse arrange-
ments than expected of a stationary signal,
implying the presence of an upward trend in the
mean square sequence.
� qX ‡ q1�a/2—There are more reverse arrange-

ments than expected of a stationary signal,
implying that a downward trend is present in
the mean square sequence.
� qa/2 < qX < q1�a/2—The null hypothesis that a

time series is (weakly) stationary canbe accepted.

Characterization using information-theoretic mea-
sures. Our next concern is the amount of information
carried by these time series. Since we are dealing with
random processes, we estimate the entropy and infor-
mation rates11 based on the estimation of conditional
entropies.34–37 The complete review of the approach is
beyond the scope of this manuscript, and only the key
steps are presented here.

As the first step, we normalize the time series, x(n),
to zero mean and unity variance:

XðnÞ ¼ xðnÞ � lx

rx
; ð14Þ

where lx and rx represent the sample mean and stan-
dard deviation, respectively. The normalized time series,
X(n), is then transformed into a sequence of symbols,
Xk(n), by using k quantization levels and a limited
alphabet {0, 1, ..., k � 1}. As the next step, patterns of
W delayed samples are constructed as: XkWðnÞ ¼
fXkðnÞ;Xkðn� 1Þ; . . . ;Xkðn�Wþ 1Þg: Using the pre-
defined patterns,XkWðnÞ; the conditional entropy is then
defined as36:

Hcondðk;WÞ
¼ �

X
p XkW�1½ �

X
p XkðnÞ XkW�1j½ � logp XkðnÞ XkW�1j½ �;

ð15Þ
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where p XkW½ � is the probability of the pattern XkW and
p XkðnÞ XkW�1j½ � is the probability of the pattern Xk(n)
when the previous W � 1 patterns are given. Equation
(15) can be simply calculated using the following34–37:

Hcondðk;WÞ ¼ Hðk;WÞ �Hðk;W� 1Þ; ð16Þ

where H(k, W) is the Shannon entropy. Hcond(k, W)
measures the regularity with which patterns follow
each other in the time series, whereas Shannon entropy
measures the incidence of the patterns in the time
series. Equation (15) can lead to numerical instabilities,
and therefore, a corrected Hcond(k, W) has been
proposed34:

Hcorrðk;WÞ ¼ Hcondðk;WÞ þHð1;WÞNðk;WÞ; ð17Þ

where X(k, W) is the percentage of the patterns
occurring only once in the series. Furthermore, by
normalizing Hcorr(k, W) by H(1, W), we obtain the
normalized corrected conditional entropy, Hnorm(k, W)
ranging from zero to one. The minimum of
Hnorm(k, W) may be useful for the comparison of
processes with different probability distributions,37

which might be the case with signals considered in this
paper. Hence, a so called index of regularity has been
proposed37:

. ¼ 1�min ðHnormðk;WÞÞ: ð18Þ

The index ranges from zero, denoting maximum
complexity, to one denoting maximum regularity. In
other words, if the time series is highly predictable
(e.g., sinusoid), the index of regularity is close to one,
while for the time series representing white Gaussian
process, the index is close to zero.

The index of regularity provides information about
a single time series. We are also interested in the cou-
pling (or synchronization) between two time series.
Following similar derivations as above, one can arrive
at a synchronization index, g, the degree of uncoupling
between two time series35:

g ¼ 1�min ðCx yj ðWÞÞ; ð19Þ

where Cx|y(W) is the estimate of the so-called uncou-
pling function. This synchronization index exploits the
fact that the conditional entropy between two signals
reflects the amount of information carried by one of
the signals given the samples of the other. Similar to
normalized mutual information, the index is equal
to zero when x(n) and y(n) are uncoupled, and is equal
to one when the two processes are perfectly synchro-
nized. In the case of the dual-axis vibration signals, the
synchronization index measures the amount of infor-
mation shared between the two axes about the two-
dimensional position/movement of the hyoid and the
larynx. In other words, the synchronization index

reveals whether this position/movement is reflected in
both directions or the movement is independent
between the axes.

Protocol for Data Acquisition from Participants

Dual-axis vibration signals were collected from 50
consenting healthy adults (24 males, 26 females),
ranging from 18 to 65 years of age (19 participants
were 18–34 years old; 9 participants were 34-44 years
old; 13 participants were 45–54 years old; and 9 par-
ticipants were 55–65 years old). Participants were
screened through a short survey outlining their medical
history, and were excluded if they had any known or
prior symptoms of swallowing difficulties, or if they
had a history of stroke or other neurological condi-
tions, head or neck cancer, neck or spinal injury or a
tracheostomy. The study protocol was approved by the
research ethics board of Bloorview Kids Rehab in
Toronto, Canada.

After completing the medical history survey, par-
ticipants were seated comfortably in a chair for the
balance of the data collection. A dual-axis accelerom-
eter (ADXL322, Analog Devices) was placed on the
neck of each participant anterior to the cricoid carti-
lage and secured with double-sided tape. The two axes
were positioned in the anterior–posterior (A–P) and
superior–inferior (S–I) directions. Additionally, we
collected signals from three other sensors: a triple-axis
accelerometer (MMA7260Q, SparkFun Electronics)
attached to a headband and centered on the partici-
pant’s forehead to monitor head motions; a respiratory
belt (1370G, Grass Technologies) secured around the
participant’s diaphragm to monitor breathing patterns;
and a microphone placed 30 cm away from the par-
ticipant’s mouth to capture any vocalizations. These
latter signals confirmed that the participants were in-
deed following the data collection protocol properly
(i.e., only vocalizing when instructed). Based on
experiences from previous studies20,46 and in order to
mimic the same hardware behavior, the signals
acquired from the dual-axis accelerometer were band-
pass filtered in hardware with a pass band of 0.1–
3000 Hz and passed through an amplifier (P55, Grass
Technologies). The amplified sensor data were col-
lected with a sampling frequency of 10 kHz and syn-
chronized in time with a LabVIEW program running
on a computer, and stored on the hard drive for sub-
sequent analyses as depicted in Fig. 1.

The data collection procedure included two primary
conditions: a resting condition and an anaerobic con-
dition. For the resting condition, the participants were
asked to remain silent and motionless for 60 s. For the
anaerobic condition, the participants were again asked
to remain silent and motionless, as well as to stop
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breathing for 10 s. In this case, we began recording
data when the participants gave a hand signal indi-
cating that they were ready to cease respiration. The
participants also engaged in other tasks as a part of the
data collection protocol for a different study. All par-
ticipants were advised to refrain from swallowing
during each task, but were permitted to swallow
accumulated saliva between successive steps.

Data Acquisition for System Characterization

To characterize the baseline behavior of the data
collection system, we used the same apparatus as in the
previous section. However, the extra sensors used to
monitor the participants’ behavior were omitted. The
dual-axis accelerometer was taped to a table in a
vacant room in order to capture the system’s exposure
to random small vibrations. Ten recordings were
made, each with a duration of approximately 60 s.
These recordings were then used to approximately
characterize the data collection system through the
modeling technique described in ‘‘Mathematical
Background’’ section.

Data Analysis

The first part of data analysis was concerned with
modeling the data collection system using methods
outlined in ‘‘Autoregressive Modeling of Data Acqui-
sition System’’ section. The ten recordings, described in
‘‘Data Acquisition for System Characterization’’ sec-
tion, were used for this purpose. Although the
described protocol mandated 60 s of data, actual
recordings were longer to facilitate removal of any
transient behavior caused by human movement.
Therefore, each recording was equally trimmed from
both sides to generate 60-s recordings. Using these
trimmed data, the AR modified covariance approach
was used for system modeling. To determine the model
order, Q, for each axis we examined various possible
values (Q 2 1; 2; 3; . . . ; 1000f g) using the BIC. The
selected models were then used to annul the effects of
instrumentation on the acquired data.

The second goal of this study was to examine the
baseline stationarity and information-theoretic content

of the dual-axis vibration signals. The recorded signals
acquired from the participants were pre-processed with
the inverse filters developed in the first part of the
study. These filtered signals were then denoised using a
10-level discrete wavelet transform using the discrete
Meyer wavelet with soft thresholding.13,14 The pre-
processed signals were then used for the baseline
analysis. Baseline characterization proceeded with
stationarity analysis, which was conducted according
to the procedure outlined in ‘‘Statistical Character-
ization of Dual-Axis Cervical Accelerometry Signals’’
section. The number of segments was constrained to be
at least 10 as a general rule of thumb for estimating a
single statistical parameter. Given this constraint, the
analysis was performed with varying window lengths.
For both resting and anaerobic conditions, the window
lengths were 1500, 3000, 5000, and 10,000 points,
corresponding to temporal durations of 0.15, 0.3, 0.5
and 1 s given the sampling frequency of 10,000 Hz.
The smallest window length was chosen based on the
analysis of energy distribution using wavelet coeffi-
cients. It was found that on average more than 98% of
the signal energy was retained below approximately
26 Hz implying that we require a window no shorter
than 3.9 ms. Based on the recommendation made by
Chau et al.,7 we set the shortest window to be 0.15 s in
duration and examined possible sources of nonsta-
tionarity for cases violating the stationarity hypothesis.
Also, since the lengths of the acquired signals were not
necessarily equal to an integer multiple of the window
length, points from both ends of the signal were
omitted as by Chau et al.7 In addition to the stationary
analysis outlined in ‘‘Statistical Characterization of
Dual-Axis Cervical Accelerometry Signals’’ section, we
characterized the frequency content of these baseline
signals using three spectral features common to audio
and biomedical signal analysis22,30:

� peak frequency

fp ¼ argmaxf2 0;fmax½ � FxðfÞj j2 ð20Þ

� spectral centroid

bf ¼
R fmax

0 f FxðfÞj j2df
R fmax

0 FxðfÞj j2df
ð21Þ

FIGURE 1. Data collection setup.
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� the bandwidth

BW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R fmax

0 f� bf
� �2

FxðfÞj j2df
R fmax

0 FxðfÞj j2df

vuuut ; ð22Þ

where Fx(f) represents the Fourier transform of
the signal, and fmax is the maximal analyzed
frequency.

We also decomposed the identified nonstationary
signals using a 10-level wavelet transform with the
discrete Meyer wavelet. Our goal was to examine the
effects of age and gender on the energy concentration
at each decomposition level. The energy concentration
was calculated using the wavelet coefficients as given
by Lee et al.20

Next, we assessed the information-theoretic con-
tent of the dual-axis cervical vibration signals. To
this end, we calculated the indexes of regularity and
the synchronization using k = 10 and W = {10, 11, 12,
..., 30}.

Using the Mann–Whitney test26 and a weighted
linear regression analysis, where appropriate, we tested
for age and gender effects on the spectral and infor-
mation-theoretic contents of baseline signals. These
demographic variables reportedly influence actual
swallowing signals.8,46

RESULTS AND DISCUSSION

Experimental Characterization of the Data
Collection System

The results of system modeling are shown in
Table 1. The model order for the A–P direction fluc-
tuates between 8 and 9, while the model for the S–I
direction is consistently a third order system. To ensure
sufficient model complexity, a ninth-order model was
chosen for the A–P direction. Hence, the average of ten
transfer functions for the DAQ system in both direc-
tions are given by:

HA�P zð Þ ¼ 1=ð1� 0:8850z�1 þ 0:2983z�2 � 0:0445z�3

� 0:0018z�4 � 0:0095z�5 þ 0:0205z�6

� 0:0220z�7 þ 0:0156z�8 � 0:0071z�9Þ
ð23Þ

HS�I zð Þ ¼
1

1� 0:8798z�1 þ 0:2939z�2 � 0:0461z�3
:

ð24Þ

Note that even though the system hardware in both
directions is identical, the above models are of different
orders. A typical approach in system identification for
model validation/comparison is to examine frequency
responses of models for potential differences.24

Amplitude and phase spectra for models given by (23)
and (24) are depicted in Figs. 2(a) and 2(b), respec-
tively. From these graphs, it can be concluded that the
models for systems in the A–P (solid line) and S–I
(dashed line) directions are practically identical. The
higher model order in the A–P axis may be attributable
to slowly evolving variations in the measured static
gravitational acceleration. These slow fluctuations
would result in higher estimated model orders due to
the longer memory of the underlying process. On the
other hand, the S–I axis, being aligned in a direction
orthogonal to vertical, was not affected by static
acceleration but only inertial accelerations. Hence, S–I
model orders were consistently lower than corre-
sponding A–P estimates. In addition, by examining the
roots of both systems, we notice that the systems are
stable: the poles are within the unit circle. Based on the
transfer functions given by (23) and (24), an inverse
filtering approach9 was implemented to annul the
effects of the data collection system. To demonstrate
the effects of inverse filtering on the recordings, power
spectral densities of a sample recording before pro-
cessing are shown in Figs. 3(a) and 3(b). Their pro-
cessed counterparts are depicted in Figs. 3(c) and 3(d).
It is clear from these graphs that a recording with a
pink-like spectrum on both axes becomes a recording
with a white spectrum after inverse filtering. Whiteness
of the filtered signals was checked using Lilliefors
hypothesis test of composite normality.23 All the
recordings in the A–P and S–I directions (‘‘Data
Acquisition for System Characterization’’ section)
became white sequences after processing with the
inverse filters. This whitening filter is essential for
subsequent study of swallowing accelerometry as the
resultant signals now reflect true baseline characteris-
tics of cervical vibrations, without any contaminating
effects of the implemented hardware.

Baseline Characterization of Dual-Axis Swallowing
Accelerometry Signals

The results of the stationarity analysis for the two
conditions are summarized in Table 2. Approximately
50% of the baseline dual-axis cervical vibration signals
were weakly stationary in nature. The number of

TABLE 1. Model orders for A–P direction and S–I direction
as determined by BIC.

Recording I II III IV V VI VII VIII IX X

A–P 8 8 9 9 9 9 9 9 8 8

S–I 3 3 3 3 3 3 3 3 3 3
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nonstationary signals was approximately equal for
both conditions, implying that nonstationarities in
swallowing vibration signals are likely not attributable
to respiration. Accordingly, future developments in
swallowing vibration will not require an algorithm to
mitigate respiratory vibrations, although such filtering
is required in other biomedical applications.50 As the

length of the analyzing window increases, there were
fewer nonstationarities, as expected. The values of
the stationarity test statistic, qX, were statistically
equivalent regardless of the window length for the
resting condition (Kruskal–Wallis test: pA�P ¼ 0:97,
pS�I ¼ 0:96). When considering the anaerobic condi-
tion, the test statistic values were only statistically
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FIGURE 2. Modeling of the data acquisition system: (a) amplitude and (b) phase spectra of the models.

0 1000 2000 3000 4000 5000
−80

−75

−70

−65

−60

−55

Frequency (Hz)

(a)

P
ow

er
 (

dB
)

0 1000 2000 3000 4000 5000
−80

−75

−70

−65

−60

−55

Frequency (Hz)

(b)

P
ow

er
 (

dB
)

0 1000 2000 3000 4000 5000
−80

−75

−70

−65

−60

−55

Frequency (Hz)

(c)

P
ow

er
 (

dB
)

0 1000 2000 3000 4000 5000
−80

−75

−70

−65

−60

−55

Frequency (Hz)

(d)

P
ow

er
 (

dB
)

FIGURE 3. Effects of inverse filtering. Power spectra in (a) the A–P and (b) the S–I directions for a sample signal prior to inverse
filtering. Power spectra in (c) the A–P and (d) the S–I directions after inverse filtering.
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equal for window lengths greater than 0.5 s (Mann–
Whitney test: pA�P ¼ 0:38, pS�I ¼ 0:10). To examine
the source of nonstationarities, a window length of
0.5 s was chosen, since qX values stabilized at this
window size for both conditions. The vast majority of
nonstationary signals had time-varying mean, vari-
ance, and median frequency. To further understand the
physiological sources of (non)stationarity, we con-
ducted a frequency analysis of all signals as described
in ‘‘Data Analysis’’ section. Tables 3 and 4 only depict
the results for the three extracted frequency features,
since the wavelet analysis of nonstationary recordings
revealed no age- or gender-related effects. Several
observations are in order. First, there are no gender-
based statistical differences between the results. That

is, given a specific test (e.g., resting or anaerobic) and a
specific direction (e.g., A–P or S–I) the frequency
content does not statistically differ between male and
female participants (p> 0.05 for fp, bf and BW in both
A–P and S–I directions and in both resting and
anaerobic conditions). Second, age does not seem to
uniformly affect the frequency content of the baseline
recordings. For example, in the resting condition, the
bandwidth in the A–P direction and the peak fre-
quency in the S–I directions were affected by age
(p £ 0.02, regression test) while in the anaerobic con-
dition, the peak frequency in the S–I direction exhib-
ited an age dependence (p £ 10�4, regression test).
Additionally, the age related effects were observed
even when we split the recordings into stationary and

TABLE 2. Stationarity analysis of dual-axis swallowing vibration recordings during the resting
and anaerobic conditions.

Window length

Resting condition Anaerobic condition

A–P S–I # Segments A–P S–I # Segments

0.15 s 35 (70) 29 (58) 420 ± 17 38 (76) 32 (64) 81 ± 8

0.3 s 31 (62) 22 (44) 209 ± 9 35 (70) 31 (62) 40 ± 4

0.5 s 29 (58) 20 (40) 126 ± 6 26 (52) 25 (50) 24 ± 2

1 s 27 (54) 16 (32) 63 ± 3 18 (36) 21 (42) 12 ± 1

Columns denoted by A–P and S–I show the number (percentage) of nonstationary signals in the respective

direction.

TABLE 3. Frequency analysis of dual-axis swallowing vibration recordings during the resting test.

A–P direction S–I direction

fp bf BW fp bf BW

Overall 0.31 ± 0.14 4.32 ± 3.42 10.6 ± 4.78 1.78 ± 2.65 12.9 ± 6.70 14.8 ± 6.69

Male 0.39 ± 0.28 2.86 ± 1.96 8.81 ± 3.85 2.75 ± 3.99 12.6 ± 6.89 14.4 ± 7.64

Female 0.22 ± 0.05 5.65 ± 4.47 12.2 ± 4.83 0.88 ± 1.18 13.2 ± 6.58 15.2 ± 5.63

18 < Age < 35 0.23 ± 0.06 6.17 ± 4.45 12.9 ± 4.72 2.39 ± 3.86 17.9 ± 5.23 14.7 ± 3.45

35 £ Age < 45 0.24 ± 0.03 3.62 ± 3.56 8.75 ± 3.50 2.85 ± 4.64 11.9 ± 8.21 11.4 ± 5.66

45 £ Age < 55 0.48 ± 0.50 3.27 ± 2.26 11.0 ± 4.63 0.69 ± 0.82 8.71 ± 3.91 14.1 ± 6.42

55 £ Age < 65 0.25 ± 0.05 2.61 ± 2.09 7.00 ± 2.70 1.00 ± 1.10 9.36 ± 6.38 19.7 ± 16.5

Entries are mean values ± mean average deviations in Hz.

TABLE 4. Frequency analysis of dual-axis swallowing vibration recordings during the anaerobic test.

A–P direction S–I direction

fp bf BW fp bf BW

Overall 0.36 ± 0.41 7.13 ± 5.19 30.9 ± 22.1 5.12 ± 6.10 13.3 ± 5.73 21.9 ± 12.6

Male 0.57 ± 0.70 7.01 ± 5.92 27.4 ± 19.5 5.72 ± 5.70 13.1 ± 5.83 23.9 ± 16.2

Female 0.16 ± 0.11 7.24 ± 4.50 34.1 ± 24.5 4.57 ± 6.25 13.5 ± 5.68 20.1 ± 9.60

18 < Age < 35 0.20 ± 0.15 9.01 ± 6.69 29.2 ± 18.9 9.73 ± 8.96 18.0 ± 5.22 24.2 ± 13.2

35 £ Age < 45 0.26 ± 0.22 6.36 ± 5.08 29.1 ± 19.1 4.51 ± 5.00 11.9 ± 6.20 17.3 ± 6.93

45 £ Age < 55 0.25 ± 0.26 4.99 ± 3.38 34.9 ± 21.8 1.11 ± 1.40 11.0 ± 3.25 23.0 ± 15.2

55 £ Age < 65 0.96 ± 1.43 7.04 ± 4.66 30.4 ± 30.6 1.82 ± 2.52 8.17 ± 3.87 20.1 ± 14.5

Entries are mean values ± mean average deviations in Hz.
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nonstationary groups. Third, the maximum power in
the A–P direction occurred at very low frequencies.
Based on these findings, we anticipate that nonsta-
tionarities and variations in the frequency content are
due to the fact that the dual-axis cervical accelerometry
is capturing information related to cardiac dynamics
(see Fig. 4). The superior thyroid artery outlines the
lateral aspect of the thyroid cartilage, where we posi-
tioned our accelerometer. In particular, we speculate
that vasomotion of the common carotid artery and its
branches, i.e., the external carotid and superior thyroid
artery, is responsible for the observed maximum power
occurring at low frequencies. Previous literature has
reported similar frequency content for vasomo-
tion.10,44 Additional auditory examination of the
baseline signals revealed the presence of vibrations
associated with heart beats and blood flow (see Fig. 4).
Studies implementing similar auscultatory techniques21

reported comparable findings. Note that for the cases
where age affects the frequency content, there is a
decreasing trend, i.e., older participants exhibit slower
vibrations. This also suggests that the observed vibra-
tions in the baseline state are related to heart rate
variation, as it decreases with age.31 As a last remark,

we must also acknowledge the potential effect of res-
piration on these signals.38 To fully understand these
potential effects, future studies should compare dual-
axis cervical vibration signals with direct recordings of
peripheral resistance changes and respiration via sta-
tistical analysis (e.g., coherence analysis).

The assessment of the information-theoretic content
of the baseline signals is in Table 5. Several observa-
tions are in order. First, the baseline signals in both
resting and anaerobic conditions are highly regular.
The index of regularity is almost one for all the cases,
and the standard deviations are close to zero (Table 5,
columns 1, 2, 4, and 5). This finding is expected, since
Tables 3 and 4 show a very structured behavior of
signals in the frequency domain. Second, gender does
not influence the information content of the baseline
characteristics of dual-axis cervical vibration signals.
There was no gender effect on the index of regularity
for both resting (pAP = 0.14, pSI = 0.65) and anaero-
bic conditions (pAP = 0.26, pSI = 0.42). Similarly, the
synchronization index between the A–P and S–I
axes did not exhibit any association with gender
(presting = 0.48, panaerobic = 0.52). Previous research
has shown that there are gender-based swallowing
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FIGURE 4. Sample signals in (a) the A–P and (b) the S–I directions during the resting test. Power spectra in (c) the A–P and (d) the
S–I directions for the sample recordings. The values of measured features for these two recordings are: fpAP

= 0:13 Hz, fpSI
= 0:13 Hz,

bfAP = 1:24 Hz, bfSI = 7:50 Hz, BWAP 5 5.73 Hz, BWSI 5 12.3 Hz, .AP = 9:99� 10�1; .SI = 9:99� 10�1; gAP�SI = 0:89.
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differences due to anatomical differences in the oro-
pharyngeal mechanism.8,46 Hence, the results pre-
sented here are important as they demonstrate that
such gender-based differences do not exist in baseline
accelerometry, when there is no swallowing involved.
Similarly, the age of the participant did not influence
the information content of the baseline recording.
Regardless of the age of the participant, the informa-
tion unique to each axis or shared between A–P and
S–I directions is statistically equivalent (p> 0.4,
regression test). However, we know that the length of
time required for a person to complete a swallow
increases with age, due to the decoupling of the oral
and pharyngeal stages.46,49 It therefore appears that
both age and gender related effects on cervical vibra-
tions only manifest themselves during actual swallow-
ing activity and not during baseline resting and
anaerobic conditions.

Remarks

The current manuscript has only described the
baseline characteristics of dual-axis cervical vibration
signals obtained from a healthy population and has
not considered populations with dysphagia. Swallow-
ing difficulties may be secondary to numerous distinct
conditions, such as stroke, acquired brain injury,
advanced aging, or head and neck cancers, among
others. Hence, we may expect to see some differences in
baseline signals, particularly for individuals who may
have concomitant cariorespiratory conditions. How-
ever, it is also plausible that the resting and anaerobic
characteristics of cervical vibration signals of these
patient populations may actually resemble those of the
healthy population studied here. Keep in mind that the
baseline conditions do not invoke swallowing function,
which is the distinguishing characteristic between the
healthy and pathological populations of interest.
Clearly, future studies with different populations of
individuals with dysphagia are necessary to test these
hypotheses. Nonetheless, this study has provided an

understanding of normative baseline characteristics.
This knowledge may eventually be helpful for differ-
entiating between healthy and abnormal populations,
particularly, in gauging the need to remove baseline
effects from signals prior to patient classification.

CONCLUSION

In this paper, baseline characteristics of dual-axis
vibration signals were studied. The DAQ system itself
was modeled using an AR approach, and consistent
models were determined for the two axes. Based on
these models, the inverse filtering annulled the effects
introduced by instrumentation. The study of the
baseline characteristics revealed that approximately
half of the acquired dual-axis swallowing cervical sig-
nals are stationary. Also, there exists some dependence
between the two axes. Low-frequency oscillations
detected in these recordings may be attributed to
vasomotion of blood vessels in proximity of the
thyroid cartilage. Statistical analysis demonstrated
that information-theoretic characteristics of baseline
vibration signals are generally not affected by age and
gender. However, some spectral characteristics expe-
rience an age-related dependence.
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