
A preliminary investigationCan of whether HRCA signals can differentiate between swallows from healthy people 

and swallows from people with neurodegenerative diseases?   

 

Cara Donohue, MA CCC-SLP1, Yassin Khalifa, MS2, Subashan Perera, PhD3, Ervin Sejdić, PhD2,4, James L. Coyle, 

PhD1 

 

1Department of Communication Science and Disorders, School of Health and 

Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA 

2Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 

Pittsburgh, PA 15260, USA 

3Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA 

4Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of 

Medicine Intelligent Systems Program, School of Computing and Information,  

University of Pittsburgh, Pittsburgh, PA 15260, USA 

 

 

Reprint address: 

 

Dr. James L. Coyle 

Department of Communication Science and Disorders 

School of Health and Rehabilitation Sciences 

6035 Forbes Tower 

University of Pittsburgh 

Pittsburgh, PA 15260 

 

E-mail: jcoyle@pitt.edu 

Phone number: (412)-383-6608 

 

Acknowledgements: 

Funding: 

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child 

Health & Human Development of the National Institutes of Health under Award Number R01HD092239, while the 

data was collected under Award Number R01HD074819. The content is solely the responsibility of the authors and 

does not necessarily represent the official views of the National Institutes of Health or National Science Foundation. 

 

People: Thanks are due to Tara Smyth, BA, and Dan Kachnycz, BA, for assistance with data collection and coding. 

 

Title Page with ALL Author Contact Information



1 
 

 1 

Abstract: 1 

High resolution cervical auscultation (HRCA) is an emerging method for non-invasively assessing 2 

swallowing by using acoustic signals from a contact microphone, vibratory signals from an accelerometer, and 3 

advanced signal processing and machine learning techniques. HRCA has differentiated between safe and unsafe 4 

swallows, predicted components of the Modified Barium Swallow Impairment Profile, and predicted kinematic events 5 

of swallowing such as hyoid bone displacement, laryngeal vestibular closure, and upper esophageal sphincter opening 6 

with a high degree of accuracy. However, HRCA has not been used to characterize swallow function in specific patient 7 

populations. This study investigated the ability of HRCA to differentiate between swallows from healthy people and 8 

people with neurodegenerative diseases. We hypothesized that HRCA would differentiate between swallows from 9 

healthy people and people with neurodegenerative diseases with a high degree of accuracy.  We analyzed 170 swallows 10 

from 20 patients with neurodegenerative diseases and 170 swallows from 51 healthy age-matched adults who 11 

underwent concurrent videofluoroscopy with non-invasive neck sensors. We used a linear mixed model and an 12 

SVMseveral supervised machine learning classifiers that uses HRCA signal features and a leave-one-out procedure to 13 

differentiate between swallows. Eleven Twenty-two HRCA signal features were statistically significant (p<0.05) for 14 

predicting whether swallows were from healthy people or from patients with neurodegenerative diseases. Using the 15 

HRCA signal features alone, our algorithmlogistic regression and decision trees classified swallows between the two 16 

groups with 94.7299% accuracy, 10094.71% sensitivity, and 994.74% specificity. This provides preliminary research 17 

evidence that HRCA can differentiate swallow function between healthy and patient populations.  18 

 19 

Key words: dysphagia, videofluoroscopy, machine learning, cervical auscultation, swallow screening, deglutition, 20 

deglutition disorders 21 
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Introduction: 1 

 Accurately and non-invasively assessing swallow function is vital within the clinical setting in order to correctly 2 

identify patients with dysphagia who are at risk of aspiration and complications that arise secondary to aspiration 3 

such as aspiration pneumonia, malnutrition, and dehydration. Current clinical dysphagia screening methods have a 4 

high degree of sensitivity and a poor degree of specificity, which results in over-identification of people with 5 

dysphagia [1-3]. This is because dysphagia screening protocols rely on subjective human judgment of risk factors 6 

and observing patients drink a limited amount of liquid and by their nature, do not measure any aspects of swallow 7 

physiology. There is also a risk of false negatives with current dysphagia screening methods due to the 8 

asymptomatic nature of silent aspiration. Poor specificity of dysphagia screening methods results in misuse of time 9 

and resources with unnecessary, expensive procedures for patients such as undergoing videofluoroscopy, which 10 

remains one of the gold standards for assessing swallowing physiology. While videofluoroscopic swallow studies 11 

(VFSSs) are useful for characterizing swallow function, for many patients they are not always feasible or available 12 

in a time frame that enables rapid diagnostic assessment, leaving clinicians to temporarily manage cases as best they 13 

can with available clinical information.  Therefore, there is a high demand to increase accessibility to dysphagia 14 

assessment for underserved patients for the development of non-invasive methods for accurately screening and 15 

assessing swallowing that might also provide insight into underlying swallowing physiology. 16 

 High resolution cervical auscultation (HRCA) is an emerging method for non-invasively screening several aspects 17 

of swallow function that has demonstrated promising preliminary evidence of its effectiveness [4]. HRCA combines 18 

the use of acoustic signals from a contact microphone, vibratory signals from a tri-axial accelerometer, and signal 19 

processing and machine learning techniques to effectively characterize swallow function. Non-invasive neck sensors 20 

are placed on the anterior laryngeal framework at the cricoid cartilage to record signals that occur during 21 

swallowing. To this date, our database consists of concurrent VFSS and HRCA recordings from 274 patients with 22 

suspected dysphagia and 70 community dwelling healthy adults. We are analyzing the data in our database in a 23 

systematic way (e.g. one temporal swallow kinematic event at a time, one patient population at a time) to evaluate 24 

the potential of HRCA as an effective dysphagia screening method. HRCA signals combined with signal processing 25 

and machine learning techniques have demonstrated the ability to automatically detect swallowing events with 26 

similar accuracy to trained human judges, and to effectively differentiate between safe and unsafe swallows by 27 

approximating VFSS judgments made using the penetration-aspiration scale [4-10]. We are examining the 28 
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association between HRCA signals and scores of physiological components on the Modified Barium Swallow 1 

Impairment Profile (MBSImP) and are finding promising levels of agreement in patients with suspected dysphagia.. 2 

Results have revealed statistically significant associations between HRCA signals and anterior hyoid bone 3 

movement (component #9), pharyngoesophageal segment opening (component #14), and pharyngeal residue 4 

(component #16) [12-14]. In addition to this, we have found a strong association between HRCA signal features and 5 

hyoid bone displacement [15-17]. A recent study examining hyoid bone displacement found that >50% of the body 6 

of the hyoid bone could be accurately tracked on each frame using HRCA signals and machine learning techniques 7 

alone in healthy community dwelling adults and patients with suspected dysphagia [18]. HRCA signals combined 8 

with machine learning techniques have demonstrated effectiveness in detecting other kinematic swallowing events 9 

including laryngeal vestibular closure and upper esophageal sphincter (UES) opening with a high degree of accuracy 10 

in healthy community dwelling adults and patients with suspected dysphagia [19-21].  11 

 While HRCA has been used to detect penetration and aspiration, clinical ratings of physiological events of 12 

swallowing using the MBSImP, and various kinematic events of swallowing, it has not previously been used to 13 

characterize swallow function in specific patient populations. Patients with neurodegenerative diseases often 14 

experience progressive dysphagia along with other physical mobility impairments, which greatly impacts their 15 

quality of life [22-27]. Dysphagia in patients with neurodegenerative diseases is frequently characterized by 16 

impaired bolus preparation and propulsion, impaired mastication, reduced oral containment, oral residue, impaired 17 

tongue movement, impaired pharyngeal timing/coordination, pharyngeal residue, and penetration/aspiration [28]. 18 

While VFSSs remain the primary method for assessing swallow function in patients with neurodegenerative 19 

diseases, there are limitations to implementing instrumental swallow evaluations in patients with progressive, 20 

degenerative diseases [28-29]. Because of their multifactorial health problems,  and physical mobility impairments, 21 

and transportation issues it can be challenging for patients with neurodegenerative diseases to undergo VFSSs as 22 

outpatients at medical facilities. In addition to this, patients with neurodegenerative diseases are at increased risk of 23 

fatigue over the course of a meal and may have fluctuating swallow function day-to-day, which is a challenge to 24 

capture during short instrumental swallow evaluations [29]. Moreover, because of the progressive nature of 25 

neurodegenerative diseases, it is advantageous to monitor swallow function more closely over time in order to 26 

predict and mitigate adverse events that may occur secondary to progressing dysphagia such as aspiration 27 

pneumonia. Completing frequent instrumental swallow evaluations such as VFSSs or fiberoptic endoscopic 28 
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evaluation of swallowing (FEES) to monitor swallowing throughout disease progression is costly, burdensome to 1 

patients and caregivers, and relatively invasive (e.g. exposure to radiation, uncomfortable) [29]. Amongst other 2 

patient populations, people with neurodegenerative diseases would benefit from a non-invasive, inexpensive, easily 3 

transportable device to infer about swallow function using noninvasive methods such as HRCA because of the high 4 

prevalence of dysphagia and the variety of kinematic changes in swallow function that occur throughout disease 5 

progression. Therefore, this study investigated the ability of HRCA to broadly differentiate (i.e., screen) between 6 

swallows from healthy people and people with neurodegenerative diseases. We hypothesized that HRCA would 7 

accurately differentiate these two classes of swallows by identifying significant differences in vibratory and acoustic 8 

signal features between swallows from healthy people and from people with in a single class of “people with 9 

neurodegenerative diseases.” 10 

Methods:  11 

Equipment and Procedures: 12 

 This study was approved by the Institutional Review Board at the University of Pittsburgh and all participants 13 

provided informed written consent. Data analysis for this study was conducted on two separate sets of data that were 14 

collected at two different timepoints in a similar fashion. The first data set consisted of 170 thin liquid swallows 15 

from 20 patients with various neurodegenerative diseases between the ages of 35-82 with a mean age of 61.25 (10 16 

males). Diagnoses of neurodegenerative diseases included Parkinson’s disease  (PD), myasthenia gravis, motoneuron 17 

disease, multiple sclerosis (MS), muscular dystrophy (MD), amyotrophic lateral sclerosis (ALS), myotonic 18 

dystrophy, and progressive muscle weakness not otherwise specified. All patients underwent VFSSs at the 19 

University of Pittsburgh Medical Center Presbyterian hospital due to suspected dysphagia. Patients were imaged in 20 

the lateral plane. VFSSs on patients were completed as a part of their clinical care rather than for research purposes 21 

alone. For this reason, patients were examined under a variety of bolus volumes and consistencies and asked to 22 

perform compensatory maneuvers (i.e. chin tuck) as deemed appropriate based on clinical presentation of dysphagia. 23 

See Table 1 for the bolus characteristics for all swallows included in data analysis from the patient data for this 24 

study.  25 

The second data set consisted of 171 thin liquid swallows from 51 healthy community dwelling adults between the 26 

ages of 39-87 with a mean age of 67.21 (22 males). Inclusionary criteria for healthy community dwelling adults 27 

included no prior history of swallowing difficulties, neurological disorder, surgery to the head or neck region, or 28 
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chance of being pregnant based on participant report. For healthy participants, data collection also occurred in the 1 

same institution under a separate IRB approval. Participants were imaged in the lateral plane. In contrast to the 2 

patients with neurodegenerative diseases, the healthy community dwelling adults underwent a standardized (i.e., five 3 

3mL boluses by spoon and five unmeasured self-selected “comfortable” cup sips in head neutral position) and short 4 

(average fluoro time of 0.66 minutes) VFSS procedure of ten thin liquid boluses administered in random order to 5 

minimize radiation exposure. For spoon presentations, the researcher instructed participants to “Hold the liquid in 6 

your mouth until I tell you to swallow it.” For cup presentations, the researcher instructed participants to “Take a 7 

comfortable sip of liquid and swallow it whenever you’re ready.”  See Table 2 for the bolus characteristics for all 8 

swallows included in data analysis from the healthy community dwelling adults for this study. For the purposes of 9 

this study and to effectively compare between groups, only thin liquid swallows administered by cup and spoon 10 

were included for data analysis, because only thin liquid swallows were collected from the healthy community 11 

dwelling adults.  12 

A standard fluoroscopy system (Ultimax system, Toshiba, Tustin, CA for the patient data collection; and 13 

Precision 500D system, GE Healthcare, LLC, Waukesha, WI for the healthy community dwelling adult data 14 

collection) set at a continuous pulse rate of 30 PPS was used to obtain swallowing video segments. To capture the 15 

raw videos directly from the x-ray apparatus at a rate of 60 or 73 frames per second, we used a frame grabber 16 

module (AccuStream Express HD, Foresight Imaging, Chelmsford, MA). Once data collection was complete and 17 

prior to conducting kinematic analysis of swallowing, the videos were down sampled from 60 or 73 frames per 18 

second to 30 frames per second to get rid of the duplicate frames that were inserted into the videos due to the 19 

oversampling in the frame grabber necessary to align with the higher sampling rate of the signals acquisition system. 20 

This step produced accurate 30FPS videos for analysis.  To obtain HRCA signals during concurrent VFSS, a tri-21 

axial accelerometer (ADXL 327, Analog Devices, Norwood, Massachusetts) and contact microphone were placed 22 

on the anterior laryngeal framework at the level of the cricoid cartilage with tape. Prior to placing the non-invasive 23 

neck sensors on the anterior neck region of participants, researchers cleaned participants with alcoho l pads. To 24 

ensure adequate signals were obtained from the sensors, the accelerometer and contact microphone were placed in 25 

custom casings to allow for flat contact surfaces with the skin. The accelerometer was placed at midline at the 26 

cricoid arch and the contact microphone was placed at the right of midline and inferior to the accelerometer in order 27 

to obtain the best x-ray images and signals and so as not to interfere with imaging of the upper airway. For each 28 
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participant, we aligned the axes of the tri-axial accelerometer (anterior-posterior, superior-inferior, and medial-1 

lateral) with the participant’s neck. The exact placement of the non-invasive neck sensors can be viewed in Figure 1 2 

[4, 30]. The accelerometer was powered by a power supply with a 3V output (model 1504, BK 3 

Precision, Yorba Linda, California). Following data collection with the accelerometer, the raw signals were 4 

bandpass filtered (model P55, Grass Technologies, Warwick, Rhode Island) from 0.1 to 3000 Hz and amplified ten 5 

times. Then, the signal data from each accelerometer axis was entered into a data acquisition device (National 6 

Instruments 6210 DAQ) to be recorded at a sampling rate of 20kHz using the Signal Express program within 7 

LabView (National Instruments, Austin, Texas). To overcome measurement errors and because multiple kinematic 8 

events occur simultaneously during swallowing, the signals were down sampled into 4kHz prior to analysis. 9 

Kinematic swallow analyses: Before performing swallow segmentation, raters were trained and tested in swallow 10 

kinematic analyses. Intra and inter-rater reliability was assessed with intra-class correlation coefficients (ICCs) [31] 11 

with ICCs greater than 0.99 for both measures. VFSSs were segmented into individual swallows for analyses. The 12 

onset of the swallow was defined as the frame in which the bolus head passed the shadow of the ramus of the 13 

mandible, and the offset of the swallow was defined as the frame in which the hyoid returned to its lowest position 14 

after clearance of the bolus tail through the UES. Ongoing intra-rater reliability during swallow segmentation was 15 

completed to control for drift by having raters randomly select one out of ten swallows to re-analyze and compute 16 

ICCs. Inter-rater reliability for swallow segmentation was performed on 10% of swallows with ICCs of 0.99 or 17 

above for all trained raters. Since the purpose of this study was merely to determine whether there was a difference 18 

in HRCA signal features between swallows from healthy people and swallows from patients with neurodegenerative 19 

diseases, no swallow kinematic analyses were performed aside from swallow segmentation.    20 

Pre-Processing and feature extraction from HRCA signals: 21 

In order to reduce the multi-source noise associated with the vibratory and acoustic signals of HRCA, each 22 

component was filtered to remove the device noise. These filters were designed based on the output of each sensor 23 

when no input was present using an auto-regressive model. Head movement interference was removed using a 24 

fourth order splines approximation algorithm [3222-3323]. Any additional noise component that existed was 25 

removed using wavelet denoising. This preprocessing procedure has previously demonstrated its effectiveness in 26 

many studies that investigated the use of HRCA signals in swallow kinematic analysis [15,17,21,3424]. Features 27 

that have proven to be significant to swallow kinematics and swallowing disorders based on previous research 28 

Formatted: Indent: First line:  0"

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

 7 

studies [15,17,21,34] were then extracted from the HRCA signals in order to determine the association between 1 

HRCA signals and the diagnostic class (i.e., neurodegenerative disease) of the patient. A summary of the features 2 

used and the definition of each appears in Table 3. 3 

Data Analysis: 4 

We fit a series of linear mixed models to examine the association between 36 different HRCA signal features, 5 

swallows from healthy people, and swallows from people with neurodegenerative diseases. Support vector machine 6 

(SVM), Naïve Bayes, logistic regression, and decision tree classifiers, which represent supervised machine learning 7 

techniques, were constructed to differentiate between swallows from patients with neurodegenerative diseases and 8 

swallows from healthy subjects based on either the entire set of features extracted from the HRCA signals or a 9 

subset that was proven statistically significant based on the results of the linear mixed models or a feature selection 10 

method. This yielded three training procedures for the used classifiers, the first procedure was performed through 11 

using the entire set of features extracted from HRCA signals (36 features) and the second procedure used only the 12 

set of features that was proven significant by the statistical analysis (22 features). The third procedure included 13 

training the classifiers after performing a principal component analysis (PCA) on the features which represent a 14 

feature selection method that only keeps the statistically independent features. SPSS (IBM, Armonk, NY) was used 15 

for fitting the linear models while MATLAB (The MathWorks, Inc., Natick, MA) and R (The R Foundation) were 16 

used to build and evaluate the classifiers. The performance of each classifier was evaluated through a leave -one-out 17 

procedure. A support vector machine (SVM) classifier, which is a supervised machine learning technique, was 18 

constructed to differentiate between swallows from patients with neurodegenerative diseases and swallows from 19 

healthy subjects based on the 36 features extracted from the HRCA signals. The performance of the classifier was 20 

evaluated through a leave-one-out procedure. This procedure involves training the classifier with the whole set of 21 

swallows from both groups except for one swallow that is selected randomly to test if it is classified correctly and 22 

then the process is repeated until all swallows are included as a testing sample at least once. To determine whether 23 

the swallow is classified correctly, the labels from VFSS images are used as the “ground truth.” The accuracy, 24 

sensitivity, and specificity of classification between healthy and neurodegenerative disease swallows were calculated 25 

based on the number of correctly classified swallows during the evaluation process with respect to the complete set 26 

of swallows from both groups.  27 

Results: 28 

Formatted: Indent: First line:  0"

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

 8 

 Results from the linear mixed model revealed that 22 HRCA signal features extracted from the microphone and tri-1 

axial accelerometer were statistically significant (p<0.05) for predicting whether swallows were from healthy people 2 

or from patients with neurodegenerative diseases (See Table 4). Statistically significant HRCA signal features from 3 

microphone signals included: standard deviation, skew, centroid frequency, bandwidth; from accelerometer anterior-4 

posterior axis: standard deviation, centroid frequency, bandwidth, wave entropy: from accelerometer superior-5 

inferior axis: standard deviation, kurtosis, Lempel-ziv, entropy rate, centroid frequency, bandwidth, wave entropy; 6 

and from accelerometer medial-lateral axis: standard deviation, kurtosis, Lempel-ziv, entropy rate, centroid 7 

frequency, peak frequency, and bandwidth.  Figures 2 and 3 show a density plot and a power spectral density plot 8 

from the HRCA microphone signals that demonstrate the differences in standard deviation and peak frequency 9 

between the swallows from a healthy person and a person with a neurodegenerative disease. Among the used 10 

classifiers, logistic regression and decision trees provided the best performance in comparison to SVM and Naïve 11 

Bayes with 99% accuracy, 100% sensitivity, and 99% specificity when using the full set of HRCA signal features 12 

(See Table 5). 13 

Using the HRCA signal features alone, our SVM algorithm classified swallows between the two groups with 14 

94.72% accuracy, 94.71% sensitivity, and 94.74% specificity. 15 

Discussion: 16 

 This study is the first study to date that has used HRCA to differentiate between healthy swallows and swallows 17 

from people in a category of underlying disease that commonly results in dysphagia. Since this is the first study to 18 

explore this, it will be important to replicate this study with a larger sample of people with neurodegenerative 19 

diseases and with additional patient populations.  We found that HRCA combined with statistical methods and 20 

machine learning techniques could differentiate between healthy swallows from healthy people and swallows from 21 

people with a variety of neurodegenerative diseases effectively with a high degree of accuracy. While the results do 22 

not characterize the nature of swallowing physiology that differed between the two groups, we accomplished our 23 

intended aim of providing a screening-level differentiation between “normal” and “neurodegenerative disease” 24 

swallows.  While these preliminary results are promising, they do not by any means provide discrete 25 

diagnostic/physiologic information, therefore it will be important to expand this work to gain insight into the 26 

underlying swallowing physiology that may contribute to statistically significant signal features between these two 27 

groups. However, the importance of identifying and differentiating a class of swallows that is distinctly different 28 
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from “normal” swallows cannot be overstated, given the typical pattern of subclinical signs and symptoms during 1 

the early progression of neurodegenerative diseases, and the fact that many such patients are not identified before 2 

clinically important dysphagia ensues. Characterizing the safety and efficiency of swallow function in patients with 3 

neurodegenerative diseases is important but challenging due to the multiple and heterogeneous disease-related 4 

factors which contribute to dysphagia, including weakness, spasticity, rigidity, motor unit deactivation, and atrophy 5 

of muscles secondary to motoneuron deterioration. Due to the heterogeneity and progressive nature of 6 

neurodegenerative diseases, there is a need for an individualized approach to dysphagia management with close 7 

monitoring of swallow function over time to maximize quality of life and to prevent adverse outcomes that can 8 

result in faster disease progression. A readily deployable and portable device using HRCA, which can non-9 

invasively monitor and classify swallow function as disordered or not disordered within the variety of clinical 10 

settings occupied by these patients, and even in the home would be beneficial toward a goal of early identification 11 

and referral for many patients with neurodegenerative diseases.  12 

 Future studies should examine the ability of HRCA to characterize and distinguish healthy swallows from healthy 13 

people and swallows from specific neurodegenerative diseases (e.g., ALS only) as well as other patient populations 14 

that have dysphagia, and the ability of HRCA to characterize swallows between various patient populations that 15 

have dysphagia (e.g. ALS vs. patients who have had a stroke) to determine whether HRCA may have diagnostic 16 

value. In addition to this, future work should refine HRCA methods to further characterize swallow function of 17 

specific patient populations to broadly differentiate between safe and unsafe swallows, and as a potential adjunct to 18 

dysphagia diagnostics, to quantify a variety of swallowing kinematic measurements such as hyoid bone 19 

displacement and predict laryngeal vestibular closure and UES opening [4-10, 19-21, 3424]. Other areas of potential 20 

interest would be examining the ability of HRCA signals to differentiate between dysphagia severity levels in 21 

specific patient populations based on swallowing safety and efficiency, as well as improvement or deterioration of 22 

swallowing function as a function of disease progression or treatment. The robustness of the machine learning 23 

algorithm used in this study should also be improved by including a larger variety of bolus consistencies and 24 

swallow conditions in future studies. Expanding upon the current study with this future work will result in more 25 

advanced and accurate non-invasive screening, and potentially, characterization of swallowing physiology across a 26 

variety of patient populations to more quickly and accurately identify and treat swallowing impairments when 27 

imaging instrumentation is temporarily unavailable or undesired by patients, or otherwise not feasible . Given 28 
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clinician reliance on all available information, the addition of accurate and quantitative, noninvasively-obtained data 1 

regarding swallow function will be a valuable adjunct to the screening process, and hopefully in the future to the 2 

diagnostic process, in all but the most ideal clinical situations in which all diagnostic methods are available.   3 

Limitations:  4 

 The main purpose of this study was to broadly characterize and classify swallows between two groups using HRCA 5 

rather than to characterize swallow function based on bolus or swallowing conditions during VFSSs. While we 6 

included only single thin liquid swallows for data analysis between the two groups, it is important to note that the 7 

data collection methods for patients with neurodegenerative diseases were consistent with clinical care while the 8 

data collection methods for the healthy community dwelling adults were consistent with a standardized research 9 

VFSS protocol. Each data collection method has strengths and limitations: methods consistent with clinical care 10 

result in improved generalizability and real-world application (external validity) while methods that follow a strict 11 

research protocol result in increased internal validity. Another limitation of this study was the heterogenous group of 12 

patients with neurodegenerative diseases. Due to the small sample size of individuals with neurodegenerative 13 

diseases within our database, we included a variety of diseases within this classification category. While the 14 

presentation and severity of dysphagia may vary across these diseases, the ability of the machine learning algorithm 15 

to differentiate between healthy swallows and swallows from people with a variety of neurodegenerative diseases 16 

with a high degree of accuracy, sensitivity, and specificity demonstrates the robustness of the machine learning 17 

algorithm. For this study, we included a relatively large sample of swallows within each group (170). However, it 18 

will be important to test the accuracy of this algorithm on larger data sets that consist of the same, and different 19 

bolus textures and volumes, swallows from individual neurodegenerative diseases (e.g. ALS only), and swallows 20 

from other diseases that result in dysphagia.  21 

Conclusion: 22 

 This study found that HRCA signal features combined with statistical methods and machine learning techniques 23 

could predict whether swallows were from healthy people or from patients with neurodegenerative diseases with a 24 

high degree of accuracy (994.72%), sensitivity (10094.71%), and specificity (994.74%). These results provide 25 

preliminary evidence that HRCA may be a beneficialn effective method to further explore in future studies for to 26 

determine whether it can be used to characterizing characterize swallows between different patient populations and 27 

to characterize whether noninvasive data collected during swallows exhibit evidence of impairment when imaging is 28 
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not available or feasible. The ability to differentiate between swallows from different patient populations combined 1 

with the ability in addition to being an effective method forto noninvasively differentiateing between safe and unsafe 2 

swallows and predictting the risk of swallow kinematic events would make HRCA a useful dysphagia screening 3 

method with future potential to be a diagnostic adjunct to instrumental swallowing evaluations.   4 
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Figure 1: Neck sensor placement during data collection.  

 

 

Figure



 

Figure 2: Density plot from the HRCA microphone signals showing the difference in standard deviation between the 

swallows from a healthy person and a person with a neurodegenerative disease. 

 

 

Figure



Figure 3: Power spectral density plot from the HRCA microphone signals showing the difference in peak frequency 

between the swallows from a healthy person and a person with a neurodegenerative disease.  

 

 

 

Figure



 

Table 1: Bolus characteristics for all swallows included in the neurodegenerative patient data set. 

 

Bolus viscosity and utensil Number of swallows Percentage of swallows 

Thin by spoon 35 20.59% 

Thin by cup 90 52.94% 

Thin by straw 45 26.47% 

Head position Number of swallows Percentage of swallows 

Chin down 15 8.82% 

Head neutral 155 91.18% 

Number of Swallows Number of swallows Percentage of swallows 

Single 29 17.06% 

Sequential 23 13.53% 

Multiple 118 69.41% 

 

Table



 

 Table 2: Bolus characteristics for the swallows included in the healthy community dweller data set.  

Bolus viscosity and utensil Number of swallows Percentage of swallows 

Thin by spoon 78 45.61% 

Thin by cup 93 54.39% 

Note: Thin by spoon swallows were 3 mL and thin by cup swallows ranged from 3-40 mL.  

 

Table



Table 3: Summary of the features extracted from the HRCA signals.  

Domain Feature Significance 

Time Domain   

 Standard deviation Reflect the signal variance around its mean value. 

 Skewness Describe the asymmetry of amplitude distribution around 

mean. 

 Kurtosis Describe the peakness of the distribution relative to normal 

distribution. 

Information-

Theoretic domain 

  

 Lempel-Ziv Complexity Describe the randomness of the signal. 

 Entropy rate Evaluate the degree of regularity of the signal distribution. 

Frequency 

domain 

  

 Peak Frequency (Hz) Describe the frequency of maximum power. 

 Spectral Centroid (Hz) Evaluate the median of the spectrum of the signal. 

 Bandwidth (Hz) Describe the range of frequencies of the signal. 

Time-Frequency 

Domain 

Wavelet Entropy Evaluate the disorderly behavior for non-stationary signal. 

 

 

Table



Table 4: Summary of the statistically significant HRCA signal features associated with differentiating between 

swallows from healthy people and swallows from patients with neurodegenerative diseases. 

  

 Standard 

Deviation 

Skewness Kurtosis Lempel-Ziv 

complexity 

Entropy 

Rate 

Peak 

Frequency 

Spectral 

Centroid 

Bandwidth Wavelet 

entropy 

Microphone 0.0005* 

 

0.035* 

 

0.0645 

 

0.1248 

 

0.6804 

 

0.0666 

 
0.0105* 0.0105* 0.8160 

 

Anterior-

posterior 
<0.0001* 

 

0.8560 

 

0.2103 

 

0.7192 

 

0.2462 

 

0.4258 

 
0.0031* 

 
0.0002* 

 

0.0054* 

 

Superior-

inferior 
<0.0001* 

 

0.6066 

 
0.0017* 

 

 

<0.0001* 

 
<0.0001* 

 

0.9209 

 
<0.0001* 

 

<0.0001* 

 
<0.0001* 

 

Medial-

lateral 
<0.0001* 

 

0.2223 

 
<0.0001* 

 
<0.0001* 

 
0.0004* 

 
<0.0001* 

 
<0.0001* 

 
<0.0001* 

 

0.4474 

 

Note: *= p<0.05 

Table



Table 5: Performance of classifiers used to differentiate between swallows from healthy people and swallows from 

patients with neurodegenerative diseases. 

  
Classifier Entire set of features (36 features) Subset of features (22 most significant 

features – Table 4) 
Feature selection (PCA) 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

SVM 0.94 0.94 0.94 0.91 0.90 0.92 0.94 0.93 0.95 

Naïve 
Bayes 

0.97 1 0.95 0.97 1 0.95 0.95 0.94 0.97 

Logistic 
Regression 

0.99 1 0.99 0.99 1 0.99 0.97 0.96 0.99 

Decision 

Trees 

0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.93 0.97 

 

Table




