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Characterizing effortful swallows from healthy community dwelling adults across the lifespan using high-43 

resolution cervical auscultation signals and MBSImP scores: A preliminary study 44 

Abstract 45 

 There is growing enthusiasm to develop inexpensive, noninvasive, portable methods that accurately assess 46 

swallowing and provide biofeedback during dysphagia treatment. High-resolution cervical auscultation (HRCA), 47 

which uses acoustic and vibratory signals from noninvasive sensors attached to the anterior laryngeal framework 48 

during swallowing, is a novel method for quantifying swallowing physiology via advanced signal processing and 49 

machine learning techniques. HRCA has demonstrated potential as a dysphagia screening method and diagnostic 50 

adjunct to VFSSs by determining swallowing safety, annotating swallow kinematic events, and classifying swallows 51 

between healthy participants and patients with a high degree of accuracy. However, its feasibility as a noninvasive 52 

biofeedback system has not been explored. This study investigated 1. Whether HRCA can accurately differentiate 53 

between non-effortful and effortful swallows; 2. Whether differences exist in Modified Barium Swallow Impairment 54 

Profile (MBSImP) scores (#9, #11, #14) between non-effortful and effortful swallows. We hypothesized that HRCA 55 

would accurately classify non-effortful and effortful swallows and that differences in MBSImP scores would exist 56 

between the types of swallows. We analyzed 247 thin liquid 3mL command swallows (71 effortful) to minimize 57 

variation from 36 healthy adults who underwent standardized VFSSs with concurrent HRCA. Results revealed 58 

differences (p<0.05) in 9 HRCA signal features between non-effortful and effortful swallows. Using HRCA signal 59 

features as input, decision trees classified swallows with 76% accuracy, 76% sensitivity, and 77% specificity. There 60 

were no differences in MBSImP component scores between non-effortful and effortful swallows. While preliminary 61 

in nature, this study demonstrates the feasibility/promise of HRCA as a biofeedback method for dysphagia 62 

treatment.  63 

 64 

Key words: dysphagia, videofluoroscopy, machine learning, cervical auscultation, biofeedback, treatment, 65 

deglutition, deglutition disorders 66 
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Introduction: 68 

Within clinical settings, a common challenge for dysphagia practitioners remains the lack of inexpensive, portable, 69 

and non-invasive dysphagia management methods available for assessment and treatment. To diagnose dysphagia, 70 

instrumental methods remain the gold standard (e.g. videofluoroscopy [VF], fiberoptic endoscopic evaluation of 71 

swallowing [FEES]). While these methods are objective and provide insight into swallowing physiology, there are 72 

limitations to performing them including the cost, limited access in some settings (and countries), exposure to 73 

radiation (i.e. VF), and inability for some patients to participate in the examination (e.g. patient size, COVID-19 74 

restrictions, patient desire to forgo further imaging studies).  75 

In addition to this, few accurate and non-invasive methods to provide biofeedback during dysphagia treatment are 76 

readily available within clinical settings and few clinicians are trained in deploying these methods[1]. FEES and VF 77 

have been implemented as biofeedback methods for dysphagia treatment and have been shown to be advantageous 78 

for patient/caregiver education and developing individualized treatment plans[2–4]. In fact, clinician feedback and 79 

participant/patient performance has been shown to be more accurate for certain swallowing maneuvers using VF 80 

compared to other biofeedback methods (e.g. surface electromyography [sEMG])[3,4]. However, dysphagia 81 

treatment using only VF for biofeedback is unrealistic within clinical settings due to the cost, radiation exposure, 82 

and time constraints/accessibility[3,4]. Due to the limitations of FEES and VF as biofeedback methods for 83 

treatment, other non-invasive modalities such as sEMG have been explored. Yet a study examining concurrent VF 84 

and sEMG found very weak to moderate correlations between submental sEMG durations and temporal kinematic 85 

measures of hyolaryngeal displacement using VF images when participants performed the Mendelsohn 86 

maneuver[5]. A recent systematic review that examined biofeedback methods used in dysphagia treatment found 87 

that accelerometry, sEMG, and tongue manometry were the most frequently used in research studies[6]. In three 88 

studies, visual biofeedback using sEMG and accelerometry led to significantly improved hyoid bone displacement 89 

(compared to a control) during dysphagia treatment that targeted functional swallowing exercises such as the 90 

effortful swallow and Mendelsohn maneuver[6]. While these results are promising, study limitations included small 91 

sample sizes, the heterogeneity of patients, and mixed evidence regarding whether biofeedback results in clinically 92 

meaningful, functional changes in swallowing [5–9]. More specifically in studies using accelerometry, low quality 93 

studies have been implemented with flawed study designs and the use of subjective and non-validated swallowing 94 

outcome measures [6–9].  95 
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Due to the limitations of current biofeedback modalities, innovative methods for providing continuous monitoring 96 

and biofeedback during dysphagia treatment are under investigation. One such modality is a novel wearable 97 

electromyography sensor-array patch that has demonstrated similar signal quality as traditional, commercially 98 

available sEMG during water swallow tasks[10]. Another potential biofeedback modality currently being explored is 99 

high resolution cervical auscultation (HRCA)[11]. HRCA is a method of characterizing swallow function that 100 

integrates information from acoustic and vibratory signals from non-invasive sensors (contact microphone, tri-axial 101 

accelerometer) attached to the anterior laryngeal framework during swallowing. Following collection of HRCA 102 

signals, HRCA signal features are extracted using advanced signal processing techniques to use the HRCA signal 103 

features as input to machine learning algorithms to provide insight into swallowing physiology by using human 104 

ratings of VF images as the “ground truth.” HRCA has demonstrated promise as a dysphagia screening method and 105 

potential diagnostic adjunct to VF by classifying safe and unsafe swallows (as measured by the penetration-106 

aspiration scale)[11–17], tracking hyoid bone displacement in healthy adults and patients with suspected 107 

dysphagia[18,19], annotating temporal swallow kinematic events in healthy adults and patients with suspected 108 

dysphagia (e.g. durations of upper esophageal sphincter opening and laryngeal vestibule closure)[20–22], 109 

categorizing swallows between healthy participants and different patient populations[23,24], and detecting clinical 110 

ratings of swallow physiology in patients with suspected dysphagia using the Modified Barium Swallow Impairment 111 

Profile (MBSImP)[25] with a high degree of accuracy[19,21]. However, the utility of HRCA’s capabilities to 112 

noninvasively characterize these physiologic events, many of which are targets of behavioral augmentation via 113 

compensatory swallowing maneuvers (e.g. effortful swallow, Mendelsohn maneuver), and differentiate between 114 

swallows in which they are accurately deployed without imaging verification, has yet to be investigated. In our 115 

clinical work, we have observed difficulty by patients in generalizing training in these maneuvers to accurate 116 

performance when assessed using VF, likely due to the lack of ongoing performance evidence in the training stage 117 

in which mass practice is deployed in clinic and home programs. Success of such an effort to provide ongoing, 118 

noninvasive indications of accurate or inaccurate performance would be of value in demonstrating preliminary 119 

efficacy of HRCA as a potential biofeedback method for dysphagia treatment.  120 

Compensatory swallowing maneuvers (e.g. effortful swallow, Mendelsohn maneuver) are common dysphagia 121 

rehabilitation techniques that are used to improve swallow function in patients with dysphagia by altering 122 

swallowing physiology. The effortful swallow is one type of compensatory swallowing maneuver that is frequently 123 
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deployed in clinical settings for patients with dysphagia and has been explored in research studies in both healthy 124 

adults and patients with dysphagia. Following dysphagia treatment targeting the effortful swallow, some patients 125 

with dysphagia have exhibited decreased pharyngeal residue and decreased penetration/aspiration, but no changes in 126 

upper esophageal sphincter (UES) opening diameter, duration of UES opening, laryngeal elevation, or hyoid 127 

movement[26–29]. In healthy adults, the research evidence is mixed regarding the impact of effortful swallows on 128 

swallowing physiology. For example, one study in healthy adults found that effortful swallows led to longer 129 

durations for temporal swallow kinematic measurements (e.g. hyoid movement duration, duration of UES opening) 130 

and increased pyriform sinus residue[30]. Other studies in healthy adults have found no differences in airway 131 

protection or swallowing efficiency between non-effortful and effortful swallows[29]. While research studies have 132 

examined differences in temporal kinematic measurements between non-effortful and effortful swallows in healthy 133 

adults, no studies have examined differences between non-effortful and effortful swallows using a clinical rating 134 

tool (e.g. MBSImP), few researchers have investigated noninvasive or non-imaging alternatives to VF that are 135 

capable of determining whether the effortful swallow maneuver is accurately performed once a patient has been 136 

properly trained. Such a system holds potential for enhancing clinician judgment of accurate performance (e.g., 137 

clinician feedback to patient) which is the source of accurate clinical cuing, and patient performance for effortful 138 

swallows to mitigate maladaptive learning of the maneuver[3,4]. Therefore, this study investigated 1. Whether 139 

HRCA can differentiate between non-effortful and effortful swallows performed by the same individuals; 2. 140 

Whether there are differences in MBSImP components #9 (anterior hyoid excursion), #11 (laryngeal vestibular 141 

closure), and #14 (pharyngoesophageal segment opening) between non-effortful and effortful swallows. We 142 

hypothesized that HRCA combined with signal processing and machine learning algorithms would classify 143 

swallows as non-effortful or effortful with a high degree of accuracy and that there would be differences in 144 

MBSImP component scores #9, #11, and #14 between non-effortful and effortful swallows.  145 

Methods:  146 

Equipment and Procedures:  147 

 The Institutional Review Board for this institution approved this research study. All participants provided written 148 

informed consent. Data analyses were performed on 247 thin liquid swallows from 36 healthy community dwelling 149 

adults across the lifespan (19 male) between the ages of 49-86 (mean age 65.53±7.67 years). This subset of data is 150 

part of an ongoing prospective study that aims to analyze swallow function in healthy community dwelling adults 151 
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across the lifespan. Participants were enrolled in this research study based on the following inclusionary criteria 152 

based on participant report: no history of swallowing difficulties, history of a neurological disorder, prior surgery to 153 

the head or neck region, or chance of being pregnant (female participants). Participants underwent a standardized 154 

videofluoroscopic swallow study (VFSS) procedure with concurrent HRCA and were imaged in the lateral plane. 155 

For non-effortful swallows, participants swallowed ten thin liquid boluses in a randomized presentation order (five 156 

3mL boluses via spoon, five self-selected “comfortable” cup sips).  For the 3mL boluses via spoon, participants 157 

were instructed to “Hold the liquid in your mouth and wait until I tell you to swallow it.” For the comfortable cup 158 

sips, participants were instructed to “Take a comfortable sip of liquid and swallow it whenever you’re ready.” For 159 

effortful swallows, participants swallowed one practice thin liquid water bolus and two 3mL thin liquid barium 160 

boluses via spoon. During the practice effortful swallow, participants were instructed to “Swallow hard using all 161 

your throat muscles.” For the effortful swallows that were recorded using VFSSs, participants were instructed to 162 

“Hold the liquid in your mouth and wait until I tell you to swallow it” and then to “Swallow hard” during the exam. 163 

For analyses purposes, only the 3mL thin liquid boluses via spoon were used to compare the non-effortful and 164 

effortful swallows to minimize variation (e.g. bolus volume, utensil, command swallow). See Table 1 for the bolus 165 

characteristics for swallows used for analyses for this study. The average fluoro time for participants was 1.06 166 

minutes. 167 

 VFSS procedures were conducted using a standard fluoroscopy system (Precision 500D system, GE Healthcare, 168 

LLC, Waukesha, WI) at a pulse rate of 30 pulses per second (PPS). A frame grabber module (AccuStream Express 169 

HD, Foresight Imaging, Chelmsford, MA) captured the raw video signals at a rate of 73 frames per second (FPS). 170 

Prior to analysis, the video files were down sampled to 30FPS. HRCA signals were collected concurrently during 171 

the VFSSs via a tri-axial accelerometer (ADXL 327, Analog Devices, Norwood, Massachusetts) that was powered 172 

by a 3V output (model 1504, BK Precision, Yorba Linda, California) and a contact microphone. The accelerometer 173 

and contact microphone were placed in custom casings to ensure adequate contact for signal acquisition during data 174 

collection. The noninvasive HRCA sensors were placed on the anterior laryngeal framework at the level of the 175 

cricoid cartilage with tape after cleaning participants’ neck region with alcohol pads. The sensors were carefully 176 

placed to avoid interfering with VFSS images, to ensure adequate signal acquisition, and to ascertain alignment of 177 

the tri-axial accelerometer with the participant’s neck[11,31]. The precise placement of the accelerometer and 178 

contact microphone can be viewed in Figure 1.   179 
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Signals from the accelerometer and the microphone were hardware-bandpass filtered from 0.1 to 3000 Hz (model 180 

P55, Grass Technologies, Warwick, Rhode Island), amplified, and digitized using a data acquisition device 181 

(National Instruments 6210 DAQ) at a sampling rate of 20kHz with the Signal Express program in LabView 182 

(National Instruments, Austin, Texas). Before analysis, the signals were then down sampled to 4kHz to smooth out 183 

high frequency noise.  184 

 Prior to data analysis for this study, one trained rater segmented video files into individual swallow segments with 185 

ongoing intra-rater reliability within a 3-frame tolerance of 100% based on randomly re-coding one out of every ten 186 

swallows. Another trained rater coded 10% of swallows for inter-rater reliability with intra-class coefficients (ICCs) 187 

of at least 0.9 [32]. The methods for swallow segmentation have been described in previous publications [14,33]. No 188 

other temporal kinematic measurements were performed aside from identifying the onset and offset of each 189 

swallow, and the sole purpose of these measurements was to segment the video files into individual swallows.  190 

MBSImP ratings:  191 

An MBSImP certified clinician completed all MBSImP ratings for components #9, #11, and #14. Before performing 192 

swallowing ratings, inter-rater reliability was established by completing the MBSImP reliability test with at least 193 

80% exact agreement for all MBSImP component scores. Ongoing intra-rater reliability was maintained by 194 

randomly selecting one swallow to re-code every ten swallows with 100% exact agreement. Inter-rater reliability 195 

was conducted on 10% of swallows by another certified MBSImP clinician with 79% exact agreement for 196 

components #9, #11, and #14.    197 

Pre-Processing and feature extraction from HRCA signals: 198 

An autoregressive model was used to build a digital finite impulse filter to remove the device noise associated with 199 

each of the sensors. The filters were designed to remove the baseline noise present in the sensors’ output when no 200 

physical input is applied. Afterwards, motion artifacts and low frequency noise such as head movement, were 201 

removed using fourth-order splines. Finally, wavelet denoising was used to eliminate any additional noise that might 202 

exist in the signals[17,20,21]. The onset and offset of swallows were taken from the segmented videos after applying 203 

the proper sampling mapping between videos and signals. The signals were then segmented using the mapped onset 204 

and offset times for feature extraction[33]. A summary of the features extracted from the HRCA signals and the 205 

explanations of their meanings can be viewed in Table 2. Nine features were extracted from the contact microphone 206 

and the three directions of the tri-axial accelerometer (anterior-posterior, superior-inferior, medial-lateral) for a total 207 
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of 36 signal features. This set of features has been proven effective in differentiating between HRCA signals from 208 

different types of swallows and extraction of multiple swallow kinematics[17,21,24,34]. 209 

Data Analysis: 210 

We fit linear mixed models to examine the association between HRCA signal features, non-effortful swallows, and 211 

effortful swallows. We used multiple supervised machine learning classifiers (e.g. support vector machines [SVM], 212 

Naïve Bayes, decision trees, linear discriminant analysis) that use HRCA signal features as input to classify 213 

swallows as non-effortful or effortful. The supervised machine learning classifiers were deployed using the entire set 214 

of HRCA signal features (n=36), the features that were statistically significant (n=9), and the linearly independent 215 

features (as determined by performing a principal component analysis [PCA]). A leave-one-out procedure was used 216 

to evaluate the classification accuracy of all the used classifiers. A leave-one-out procedure involves training the 217 

classifier on the entire data set except for one randomly selected swallow which is used to test the accuracy of the 218 

classifier. This training and testing procedure were repeated until all swallows in the data set were tested at least 219 

once. The accuracy, sensitivity, and specificity of all supervised machine learning classifiers was then calculated. 220 

We fit linear mixed models to determine if there were differences in MBSImP component scores #9, #11, and #14 221 

between the non-effortful and the effortful swallows. SPSS (IBM, Armonk, NY) was used to fit the linear mixed 222 

models. MATLAB (The MathWorks, Inc., Natick, MA) and R (The R Foundation) were used to construct and 223 

evaluate the performance of the supervised machine learning classifiers. 224 

Results:  225 

Results revealed that there was a statistically significant (p<0.05) difference in 9 HRCA signal features between the 226 

non-effortful and effortful swallows. Complete results from the linear mixed model can be viewed in Table 3. From 227 

the microphone signals, statistically significant features included standard deviation, peak frequency, spectral 228 

centroid, bandwidth, and wavelet entropy. From the anterior-posterior and medial-lateral accelerometer axes, 229 

standard deviation was the only statistically significant feature. From the superior-inferior accelerometer axis, 230 

statistically significant features included standard deviation and wavelet entropy. Figures 2 and 3 illustrate two 231 

examples of the differences in signal features (e.g. standard deviation, peak frequency) between the non-effortful 232 

and effortful swallows.  233 

After evaluating the performance of all supervised machine learning classifiers using the entire set of HRCA signal 234 

features (36), the features that were statistically significant (9), and the statistically independent features; decision 235 
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trees and linear discriminant analysis had the best performance. Using the 9 most significant HRCA signal features 236 

as input, decision trees classified swallows as non-effortful or effortful with 76% accuracy, 76% sensitivity, and 237 

77% specificity. A complete summary of the performance of the different supervised machine learning classifiers 238 

can be viewed in Table 4. For MBSImP component scores, results from the linear mixed model revealed that there 239 

were no significant differences (p>0.05) in MBSImP component scores #9, #11, and #14 between the non-effortful 240 

and effortful swallows. Table 5 shows a complete summary of the MBSImP component scores for the non-effortful 241 

and effortful swallows.  242 

Discussion:  243 

This study found that HRCA combined with advanced signal processing and machine learning techniques could 244 

accurately and autonomously classify swallows from healthy adults as non-effortful or effortful without imaging.  245 

This is of particular clinical interest given the results indicating that analysis of the VF data, which is commonly 246 

used to confirm treatment effect in training of the effortful swallow, did not generate significant differences in the 247 

MBSImP components measured. While preliminary in nature, these results provide evidence regarding the potential 248 

of HRCA as a biofeedback method and an indicator of accurate performance for use by the clinician in providing 249 

reinforcement to the patient, for dysphagia treatment protocols in the future. These results are especially 250 

encouraging given that participants had minimal training (i.e. one practice swallow) prior to performing two 251 

effortful swallows during the videofluoroscopic evaluation. Having an inexpensive, non-invasive, portable, easy-to-252 

use method for providing biofeedback during dysphagia treatment would significantly improve current dysphagia 253 

management of patients by providing clinicians and patients with immediate insight into performance of swallowing 254 

maneuvers and exercises such as the effortful swallow. These findings expand upon previous research studies that 255 

have demonstrated the potential of HRCA as an effective dysphagia screening method and adjunct to VF when 256 

instrumental swallow evaluations are not feasible and provide evidence to support pursuing HRCA as a biofeedback 257 

method. Interestingly, in addition to these findings, we did not detect a statistically significant difference in 258 

MBSImP component scores (#9, #11, #14) between non-effortful and effortful swallows. These results contribute to 259 

the mixed evidence base examining differences between non-effortful and effortful swallows in healthy adults 260 

[29,30]. It is also possible that MBSImP ratings may not be sensitive enough to detect subtle changes in swallowing 261 

physiology because the MBSImP is a somewhat subjective, ordinal rating scale with a limited range of scores. This 262 
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may particularly be true in the present study because all participants were healthy community dwelling adults with 263 

no report of swallowing difficulties; leading to a ceiling effect with MBSImP ratings.  264 

 Future studies should replicate this research work by examining HRCA’s ability to classify non-effortful and 265 

effortful swallows with a larger sample of swallows that includes swallows from both healthy adults and patients 266 

with dysphagia. Including a larger and more variable sample of swallows will assist in improving the accuracy of the 267 

supervised machine classifier and may also allow us to detect differences in MBSImP component scores between 268 

non-effortful and effortful swallows. In addition to this, future studies should examine HRCA’s ability to provide 269 

real-time continuous biofeedback during a treatment session targeting effortful swallows. It will be important to 270 

explore HRCA’s ability to provide insight into performance of other swallowing maneuvers/exercises that would 271 

benefit from biofeedback (e.g. Mendelsohn maneuver) as well.  272 

Limitations:  273 

The purpose of this research study was to determine the efficacy of HRCA as an inexpensive, noninvasive, portable 274 

dysphagia biofeedback method. Because of the preliminary nature of this study, a relatively small sample of 275 

swallows were included for analyses (n=247), which may have resulted in inadequate statistical power for 276 

comparing MBSImP component scores between non-effortful and effortful swallows. In addition to this, only 277 

swallows from healthy community dwelling adults across the lifespan were included in the analysis and only three 278 

MBSImP component scores were examined. This likely limited the range of swallows included (e.g. finite range of 279 

MBSImP component scores, limited severity range) and also limits the generalization of findings to patients with 280 

dysphagia in clinical settings. Due to time constraints while collecting data in a University hospital, participants 281 

received minimal training or practice prior to completing effortful swallows, which may have impacted their 282 

performance. In addition to this, we did not confirm accurate performance of effortful swallows with a validated 283 

measurement tool such as sEMG or manometry, so it is possible not all participants performed this compensatory 284 

maneuver correctly.  Data was collected using a strict, standardized VF protocol to minimize radiation exposure to 285 

healthy community dwelling adults. As such, participants only swallowed thin liquid boluses and only two effortful 286 

swallows were collected from each participant during the VF procedure. Future studies should examine HRCA’s 287 

ability to classify non-effortful and effortful swallows across various conditions (e.g. bolus volume, bolus viscosity, 288 

utensil) and across more trials from each participant.  289 

Conclusion:  290 
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This preliminary study found that HRCA signal features combined with decision trees and linear discriminant 291 

analysis classified swallows as non-effortful or as an effortful swallow with up to 76% accuracy, 76% sensitivity, 292 

and 77% specificity. These results provide promising evidence regarding the efficacy of using HRCA as a 293 

monitoring system and biofeedback method for dysphagia treatment in the future. Future studies should expand 294 

upon these findings to improve the machine learning algorithm performance and to further validate HRCA as a 295 

biofeedback method by analyzing a larger number of swallows (e.g. patient and healthy community dwelling adults) 296 

and by exploring the efficacy of using HRCA as a biofeedback method for other dysphagia treatment targets (e.g. 297 

Mendelsohn maneuver). This inexpensive, noninvasive, portable method has the potential to transform dysphagia 298 

rehabilitation by providing real-time feedback regarding treatment performance.   299 
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