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Abstract5

The displacement of the hyoid bone is one of the key components evaluated in the swallow6

study, as its motion during swallowing is related to overall swallowing integrity. In daily research7

settings, experts visually detect the hyoid bone in the video frames and manually plot hyoid8

bone position frame by frame. This study aims to develop an automatic method to localize9

the location of the hyoid bone in the video sequence. To automatically detect the location of10

the hyoid bone in a frame, we proposed a single shot multibox detector, a deep convolutional11

neural network, which is employed to detect and classify the location of the hyoid bone. We12

also evaluated the performance of two other state-of-art detection methods for comparison. The13

experimental results clearly showed that the single shot multibox detector can detect the hyoid14

bone with an average precision of 89.14 % and outperform other auto-detection algorithms.15

We conclude that this automatic hyoid bone tracking system is accurate enough to be widely16

applied as a pre-processing step for image processing in dysphagia research, as well as a promising17

development that may be useful in the diagnosis of dysphagia.18
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Dysphagia, a common condition among older individuals, is defined as an impairment in swal-20

lowing function during eating and drinking [1]. Dysphagia causes subjective discomfort and objec-21

tive difficulty in the formation or transportation of a bolus from mouth to stomach, and prevention22

1Zhenwei Zhang and Ervin Sejdić are with the Department of Electrical and Computer Engineering, Swanson

School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. E-mail: esejdic@ieee.org. Ervin Sejdić
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of errant entry of swallowed material into the airway. Dysphagia is a frequent clinical sign in23

patients with stroke, head and neck cancer and a variety of other medical conditions [2–4]. The24

prevalence of dysphagia is very high: stroke is the most commonly reported etiology with over 5025

% of patients exhibiting dysphagia in the immediate post-onset stage of recovery, diminishing to26

a lower prevalence of around 11 % within 6 months of onset [5]. Additionally, chronic dysphagia27

affects 7.2% of people with other neurological diseases, and 4.9% of patients treated for head and28

neck cancer [6]. Up to 40% of people over 65 years old and more than 60% of adults in nursing29

home [7] suffer from dysphagia. It is estimated that 25% − 50% of Americans over 60 [2] and30

17% of citizens over 65 in Europe [8] will suffer from dysphagia, leading to increased risk of poor31

nutrition or dehydration. The variation in estimation may be due to different definitions of dys-32

phagia, the method of swallowing assessment and the number of patients investigated. As a more33

immediate clinical consequence, dysphagia may lead to misdirection of food and colonized saliva34

into the airway, possibly causing pneumonia and chronic lung disease. In many cases aspiration35

occurs without any obvious clinical signs of dysphagia (silent aspiration), postponing early iden-36

tification and preventive treatment therefore lowering patient survival [9]. Efforts to accurately37

evaluate swallowing function early after the onset of conditions leading to dysphagia can mitigate38

many of these health risks [10].39

The videofluoroscopic swallowing studies (VFSS), also known as modified barium swallow study,40

is the gold standard test for dysphagia evaluation [11–14]. VFSS, unlike bedside clinical examina-41

tion, enables the examiner to visualize oral, pharyngeal and upper esophageal structure and function42

during patient swallowing. VFSS also evaluate errors of biomechanical coordination that lead to43

bolus misdirection. Patients with dysphagia may not exhibit overt signs of swallowing problems44

at the bedside. VFSS excels at allowing clinicians to identify occult disorders in airway protection45

and biomechanical errors leading to impaired airway protection and transfer of food to the diges-46

tive system. Airway closure and upper esophageal sphincter opening are largely influenced by the47

timing and displacement of the hyolaryngeal complex during the pharyngeal stage of swallowing.48

During VFSS, the hyoid bone is the most salient anatomic structure for detecting hyolaryngeal mo-49

tion [15]. Hyolaryngeal excursion is an important feature considered by clinicians and researchers50

because disordered motion may signify dysphagia. Clinicians make subjective judgments about51

the completeness of hyoid displacement by gross visual inspection of VFSS images. In dysphagia52

research labs, expert judges annotate hyoid position and its key components in each image frame.53

However, the subjective clinical process is prone to judgment error, and frame-by-frame annotation54

done by researchers is time consuming and is prone to inter- and intra-rater variation [16].55
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Efforts by researchers to develop hyoid tracking methods that combine human judgment with56

automated image processing and machine learning are still quite limited. Patrick et al. proposed a57

method to define the hyoid bone in a calibration frame by identifying a region of interest manually58

and using Sobel edge detection to track the hyoid bone in subsequent frames [17]. Hoaasin et59

al. proposed a semi-automatic hyoid bone tracking system that can match the hyoid bone by60

Haar classifier matching. However, their method still requires manual identification of regions that61

clearly contain the hyoid bone [18]. Lee et al. developed a software platform that extracted the62

trajectory of the moving hyoid bone by calculating local binary patterns and multi-scale local binary63

patterns [19]. Kim et al. developed software which can track, smooth and segment the hyoid bone64

motion from VFSS [20].65

Remarkable progress has been made in medical imaging techniques due to the large number of66

databases and deep convolutional neural networks (CNNs) [21, 22]. Currently, the ideas of CNNs67

are mainly employed in various medical imaging modalities such as conventional X-ray fluoroscopy,68

MRI and CT for classification and segmentation [23–26]. The medical applications of CNNs tech-69

niques are to help clinicians diagnose and classify diseases more quickly, including segmentation of70

various tissues such as brain and organs; classification of cancer, fractures, neurological diseases71

and biomedical image retrieval systems. Research based on segmentation and object detection has72

closely followed the development of CNNs in the last few years. Almost all recent works for the73

object detectors and segmentation are based on CNNs, a deep architecture using pretraining on74

ImageNet which is trainable end-to-end. Girshick et al. first described Region-based Convolutional75

Neural Networks (RCNN) that dramatically increased the performance of object detection com-76

pared to traditional features based classifiers [27]. Traditional methods usually use sliding windows77

for region proposal, histograms of gradient orientation (HoG) or scale-invariant feature transform78

(SIFT) as feature extraction [28, 29], and support vector machine (SVM) and Boosting methods79

as classifiers [30, 31]. Fast-RCNN extended the idea of RCNN and improved system performance80

by sharing the computation across the proposed image regions [32]. Then, Faster-RCNN improved81

the region proposer method and sped up the overall process [33]. In this method, only one CNN is82

trained and the region proposal reused the results of the same CNN instead of running a separate83

searching algorithm in the previous work. You Only Look Once (YOLO) [34] and Single Shot84

MultiBox Detector (SSD) [35] are existing methods that focus on better computation speed and85

performance. These two methods classify and regress a set of anchor boxes without using the idea86

of Regions of Interests. YOLO applies a simpler network structure, predicting bounding boxes87

and class probabilities directly from the last convolutional feature maps. SSD uses features from88
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different layers progressively to predict the various size of bounding boxes. Features from the early89

layers were applied to predict the small-sized boxes while features from the latter layers are applied90

for larger boxes.91

In previous research related to the hyoid bone motion, users manually marked a region of92

interest in the first frame after which their algorithm tracked or detected the motion of hyoid bone.93

The number of images used in these studies was not representative of a patient population. The94

hyoid bone motion analysis provides meaningful solutions in clinical research settings. However,95

the manual tracking is time consuming and impractical in real-life cases. Improved hyoid bone96

localization and an automatic hyoid bone tracking system can help clinicians provide a quicker97

assessment of the patient. Therefore, we sought to develop a software platform that can localize98

the region of interest containing the hyoid bone in subsequent video frames. The proposed method99

relies on the CNN based object detection method. We hypothesized that our detection algorithms100

would accurately detect the location of the hyoid bone in each video frame with high accuracy when101

compared to the gold-standard manual detection method (visual inspection with frame-by-frame102

plotting).103

The paper is organized as follows. Section 2 reports the background and the current state-of-104

the-art object detection methods; section 3 proposes the methodology, followed by the analysis of105

the experimental results and discussion; and section 4 concludes the paper.106

1 Material and Methods107

1.1 Data Collection108

In this investigation, 265 patients with swallowing difficulty underwent videofluoroscopic exam-109

ination at the Presbyterian University Hospital of the University of Pittsburgh Medical Center110

(Pittsburgh, Pennsylvania). The protocol for this study was approved by the Institutional Review111

Board at the University of Pittsburgh and all participants provided informed consent. The age112

range of these subjects was from 19 to 94, and the average age was 64.833 ± 13.56 years old. The113

distribution of ages is illustrated in Fig 1. There were no significant differences in hyoid bones be-114

tween younger and older patients in the detection task. The main difference in the anatomy of the115

hyoid bone across the lifespan is density and when the greater cornua fuses to the body of the hyoid.116

Hyoid bone tracking with VFSS relies on identification of landmarks on the body of the hyoid bone117

without regard to cornua. Patients swallowed radiopaque liquid boluses of different consistencies118
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Figure 1: The age range of participants are from 19 to 94. Most of subjects are in the age range

43-83 years old.

and volumes as well as pureed food and cookies during their VFSS examination. The volumes119

and viscosity of material administered to patients were determined during the examinations in real120

time by clinicians based on factors such as the patient’s history and clinical indications. These121

liquids included thin liquid (Varibar Thin Liquid with < 5 cPs viscosity), and nectar-thick liquid122

(Varibar Nectar with about 300 cPs viscosity). The position of patients during swallowing was pri-123

marily neutral head position though some swallows were performed in a head-neck flexion position.124

Patients swallowed liquid boluses from a spoon containing 3-5mL volumes, or self-administered125

boluses from a cup containing patient self-selected, comfortable volumes between 10-20mL.126

Videofluoroscopy was set at 30 pulses per second (full motion) and video images were acquired127

at 60 frames per second by a video card (AccuStream Express HD, Foresight Imaging, Chelmsford,128

MA) and collected into a hard drive with a LabVIEW program. The videos were two-dimensional129

digital movie clips of 720 x 1080 resolution, and in this investigation, we down-sampled the video130

clips to 30 frames/second to eliminate duplicated frames.131

1.2 Methods132

In this investigation, our solution is to build a detection system based on the single shot multibox133

detector, which is one of the most popular detection algorithms in recent years. The SSD algorithm134

can generate high detection performance at the cost of high computational complexity. Thus, we135

also evaluated the performance of several other state-of-the-art detection methods, i.e., Faster-136

RCNN and YOLOv2, for comparison. The following paragraphs describe the SSD approach, the137
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data set ground truth creation and the training and testing details.138

1.2.1 Network Architecture139

Machine learning has been widely used in medical imaging and videos to help users better un-140

derstand the properties of these data [36]. Neural networks are one of the most popular types of141

machine learning models. The basic idea of neural networks is to multiply the input data with layers142

of weighted connections. Deep neural networks consist of a typical architecture of neural networks,143

constructed by multiple layers. Each layer implements a series of convolution operators on input,144

followed by a non-linear activation function, such as a logistic function or a rectified linear unit145

(Relu). Then a pooling layer is applied to reduce the size of features to the following layers [37].146

Popular convolutional neural networks for image tasks include AlexNet [38], GoogleNet [39], VGG147

net [40] and Residual Net [41].148

The SSD is a feed-forward convolutional neural network built on image classification neural net-149

work, called base network, such as VGGNet, ZFNet or ResNet [35]. Eight additional convolutional150

feature layers are added after these base networks to replace the last few layers of the base networks.151

The size of these layers decreased progressively and were used as output layers for the prediction152

of detections at multiple resolutions. SSD integrated both higher and lower feature layers, as the153

lower layers contain better location information and the higher layers have more image details [42].154

The images are divided into different grid sizes which are associated to default bounding boxes.155

The correspondence between the position of the default box and the feature cell are fixed. SSD156

predicts the objects based on default boxes instead of predicting the bounding boxes directly. The157

default boxes are assigned with different scales and aspect ratios, which provides information on158

different object scales. The scale of each feature map is manually designed as:159

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m]

where m is the number of feature maps used for prediction. smin is 0.2 and smax is 0.9.160

Each feature map cell is correspondent to 6 default boxes, which are assigned with different161

aspect ratios, denoted as αγ = {1, 2, 3, 12 ,
1
3}. The width and height of the default box is computed162

as wαk = sk
√
αγ and hαk = sk/

√
αγ . For the aspect ratio of 1, another scale s′k =

√
sksk+1 is added163

for the default box as well. The center of each default box is set at ( i+0.5
|fk| ,

j+0.5
|fk| ), and |fk| is the164

size of k-th feature map. By using these default boxes with various scales and aspect ratios from165

all locations of added feature maps, SSD predictions can cover different input sizes and shapes. Fig166
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Figure 2: The idea of default boxes applied in SSD. For each default box, the offsets and

confidence for categories are predicted.

2 illustrates the idea of default boxes.167

A set of convolutional filters are applied to the added features layers to perform the bounding168

box regression and category classification. For each feature layer of size m × n with p channels,169

a 3 × 3 × p small kernel filter is applied to produce one value at each feature map cell, where the170

outputs are classification scores as well as the offsets relative to the bounding box shape.171

The label of SSD includes the class and the offsets from the default boxes. The default boxes172

are matched with ground truth if their intersection over union (IOU) is over 0.5. IOU is defined173

as Area of Overlap/Area of Union. The loss function of SSD combines a softmax loss for the174

confidence loss and a Smooth L1 loss for localization loss. The overall objective loss function is175

Ltot =
1

N
(Lconf + αLloc)

where N is the number of matched default boxes and α is set to 1 by cross-validation. The SSD176

framework is shown in Fig 3. For more details of the SSD network and loss function please refer177

to [35].178

1.2.2 Training and Testing179

Expert judges in VFSS image measurements manually annotated the hyoid bone location (coordi-180

nate of left corner, height and width) in each frame of the videos. To evaluate the reliability of the181

swallowing analysis, 10 swallow cases were utilized. Three experts analyzed the same 10 swallows.182

Inter-rater reliability was tested between raters and experts analyzed the same cases one month183
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Figure 3: Architecture of Single shot multibox detector

later for intra-rater reliability. ICC score were over 0.9 for all measures of reliability. The swallow184

data were split and distributed to each of the experts. Their annotations were considered as ground185

truth (gold standard). The data were randomly separated by patients: 70 % of the patients were186

split into training data which contained around 30,000 frames with annotations, while 30 % of the187

patients were split into test data which contained around 18,000 frames. We chose both VGG-16188

and ResNet-101 as base networks, and considered two image resolutions for inputs: 300 × 300 and189

500 × 500. We compared models trained on both base networks and both resolutions inputs. The190

input with size 500 × 500 should provide better performance as more details can be detected in191

higher resolution images. However, a larger image size increases the computation complexity. Fur-192

thermore, we compared the results with YOLO and Faster-RCNN and used a training procedure193

similar to the original papers. We chose 0.0005 as our learning rate with multi-steps, dividing by194

10 for iteration 4000 and 8000. The momentum is 0.9 and gamma is 0.1 for the optimizers.195

1.2.3 Evaluation of Accuracy196

The performance of the detection module is measured by mean average precision (mAP), which197

is the most commonly used evaluation method for object detection. Average precision estimated198

8



Table 1: Comparison of mAP with different models

Model mean average precision

YOLOv2 33.10%

Faster-RCNN + ZF 69.01%

SSD300-VGG 84.37%

SSD300-ResNet 81.92%

SSD500-VGG 89.14%

SSD500-ResNet 89.03%

whether detected bounding boxes match the corresponding ground truth. Mean average precision199

is the area below the precision-recall curve, which integrates precision and recall while varying from200

0 to 1. As we have just one class to classify, mean average precision is the average precision for the201

hyoid bone class. The bounding box is labeled as true positive if IOU is greater than 0.5. Precision202

evaluates the fraction of true positive bounding box over all predictions and recall evaluates the203

fraction of the true positive detected bounding boxes among all ground truths.204

2 Results205

Table 1 shows results of the state-of-the-art published methods on our VFSS image dataset. Overall,206

SSD method outperforms the results produced by YOLOv2 and Faster-RCNN. Among SSD method,207

VGGNet with input size of 500 × 500 produced the best result compared to ResNet and input size208

of 300 × 300. The mAP of SSD500-VGGNet is 89.14%, which is 0.11% better than using ResNet-209

101 as base network and 2.45% better than using the smaller image input size. Figure 3 shows210

the example results by manual segmentation, SSD500-VGGNet, Faster-RCNN and YOLOv2. We211

selected two different cases as examples: patient swallowing the bolus in neutral head position or212

in chin down position. In comparing automated hyoid detection to the ground truth, we used the213

bounding box to locate the hyoid bone. Most of the object detection methods use the bounding box214

to locate and classify the content inside. In the example case, all three tested methods revealed a215

positive result, detecting the hyoid bone location successfully. However, the Faster-RCNN method216

produced two regions of interest that it considered as the hyoid bone with a close confidence score.217

Figure 5 illustrates results using the SSD500-VGGNet method with different hyoid bone loca-218

tions (under the mandible and behind the mandible), and the results are shown with different image219
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Figure 4: The identification of hyoid bone using different method: ground truth (yellow),

SSD500-VGG (orange), Faster-RCNN (red), and YOLOv2 (pink)

qualities. From these results, SSD500-VGGNet showed stable detection results, clearly finding the220

hyoid bone. When the hyoid bone is hidden behind the mandible in case (a) and (b), the algorithm221

detected the hyoid bone with a relatively low confidence score. It performed well in case (c) and222

(d) where the hyoid bone is present under the mandible.223

Figure 6 shows the change of training loss function and the performance on test data during the224

training of SSD models. These figures illustrate how the performance of the model changes during225

training. The loss function dramatically decreased in the first 1000 iterations and the loss function226

only slightly decreased in the following training iterations. The training errors of SSD300-VGG227

were always higher than those of SSD500-VGG. SSD300 with different pre-trained models showed228

a similar training loss trend and test accuracy.229

3 Discussion230

In this investigation, we aimed to detect the location of the hyoid bone in the videofluoroscopic231

images without human intervention. The hyoid bone is an important structure considered in232

dysphagia assessment. Its motion can be related to the severity of dysphagia and is used to233
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(a) (b)

(c) (d)

Figure 5: Results on different image conditions using SSD500-VGGNet: (a)(b) hyoid bone hides

behind mandible (c)(d) hyoid bone is slightly blurred during motion
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assess treatment effectiveness. Manual tracking of hyoid bone data from VFSS is the gold standard234

accepted by experts and clinicians. Manually segmenting and annotating is time-consuming and235

prone to judgment error. The hyoid bone motion data presented in this paper can be applied in236

further investigations such as statistical methods and classification based on machine learning. A237

quantitative and qualified computer-aided system is highly desirable in clinical work in which the238

availability of an expert clinician to judge VFSS is not ubiquitous. Currently in dysphagia research,239

human judgment is necessary to annotate hyoid position in initial video frames. Elimination or240

mitigation of human judgment regarding hyoid motion could speed up image processing without241

compromising accuracy. The following sections discuss the performance of each method and possible242

factors that may have influenced the results.243

We examined the performance of different object detection methods (Faster-RCNN, YOLOv2,244

and SSD) to locate hyoid bone in our VFSS image dataset. For the deep architecture, we employed245

the medium-size network VGGNet, the relatively larger-size network ResNet 101 for the SSD and246

a small network ZFNet for Faster-RCNN. YOLOv2 is from the original Darknet model [34]. The247

SSD500-VGGNet achieved better results than other CNN based models, indicating that it is the248

most suitable method for hyoid bone detection in VFSS images. It is not surprising that YOLO249

achieve the worst performance on VFSS data. The hyoid bone is a small object in the VFSS images.250

YOLOv2 is a fast object detection method but is weak for small object detection as it applies global251

features which doesn’t obtain enough details for small objects. SSD500 is better than SSD 300 in252

all settings by using ResNet-101 or VGGNet-16. The reasons might be as follows. SSD resizes the253

input images to a fixed size: SSD300 resizes the images into 300 × 300 while SSD500 resizes images254

into 500 × 500. The training errors of SSD300 model is higher than those in SSD500. Resizing the255

already small hyoid bone in images into a smaller size may result in a loss information. SSD300256

cannot learn the details of the hyoid bone, which leads to worse performance. Furthermore, ResNet257

reached a similar mAP to VGGNet in SSD500 but it has worse performance in SSD300. ResNet-258

101 is a neural network with 101 layers, while VGG-16 has 16 layers. The similar performance259

in SSD500 may indicate that both networks provide detailed information for the added features260

layers. In the case of SSD300, the models with VGG networks had slightly smaller training loss after261

iteration 8000, which might explain why VGG performed better on test data. The SSD method is262

a powerful tool to detect the hyoid bone location, however, training SSD models with ResNet-101263

and VGGNet with larger input size is time-consuming. We implemented our algorithms on the264

NVIDIA Tesla M40 GPU. It took over one week to train both the SSD500-VGG16 models and265

SSD500 with ResNet-101. The Faster-RCNN took only one day because ZFNet is a small neural266
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Figure 6: The influence of training loss and model performance of SSD models with different

input sizes and pre-trained models.

network.267

The hyoid bone moves upward and forward during a patient’s swallow. It will sometimes rise268

into the radiographic shadow of the mandible, obscuring its visibility by the judge/examiner. The269

judges must compare adjacent frames to infer the hyoid’s actual location when it is obscured by270

the mandible. Figure 5 (a) and (b) show the detection of the hyoid bone. Although the confidence271

score is low, our algorithm can be considered successful because experts may not be able to locate272

the hyoid bone. Figure 5 (c) and (d) are examples of blurred hyoid bone. The hyoid bone may be273

blurred when it moves quickly between two frames, but the algorithm can detect the moving hyoid274

bone with a high confidence score.275

X-ray images vary in quality because clinicians control dosage to patients to the least amount276

of radiation as possible. Thus, as shown in the Figure 5, the brightness and, contrast of each x-ray277

image is different, altering the amount of useful information in each image. As shown in Figure 7,278

the SSD method detects the obscured hyoid bone location with a low confidence score or does not279

detect the hyoid bone location, similar to a guess when humans attempt to locate these cases. We280

know the location of the hyoid bone as the pre-knowledge, and seek to find a target around the281

predicted location while eliminating impossible regions one by one. The object detection algorithm282
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(a) (b)

Figure 7: The cases which algorithm didn’t detect the hyoid bone (a) the case with low confidence

score (b) the case totally not detected

classifies the regions based on the default boxes, which is a direct way to make the decision and283

can’t fully make use of outside information.284

We investigated the performance of our model in the hyoid bone location task, however, our285

research had several limitations. X-rays images are often low quality, and the quality may vary286

from machine to machine. Whether the model can achieve similar performances across varied287

image quality requires further investigation. Furthermore, our investigation included data from288

265 patients from the same hospital, which may provide limited diagnostic variability in patients.289

Additional data should be collected to improve the performance and stability of our model. Prior290

research [43] indicated that Faster-RCNN with inception ResNet v2 has the best object detection291

results when compared to other modern object detection methods. Furthermore, several studies292

focused on small object detection, such as feature pyramid network [44], which may be a direc-293

tion for further research to increase the detection performance of the hyoid bone. For clinical294

relevance, future work should investigate automatic segmentation of hyoid bone areas, examine295

data to determine whether or not hyoid displacement is disordered, and determine if hyoid motion296

is the biomechanical etiology of impaired airway closure or upper esophageal sphincter opening.297

Moreover, since SSD detection methods detected the hyoid bone, future investigations will explore298
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detecting other key components in videofluoroscopy images. Given the millions of VFSS studies299

implemented, high-accuracy component detection can save experts considerable time during their300

diagnosis.301

4 Conclusion302

In this paper, we investigated hyoid bone detection in videofluoroscopy images using a deep learning303

approach. We used 1434 swallows on VFSS videos as our dataset. The hyoid bone location was304

manually annotated in each frame of the videos. We considered each frame as the single sample305

and trained 70% of the frames using state-of-the-art object detection methods. The SSD-500306

model tracked the location of the hyoid bone on each frame accurately. Ideally, hyoid bone motion307

information can be used for physiological analysis. We believe that this proposed model has the308

potential to improve the diagnosis assessment of dysphagia.309
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