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Improving postural control in older adults is necessary for reducing fall-risk, and prefrontal 

cortex activation may also play a role. We sought to examine the impact of exercise 

interventions on postural control and prefrontal cortex activation during standing balance 

tasks. We hypothesized that balance would improve and prefrontal control would be reduced. 

We assessed a subset of participants enrolled in a randomized trial of two exercise 

interventions.  Both groups completed strength and endurance training and the experimental 

treatment arm included training on timing and coordination of stepping. Postural control and 

prefrontal cortex activation were measured during dual-task standing balance tasks before and 

after the intervention. Eighteen participants in the standard strengthening and mobility training 

arm and 16 in the timing and coordination training arm were included. We examined pre- to 

post-intervention changes in each study arm, and compared them between interventions. 

Results did not show any pre- to post-intervention changes on standing postural control nor 

prefrontal cortex activation in either arm. In addition, there were no differences between the 

two intervention arms in either balance or prefrontal activation. While exercise interventions 

can improve mobility, we do not demonstrate evidence of improved standing balance or 

prefrontal control in standing. 

 

Keywords: prefrontal cortex; exercise intervention; postural control; older adults 

 

1 Introduction 

The United States incurs $50 billion annually in fall-related healthcare costs (Florence et al., 

2018). One third of people aged 65 and older fall every year, accounting for the majority of 



injury-related hospitalizations and deaths in older adults (Stevens et al., 2006). Even non-fatal 

falls are associated with decreased independence and lower life expectancy (Stevens et al., 

2006). Poor postural control is strongly associated with higher fall risk in older adults 

(Graafmans et al., 1996; Pua et al., 2017; Rogers et al., 2003). Contributing factors that result in 

age-related reduced postural control include A) reduced proprioceptive and vestibular sensory 

input, B) increased reliance on visual information, C) increased muscle stiffness, and D) 

increased cognitive requirements during postural control (Dominguez, 2020). 

 

Postural control, the control of bodily position for the purpose of balance, was previously 

considered an entirely automatic process (Woollacott & Shumway-Cook, 2002). However, 

postural control is a complex motor task that involves brain regions responsible for sensory 

integration, motor planning, and attention (Mierau et al., 2017; Redfern et al., 2019). Attention 

is part of the “executive processes” that are performed by brain regions primarily in the frontal 

lobe like the prefrontal cortex (PFC). Cognitive tasks that require attention may cause 

competition for neural resources and lead to postural control disruptions. Additionally, 

automaticity of postural control decreases with age and requires more attentional demand. PFC 

activation has been shown to be higher in older adults than in younger adults during dual-task 

balance and cognition conditions (Rosso et al., 2017), suggesting increased requirements of 

attention in older adults perhaps influenced by reduced decision-making speed and sensory 

integration inhibitory processes (Redfern et al., 2019). These age-related changes in cognition 

and postural control may contribute to increased fall risk in older adults (Rosso et al., 2017; 

Woollacott & Shumway-Cook, 2002), but this relationship is not well understood. Most mobility 



interventions focus on muscular and cardiovascular improvements and disregard the underlying 

neuronal processes (Brach et al., 2022).  

 

To target the neural component, an exercise intervention employed motor skill training in 

addition to endurance training, strength training, and behavioral lifestyle intervention (Brach et 

al., 2020). In this intervention primarily aimed at improving gait, motor skill training used timing 

and coordination walking tasks to induce a motor learning effect (Brach et al., 2013; Macaluso 

& De Vito, 2004). This motor learning is essentially a “neurological exercise” that was 

hypothesized to increase neural efficiency, and thus improve automatic motor control required 

for gait (Brach et al., 2013). Gait is a complex motor skill that has overlapping physical 

requirements to standing postural control. Both require an individual to remain upright by 

activating specific lower limb and trunk musculature, not to mention they both heavily rely on 

sensory inputs (proprioceptive, vestibular, visual). We could then infer that the neural 

requirements for gait and standing postural control also overlap. Motor skill training would, 

therefore, assist older adults in improving not only their mobility (Brach et al., 2020) but also 

their postural control, particularly during dual-task conditions when higher attentional 

demands require postural control to be more automatic (Woollacott & Shumway-Cook, 2002). 

 

We propose that improvements in balance after exercise interventions are in part due to 

changes in neural control mediated by the prefrontal cortex. We can monitor changes in 

postural control and neural activity simultaneously using accelerometers and functional near-

infrared spectroscopy. Functional near-infrared spectroscopy (fNIRS) is gaining popularity as a 



non-invasive tool for measuring real-time brain activity during balance studies (Karim et al., 

2013; Rosso et al., 2017). This neuroimaging modality uses light to measure changes in cortical 

blood flow – changes which are driven by neural activity as described by neurovascular coupling 

(Scholkmann et al., 2014). Higher PFC activation in older adults has been shown to be related to 

worse balance performance, suggesting neural inefficiency (Lehmann et al., 2022). Few fNIRS 

studies have employed quiet standing, or static balance, in their experimental design, other 

than as a baseline condition. Instead, participants often perform more difficult tasks such as 

dynamic posturography perturbations (Rosso et al., 2017), standing on a wobble board (Herold 

et al., 2017; Lehmann et al., 2022), or employing a tandem stance (Chen et al., 2018; Marusic et 

al., 2019). We are interested in quiet standing because it requires minimal physical demand and 

no additional equipment. This would make quiet standing a safer and more accessible balance 

assessment condition, particularly for individuals with poor balance, that could be more easily 

translated into clinical settings.  

 

We sought to examine the impact of exercise interventions on postural control and prefrontal 

cortex activation in older adults. We hypothesized that older adults that received specific timing 

and coordination motor skill training compared to those in a standard intervention would 

increase postural control automaticity during dual-task standing conditions, resulting in better 

balance performance as measured by accelerometry. We anticipated that, with this 

improvement in balance performance, we would also see reduced PFC activity as measured by 

fNIRS, indicating increased neural efficiency. Previous motor learning interventions have 

displayed the plasticity of PFC function with similar, or less, training time. These studies 



reported that PFC fNIRS signals decreased with training of the motor task (Eggenberger et al., 

2016; Ono et al., 2015). While we acknowledge that this analysis of a randomized clinical trial is 

limited due to sample size, we also point out that the benefits of the exercise interventions may 

be present in the whole sample. Accordingly, we hypothesized that older adults in either 

intervention arm would exhibit improved single- and dual-task balance performance and 

reduced PFC activity following participation in exercise interventions.  

 

2 Methods 

2.1 Sample 

Data for this research comes from participants that we recruited from the “Program to improve 

mobility in aging” (PRIMA) intervention study (Brach et al., 2020). There were 249 participants 

in the parent study, 43 of whom were enrolled in the PRIMA-NIRS ancillary study on which the 

present analysis is based. To be eligible for the PRIMA intervention study, participants had to be 

at least 65 years old, have a gait speed in the range of 0.60 to 1.2 m/s, be able to walk 

unassisted, and be cleared by a physician to participate (Brach et al., 2020). Exclusion criteria 

focused on inability to participate in testing or exercise programs and safety concerns. Gait 

speed was the primary outcome for the main study. The primary results of the intervention 

showed that gait speed increased for the whole sample, but no differences were found 

between the treatment arms (Brach et al., 2022).  

 

No additional eligibility criteria were required for the PRIMA-NIRS ancillary. Participants were 

scheduled to be assessed four times, at weeks 0 (pre-intervention), 12 (immediate post-



intervention), 24, and 36. Analyses presented here use data from before the intervention 

(PREpre-intervention) at week 0 and after the intervention (POSTpost-intervention) at week 12.  

Therefore, participants must have completed at least the 0- and 12-week visits to be included in 

these analyses. 34 of the 43 participants were thus eligible for this study (Figure 1). 

Accelerometry data from 7 participants and fNIRS data from 1 participant were excluded due to 

recording errors or poor signal quality. Therefore, our final analytic sample included 33 

participants for fNIRS analyses of prefrontal cortical activation and 27 participants for 

accelerometry analyses of balance performance (Figure 1). The University of Pittsburgh 

Institutional Review Board approved the study and all subjects participants provided informed 

consent. 

 

We report metrics collected in the parent study to characterize the study population. During 

the clinical screening step of participant recruitment, the following metrics were recorded: age, 

gender, race, education, height, weight, body-mass index, comorbidities, Modified Mini-Mental 

State scores (Teng & Chui, 1987), Short Physical Performance Battery scores (Guralnik et al., 

1994), and falls history questionnaire. Gait speed (details below) and Trail Making Test times for 

parts A and B (Bowie & Harvey, 2006) were collected at each visit. 

 

2.2 Interventions 

The interventions have been previously described in detail (Brach et al., 2020). Briefly, all 

participants completed 12-weeks of exercise training with two in-person physical therapist-led 

sessions per week that included lower extremity strength training, endurance training, and a 



behavioral lifestyle intervention. The goal for lower extremity strength training and endurance 

training is to exercise in a perceived effort range that is “somewhat hard” (Rating of Perceived 

Exertion 10-13) (Borg, 1970). The aim of the parent PRIMA intervention study was to examine 

whether specific timing and coordination exercises improved skillful, or smooth, automatic 

control of walking beyond standard training (Brach et al., 2020). Therefore, participants were 

randomly assigned to either the Standard therapy group or the Standard plus timing and 

coordination group (Standard+ group) (Brach et al., 2020). The timing and coordination 

exercises consisted of progressively more difficult stepping and walking patterns such as 

alternate forward and backward stepping and walking while tossing a ball. Training time 

between two groups were kept equal by reducing endurance training time for the Standard+ 

group (Brach et al., 2022).  

 

2.3 Dual-Task Paradigms 

We assessed both postural control performance and PFC activity under the quiet standing 

condition (single-task) and standing while simultaneously completing a cognitive task. These 

data are extracted from a larger mobility protocol, of which the details have been described 

previously (Hoppes et al., 2020). The single- and dual-task components of the standing protocol 

were each 20 seconds long, with the single-task preceding the dual-task. The cognitive task 

instructed participants to recite every other letter of the alphabet starting with the letter ‘B’. 

This cognitive dual-task was selected because it is thought to be a good parallel to carrying a 

conversation and is commonly used in other fNIRS studies that examine walking and cognition 

(Holtzer et al., 2011, 2016; Holtzer, Schoen, et al., 2017; Holtzer, Yuan, et al., 2017; Hoppes et 



al., 2020). No instructions were given to the participants on which task to focus or how to place 

their feet; they were simply told to stand quietly. Participants performed the dual-task protocol 

twice per trial over four trials for a total of eight repetitions per visit. Cognitive task 

performance was quantified as alphabet performance by dividing the number of correct letters 

by the duration of the task (20 seconds), as essentially the rate of correct letters generated per 

second. Eight trials were averaged together for each visit. Gait speed for each visit was 

averaged from four trials of timed 15-meter walks on a flat straight pathway on the track.  

 

2.4 Accelerometry 

Postural control performance was monitored by a tri-axial accelerometer placed over the L3 

segment of the lumbar spine, used to approximate the center of mass. The accelerometer 

measures linear accelerations of the center of mass in the medial-lateral (ML), vertical, and 

anterior-posterior (AP) axes. Lower back accelerometry has been validated as an effective 

method to evaluate postural control performance (Whitney et al., 2011). Acceleration signals 

were sampled at 100 Hz; although 33% were incorrectly sampled at 30 Hz and were then up-

sampled to 100 Hz during signal preprocessing. Effects of gravity on the signals were removed 

by correcting for accelerometer tilt using the transformations defined in Moe-Nilssen 1998 

(Moe-Nilssen, 1998). Preprocessing of the signals began by removing outliers using a 5th order 

median-filter (Sejdić et al., 2016). The signals were then passed through a 4th order, zero-

phase, low-pass Butterworth filter with a cutoff frequency of 2 Hz (Alkathiry et al., 2018; 

Alqahtani et al., 2017, 2020). Accelerometry signals were parsed by task and visit type into four 



different conditions: PRE pre-intervention single-task, PRE pre-intervention dual-task, POST 

post-intervention single-task, POST post-intervention dual-task.  

 

We then calculated a variety of accelerometry features for each signal segment. We initially 

extracted 12 accelerometry features which we had demonstrated previously as being sensitive 

to this standing dual-task paradigm (Bohlke et al., 2021). In addition, we computed the root-

mean-square of the accelerometry signal in ML and AP directions due to their prevalence in the 

literature (Alqahtani et al., 2017, 2020; Maurer & Peterka, 2005; Prieto et al., 1996; Whitney et 

al., 2011). To reduce redundancy across our features, we then examined associations between 

these 14 features. Accelerometry features with high correlation with one another were 

removed (n=7). The remaining seven signal features were root-mean-square ML, root-mean-

square AP, centroid frequency AP, bandwidth ML, entropy rate AP, wavelet entropy ML, and 

cross-correlation between ML and AP signals. This set of features covers time, frequency, and 

time-frequency domains as well as statistical and information theory aspects of the 

accelerometry signals (Sejdic et al., 2014). We used Matlab version 2020a (MATLAB, The 

MathWorks, Inc., Natick, MA) to preprocess signals, extract variables, and run correlations for 

data reduction.  

 

Some accelerometer data included signal drops when the sensors detected low levels of activity 

and activated a battery saving mode which resulted in flat traces. If there was more than 2 

seconds of signal drop, the trial for that task was removed and not used in postural analysis. Of 

the 34 participants that completed the 0- and 12-week visits, seven participants did not have 



sufficient accelerometry data for each of the four experimental conditions (PRE single-task, PRE 

dual-task, POST single-task, POST dual-task). Those participants were not included in analyses 

involving accelerometry features; therefore, the total sample size for balance performance 

accelerometry metrics is 27 (14 in Standard group, 13 in Standard+ group). 

 

2.5 Functional Near-Infrared Spectroscopy 

During the mobility tasks, participants wore a wireless fNIRS system (OctaMon, Artinis Medical 

Systems, Einsteinweg, Netherlands) on their forehead to monitor PFC hemodynamic response. 

Our fNIRS protocol follows recommendations for data collection, analysis, and reporting 

(Menant et al., 2020). The fNIRS system utilizes eight light emitting sources and two detectors 

covering the forehead symmetrically (Figure 2). Distance between source and detector is 35 

mm. The center of the fNIRS system was aligned with the center of the nose and placed such 

that the lower optodes were just above the eyebrows for each participant to maintain 

consistent placement. The 10-20 EEG coordinate system was also used to measure relative 

placement of the fNIRS probes. The detectors and sources cover the left and right PFC, more 

specifically Broca’s areas BA9, BA44, BA45, and BA46. The two near-infrared wavelengths used 

by this system are 760 nm and 850 nm, which target deoxygenated (HBR) and oxygenated 

hemoglobin in the blood (HBO), respectively.  

 

To process the fNIRS data, signals were first trimmed to keep only two seconds of data before 

and after mobility tasks to reduce baseline noise. Flagged tasks and data channels with flat 

signals, due to equipment malfunction or saturation, were identified and removed from 



analysis. We then converted raw light intensity data to optical density, down-sampled from 10 

Hz to 4 Hz, and converted the optical density data to hemoglobin concentrations using the 

modified Beer-Lambert Law (Santosa et al., 2018). A canonical general linear regression model 

was used to estimate hemoglobin concentrations for each task relative to the global baseline of 

the signal. Physiological artifacts and motion artifacts were removed using an autoregressive 

iteratively reweighted least squares method. This method works by repeatedly applying an 

autoregressive filter to the generalized linear model that attenuates slow drifting effects from 

physiological and motion artifacts (Santosa et al., 2018). This autoregressively filtered 

generalized linear model model is then iteratively weighted to strongly attenuate large errors 

like motion artifacts.  

 

We ran Student’s t-tests to compare the estimates from the generalized linear model between 

tasks (Santosa et al., 2018). The quiet standing (single-task) fNIRS signal was used as the control 

condition to which the dual-task fNIRS signal was compared. Positive t-statistic values indicate 

the likelihood that the concentration of HBO oxy-hemoglobin or HBR deoxy-hemoglobin 

increasedincreased, and negative values indicate decreases from single- to dual-task standing. 

Raw fNIRS data were processed using Matlab version 2021b (MATLAB, The MathWorks, Inc., 

Natick, MA) using the NIRS Brain AnalyzIR Toolbox (Santosa et al., 2018). In this analysis, t-

statistic values for the four source-detector pairs were first averaged to give right and left PFC 

oxy-hemoglobinHBO and HBRPFC deoxy-hemoglobin. We then averaged the right and left PFC 

values to give whole PFC HBO and HBR because correlations between the two hemispheres 



were strong (r = 0.865 for HBO, r = 0.539 for HBR). For the 33 participants in the fNIRS analysis, 

17 were in the Standard group and 16 were in the Standard+ group. 

 

2.6 Statistical Analysis 

We used descriptive statistics to summarize participant characteristics. We compared the 

baseline participant characteristics between the two intervention groups using independent 

samples t-, chi-square and Fisher’s exact tests. To test our hypothesis that Standard+ group 

would exhibit greater improvements in postural control performance and lower PFC activation 

during dual-task standing conditions, we fitted a series of analysis of covariance (ANCOVA) type 

models with each pre- to post-intervention change in fNIRS feature, or accelerometry feature, 

gait speed, or alphabet performance  as the dependent variable, intervention group as the 

independent factor of interest, and baseline pre-intervention value (of the change being 

analyzed) as a covariate. Magnitude, 95% confidence interval, and statistical significance of the 

treatment group coefficient was used for the main findings. We then tested the hypothesis that 

exercise interventions, regardless of type, would improve postural control and reduce PFC 

activity during single- and dual-task standing conditions. We used paired samples t-test to 

assess pre- to post-intervention changes in accelerometry and fNIRS measures for all 

participants without consideration of study arm. SAS® version 9.4 (SAS Institute, Inc., Cary, 

North Carolina) was used for statistical analysis.  

 

3 Results 



Table 1 summarizes baseline characteristics of the 34 participants. The sample was 59% female 

and 85% White. Average age was 76.0 ± 6.4 years with a range of 65 to 92 years. Average 

baseline gait speed and alphabet performance during standing dual-task were 0.96 ± 0.15 m/s 

and 0.63 ±0.13 correct letters/s respectively. The demographic breakdown of our sample was 

similar to that of the parent intervention study; however, we did have a higher percentage of 

male participants, a higher Duke comorbidity index on average, and slightly faster Trails A and B 

times on average (Brach et al., 2022). There were no significant differences between treatment 

groups at baseline except alphabet performance (Standard+ = 0.68, Standard = 0.59, p=0.04).  

 

Table 2 provides the results of the series of ANCOVA models that tested for differences 

between treatment groups. Differences between treatment arms for changes in single-task 

standing features from pre- to post-intervention were not significant. There was weak evidence 

of differences in the pre- to post-intervention changes in dual-task features between the two 

intervention groups for root-mean-square AP (p = 0.09), WE ML (p = 0.09), and BND ML 

bandwidth ML (p = 0.05). For AP root-mean-square AP, the treatment group differences were 

due to the Standard treatment group significantly decreasing from pre- to post-intervention (p 

= 0.02) whereas the Standard+ group did not. WE ML wavelet entropyML for the Standard+ 

group showed weak evidence of increasing between visits (p = 0.06), whereas the Standard 

group exhibited no changes. For ML bandwidthBND ML, while the intervention arms are 

significantly different (p = 0.05), neither group showed significant changes in dual-task features 

from pre- to post-intervention. As with the primary trial results (Brach et al., 2022), our smaller 

sample lacked differences in gait speed between treatment groups but showed improvements 



when analyzing the whole sample. Additionally, the fNIRS features (left and right PFC oxy-

hemoglobin HBO and  PFC HBR deoxy-hemoglobin) and alphabet performance did not differ 

between treatment groups but the Standard+ group showed weak evidence of pre- to post-

intervention increases (p = 0.08). 

 

There were no significant pre- to post-intervention changes for single-task standing features, 

dual-task standing features, or fNIRS features, or alphabet performance when we analyzed the 

sample as a whole (Table 3).  

 

4 Discussion 

 We found no significant differences between exercise arms in change in balance performance 

or prefrontal activation from pre- to post-intervention. Pre- to post-intervention changes in 

dual-task AP root-mean-square AP and in WE ML wavelet entropy ML and ML bandwidth BND 

ML seemed to show minor between-group differences. When analyzing the whole sample for 

intervention-related changes, no changes were found in single-task standing features, dual-task 

standing features, or fNIRS features. Only AP root-mean-square AP of the Standard group 

showed significant decreases from pre- to post-intervention. PFC HBR of the Standard+ group 

had an increasing trend from pre- to post-intervention.  

 

These interventions were specifically designed for improving walking, with gait speed as the 

primary outcome. Gait speed showed improvements across the whole sample in the parent 

study but lacked between-arm differences. The authors suggest that using treadmill walking, 
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which reduces gait variability and encourages consistent step patterns, instead of stationary 

cycles for endurance training may have dampened potential differences between the treatment 

arms (Brach et al., 2022). Gait speed could have improved in different ways for the two arms. 

The authors of the parent study also discuss improvements in capacity versus efficiency (Brach 

et al., 2022).  Differences may be detected in other components of motor control like neural 

activity and postural control of upright standing balance. Postural control is a complex motor 

task with similarities to walking and therefore could also benefit from this type of intervention. 

The intervention included strength and endurance training to increase muscle strength. As well 

as providing social interaction, the intervention required participants to leave their home, and 

focused on mobility practice that may have improved balance confidence and reduced fear of 

falling (Singh et al., 2012). Social engagement (Rosso et al., 2013), time outside of home (Suri et 

al., 2021), and fear of falling (Hadjistavropoulos et al., 2011; Singh et al., 2012; Young & Mark 

Williams, 2015) are all factors that contribute to fall-risk. 

 

Most postural control intervention studies focus on strength training, endurance training, or a 

combination of both, but few have shown robust improvements to postural control (Low et al., 

2017). Single-task postural control training has not been shown to improve dual-task postural 

control performance; specific dual-task training must be included in the intervention to see 

improvement. Specific dual-task training, however, is not necessarily generalizable to other 

dual-tasks which suggests that the neurological component involved in postural control is not 

effectively addressed by this task-specific training (Agmon et al., 2014). The Standard+ 

treatment arm not only targeted single-task physical improvements with strength and 



endurance training, but also covered broad dual-task training with timing and coordination 

practices, which were thought to actively improve automatic motor control (Brach et al., 2020). 

Improvements in these complex motor tasks, particularly during dual-task conditions, could 

indicate increased motor control automaticity and reduced voluntary control that requires 

attention. In the context of postural control, we would expect improvements in automaticity to 

result in increases for some variables (ML bandwidthBND ML, WE ML wavelet entropyML, and 

CORR ML-AP cross-correlationML-AP) and in decreases for other variables (both root-mean-

square variables, AP centroid frequency AP, and ENTR AP entropy rateAP) (Bohlke et al., 2021). 

Automatic functions are more efficient than those with higher attentional demands because 

they require fewer neural resources (Brach et al., 2020). We would expect lower PFC activation 

in alignment with higher automaticity and lower attentional demand. 

 

Accelerometry is a useful tool for monitoring accelerations of the center of mass (Moe-Nilssen 

& Helbostad, 2002). Various signal features can be extracted to evaluate different balance 

characteristics like sway, stiffness, adaptability, and regularity (Bohlke et al., 2021). Root-mean-

square measures the amount of sway, centroid frequency informs about the stiffness of 

movements, bandwidth BND is an indication of adaptability, ENTR entropy rate measures local 

signal randomness, WE wavelet entropy measures global signal disorder, and CORR cross-

correlation measures similarity between ML and AP movements (Bohlke et al., 2021; Sejdic et 

al., 2014). The exercise interventions did not result in any significant differences in these 

characteristics except for AP root-mean-square AP in the Standard group. The lack of significant 

changes in balance performance with this intervention aligns with other fall-risk intervention 



programs that have suffered from lack of transferability or generalizability of learned skills. For 

example, trip perturbation practice does not improve performance on a lean-and-release 

balance perturbation task, regardless of age (König et al., 2019). Mobility exercises focused on 

improving gait, a dynamic action, may just not be transferable to static standing balance. 

 

Dual-task RMS AP root-mean-squareAP, or anterior-posterior sway, did decrease over the 

course of the Standard treatment intervention. This would indicate that standing balance while 

performing a cognitive task improved, as the participants are swaying less. This could also 

suggest improved balance automaticity post-intervention, as AP sway was reduced while 

participants attended to the additional cognitive task (Huxhold et al., 2006; Potvin-Desrochers 

et al., 2017; Prado et al., 2007; Richer & Lajoie, 2020; Soames & Atha, 1982; Swan et al., 2004). 

However, it is not clear why RMS AP root-mean-square AP would improve with the Standard 

intervention and not the Standard+ intervention.  

 

Dual-task WE ML wavelet entropyML, or global signal disorder in the medial-lateral direction, 

showed tendency for changes only in the Standard+ group. These participants had higher post-

intervention WE ML wavelet entropy ML compared to pre-intervention WE ML wavelet 

entropyML. Higher global signal disorder means that more frequencies contribute more equally 

to the signal (Sejdic et al., 2014). One study found that during cognitive tasks, the frequency 

contribution shifted to a more even distribution as opposed to a more peaked distribution 

around ultra-low frequencies (Richer & Lajoie, 2020). The authors discussed how the shift 

towards the higher frequencies indicates more automatic behavior as higher frequencies are 



associated with cerebellar and vestibular responses (Richer & Lajoie, 2020). In other words, 

postural control signals moved from a less disordered signal to a more disordered signal with 

more equal frequency contributions during dual-task conditions which indicated balance was 

more automatic with the addition of a cognitive task. So for the Standard+ group, participants 

had higher signal disorder during the dual-task after the intervention than before. Importantly, 

the Standard group did not show changes, and the large standard deviations may have 

obscured significance of average change.  

 

We had also hypothesized that the exercise interventions would improve neural efficiency by 

increasing the automaticity of static standing postural control. In general, older adults have 

higher PFC activation than younger adults during standing balance, particularly during dual-task 

conditions (Udina et al., 2020) and when the difficulty of the balance task is low (St George et 

al., 2021). Increased automaticity would present as lower PFC activation at the post-

intervention visit compared to pre-intervention, as fewer neural resources in the attention 

network would be required to carry out the same balance task (Lacour et al., 2008). Based on 

neurovascular coupling and the hemodynamic response, activation of the PFC would show 

positive oxy-hemoglobin HBO values as fresh blood is brought to the cortical sight and negative 

HBR deoxy-hemoglobin values as used blood is taken away (Scholkmann et al., 2014). PFC 

activation would increase from single- to dual-task, as the cognitive task increases attentional 

demand (Lacour et al., 2008; St George et al., 2021). We expected reduced PFC oxy-hemoglobin 

HBO and PFC HBR deoxy-hemoglobin values after the intervention, represented by smaller t-

statistic magnitudes. However, the data does not support this hypothesis. While the averages 



of PFC oxy-hemoglobin HBO and PFC HBR deoxy-hemoglobin for both hemispheres are positive 

and negative, respectively, implying that the PFC activity increased during the dual-task, we do 

not see any significant intervention-related changes in either intervention group. Although, the 

pre- to post-intervention changes in the Standard+ group suggest that participants had a trend 

towards a decrease in PFC HBR. The standard deviations are quite large obscuring statistical 

significance, limiting our ability to make a strong conclusion. It is important to note that brain 

activity responses are likely quite task dependent. The frontal parietal cortex has been shown 

to exhibit decreased activity during a balance task while performing a spatial working memory 

task but not with a nonspatial working memory task (Chen et al., 2018). A different study of 

standing and cognition dual-task experiments in older adults found that hemodynamic 

responses of the PFC were more influenced by changes in postural task than by addition of a 

serial subtraction cognitive task (Marusic et al., 2019), which could explain why we did not see 

any strong changes. The cognitive task may not inherently alter PFC activation enough for 

changes to be noticeable. 

 

There are some important limitations to mention. The intervention and mobility assessment 

tasks were optimized for gait and not standing balance. The standing balance tasks were the 

control conditions for the mobility protocol. The balance tasks performed are perhaps too 

simple and subject to ceiling effects. One review of postural control interventions suggests that 

standing balance with eyes open is not likely to be impacted by exercise-based interventions 

(Low et al., 2017). Instead, they suggest that standing balance with eyes closed should be used 

to evaluate postural control improvements from exercise interventions. The rationale is that 



neuromuscular and sensorimotor systems are the modifiable systems that exercise 

interventions can target; yet standing balance with eyes open relies heavily on visual input. 

When vision is removed, only neuromuscular and sensorimotor feedback remain (Low et al., 

2017). In addition, the small sample size in this study likely affected this analysis. With only 34 

participants in the whole sample and 18 and 16 participants in the Standard and Standard+ 

treatment groups, respectively, the possibility that conclusions of no change/difference are due 

to lack of statistical power rather than a true similarity cannot be ruled out. This study also 

lacked a non-exercise therapy control group, all participants received some sort of exercise 

intervention therapy. The lack of a non-exercise control group obscures a potential outcome 

where the exercise groups maintained and the non-exercise group declined over the 12 weeks. 

Additionally, we have a very high percentage of White participants, and the sample was also 

relatively well educated. The lack of diversity limits the generalizability of our research; it 

remains unknown how individuals from different demographic backgrounds that were not 

present in this sample may respond to this intervention. Lastly, instances of poor signal quality 

resulted in some unusable data. The accelerometry data often had flat traces when the sensors 

detected low levels of activity. An “idle sleep mode” default setting on the accelerometers was 

discovered and subsequently turned off; however, most participants had already been tested. 

Signals with more than 2 seconds of flat traces were removed from analysis. The accelerometry 

frequency variables may have been affected by the relatively short accelerometry signal lengths 

(1200 to 1700 data points), and vocalizations from the verbal cognitive task (St George et al., 

2021). 

 



This study does boast several strengths. Firstly, mobility interventions usually focus mostly on 

the physical treatment and omit tactics to improve neuronal processes involved in mobility. The 

treatment arm of the “Program to Improve Mobility in Aging” intervention incorporated both of 

those components (Brach et al., 2020). Additionally, few interventions have evaluated postural 

control using accelerometers, a low cost and easy to use technology. Force plates or clinical 

balance assessments are more often used for quantifying changes in postural control over the 

course of an intervention (Low et al., 2017). The features extracted from accelerometry signals 

can quantify center of mass balance characteristics across a variety of domains that force plates 

and common clinical assessments cannot (e.g., entropy rate, wavelet entropy). fNIRS has also 

not previously been used to monitor PFC activation changes during standing balance over 

course of a mobility intervention, providing insight on longitudinal comparisons of attentional 

demand. Furthermore, both accelerometry and fNIRS are portable, non-invasive technologies 

that can be leveraged to expand healthcare access, particularly to the increasing population of 

older adults that have mobility deficits.  

 

 

4.1 Conclusion 

Exercise interventions did not have an impact on standing balance performance nor on PFC 

activation during dual-task standing. Small sample size may limit our findings, underestimating 

differences that may be present. Future studies may want to consider including combined 

interventions for both walking and standing balance that employ more challenging balance 

tasks. 
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Figure 1: Flowchart outlining participant recruitment and data availability. PRIMA = program to 

improve mobility in aging, ACC = accelerometry, fNIRS = functional near-infrared spectroscopy 

Figure 2: Approximate placement of the 2 detectors (filled circles, center of each ‘X’) and 8 

sources (unfilled circles, ends of each ‘X’ arm) from the functional near-infrared spectroscopy 

system. 
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Table 1. Baseline characteristics of older adults enrolled in a randomized clinical trial of a timing 

and coordination physical therapy intervention. 

Table 2: Intervention-induced changes in the Standard+ and Standard groups and adjusted 
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Table 3: Intervention-induced changes in the whole sample. 
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Table 1. Baseline characteristics of older adults enrolled in a randomized clinical trial of a timing 
and coordination physical therapy intervention. 

Characteristic Full Sample (n=34) 
Mean (SD) or n (%) 

Standard+ (n=16) 
Mean (SD) or n (%) 

Standard (n=18) 
Mean (SD) or n (%) 

Age 76.0 (6.4) 74.5 (8.1) 77.3 (4.3) 
Gender    
     Female 20 (58.8%) 11 (68.8%) 9 (50.0%) 
     Male 14 (41.2%) 5 (31.3%) 9 (50.0%) 
Race    
     Black 5 (14.7%) 1 (6.3%) 4 (22.2%) 
     White 29 (85.3%) 15 (93.8%) 14 (77.8%) 
Education    
     Grade 9-12 5 (14.7%) 0 (0.0%) 5 (27.8%) 
     College 16 (47.1%) 10 (62.5%) 6 (33.3%) 
     Post-graduate 13 (38.2%) 6 (37.5%) 7 (38.9%) 
Duke comorbidity index 3.1 (1.3) 2.9 (1.2) 3.3 (1.4) 
3MS 96.1 (3.7) 95.9 (4.6) 96.3 (2.7) 
Trails A (seconds) 31.9 (11.1) 28.2 (10.0) 35.2 (11.2) 
Trails B (seconds) 72.9 (32.4) 63.5 (34.3) 82.4 (28.4) 
Height (minches) 1.7066.8 (03.108) 1.6765.8 (03.097) 1.7267.6 (03.108) 
Weight (kgpounds) 182.81 (1533.11) 183.57 (1737.16) 1820.28 (2139.57) 
Body-mass index 28.7 (3.9) 29.8 (4.8) 27.7 (2.5) 
Fear of falling 16 (47.1%) 7 (43.8%) 9 (50.0%) 
Fall prior year 8 (23.5%) 5 (31.3%) 3 (16.7%) 
Short Physical 
Performance Battery 9.9 (1.7) 10.2 (1.4) 9.6 (1.9) 



Gait speed (m/s) 0.96 (0.15) 0.97 (0.14) 0.95 (0.15) 
Alphabet performance 
(letters/s)* 0.63 (0.13) 0.68 (0.11) 0.59 (0.14) 

Accelerometry Full Sample (n=27) Standard+ (n=13) Standard (n=14) 
     Single-Task Features    
 RMS ML (G/s) 0.012 (0.010) 0.011 (0.011) 0.014 (0.010) 
 RMS AP (G/s) 0.034 (0.016) 0.031 (0.017) 0.037 (0.016) 
 CFR AP (Hz) 0.315 (0.058) 0.325 (0.059) 0.307 (0.058) 
 BND ML (Hz) 0.926 (0.337) 1.040 (0.366) 0.821 (0.280) 
 ENTR AP 0.884 (0.010) 0.885 (0.011) 0.884 (0.009) 
 WE ML 0.443 (0.242) 0.428 (0.259) 0.458 (0.234) 
 CORR ML-AP 0.407 (0.091) 0.431 (0.094) 0.384 (0.084) 
     Dual-Task Features    
 RMS ML (G/s) 0.013 (0.012) 0.013 (0.016) 0.012 (0.006) 
 RMS AP (G/s) 0.030 (0.022) 0.030 (0.029) 0.031 (0.014) 
 CFR AP (Hz) 0.311 (0.064) 0.316 (0.062) 0.307 (0.068) 
 BND ML (Hz) 0.835 (0.344) 0.832 (0.440) 0.838 (0.240) 
 ENTR AP 0.910 (0.011) 0.910 (0.012) 0.910 (0.011) 
 WE ML 0.419 (0.202) 0.388 (0.195) 0.448 (0.212) 
 CORR ML-AP 0.386 (0.106) 0.371 (0.102) 0.400 (0.112) 
fNIRS t-Statistics Full Sample (n=33) Standard+ (n=16) Standard (n=17) 
     Left PFC HBO 0.92 (2.23)1.00 (2.06) 1.400.59 (2.3527) 1.380.48 (12.7217) 
     Right PFC HBO 1.22 (2.32) 0.96 (1.90) 1.48 (2.70) 
     Left PFC HBR -1.84 52 (2.704) -12.6044 (2.7855) -1.4526 (2.7187) 
     Right PFC HBR -1.55 (2.52) -1.91 (2.23) -1.21 (2.80) 

*: values were significantly different between treatment groups (p < 0.05); 
Abbreviations: SD = standard deviation; ML = medial-lateral; AP = anterior-posterior; RMS = root-mean-square; 
CFR = centroid frequency; BND = bandwidth; ENTR = entropy rate; WE = wavelet entropy; CORR = cross correlation; 
PFC = prefrontal cortex; fNIRS = functional near-infrared spectroscopy; HBO = oxy-hemoglobin; HBR = deoxy-
hemoglobin, GLM = generalized linear model 
 
Table 2: Intervention-induced changes in the Standard+ and Standard groups and adjusted 
comparisons between the groups. 

Measure 

Standard+ Pre- to 
Post-Intervention 

Change 
Mean (SD) 

Standard Pre- to 
Post-Intervention 

Change 
Mean (SD) 

Standard Plus vs Standard 
Adjusted Difference 

Estimate (SE) p-Value 
Gait speed (m/s) 0.056 (0.094)* 0.045 (0.110) 0.015 (0.035) 0.7 
Alphabet performance 
(letters/s)  -0.003 (0.169) 0.029 (0.134) 0.013 (0.051) 0.8 

Accelerometry (n = 27)     
     Single-Task Features     
 RMS ML (G/s) 0.001 (0.005) 0.000 (0.011) 0.000 (0.003) 0.1 
 RMS AP (G/s) -0.002 (0.019) -0.001 (0.040) -0.008 (0.010) 0.4 
 CFR AP (Hz) -0.022 (0.098) 0.005 (0.080) -0.015 (0.031) 0.6 
 BND ML (Hz) -0.073 (0.420) 0.158 (0.433) -0.068 (0.147) 0.6 
 ENTR AP 0.003 (0.016) -0.003 (0.010) 0.006 (0.004) 0.1 
 WE ML -0.064 (0.310) 0.065 (0.238) -0.148 (0.087) 0.1 
 CORR ML-AP 0.034 (0.100) 0.025 (0.064) 0.029 (0.030) 0.3 



* p<0.05 
Abbreviations: SD = standard deviation; ML = medial-lateral; AP = anterior-posterior; RMS = root-mean-square; 
CFR = centroid frequency; BND = bandwidth; ENTR = entropy rate; WE = wavelet entropy; CORR = cross correlation; 
PFC = prefrontal cortex; fNIRS = functional near-infrared spectroscopy; HBO = oxy-hemoglobin; HBR = deoxy-
hemoglobin, GLM = generalized linear model 
 
  

     Dual-Task Features     
 RMS ML (G/s) 0.000 (0.003) -0.001 (0.005) 0.002 (0.002) 0.2 
 RMS AP (G/s) -0.002 (0.024) -0.011 (0.016)* 0.008 (0.004) 0.09 
 CFR AP (Hz) -0.032 (0.078) -0.015 (0.142) -0.005 (0.030) 0.9 
 BND ML (Hz) -0.101 (0.364) 0.241 (0.589) -0.346 (0.171) 0.05 
 ENTR AP 0.000 (0.011) 0.001 (0.018) -0.001 (0.005) 0.9 
 WE ML 0.247 (0.432) -0.032 (0.311) 0.264 (0.147) 0.09 
 CORR ML-AP 0.043 (0.169) 0.004 (0.085) 0.016 (0.040) 0.7 
fNIRS t-Statistics (n = 33)     

     Left PFC HBO -0.080.525 
(2.830486) 

-0.3140.473 
(2.3202.921) 

-0.153579 
(0.858914) 0.95 

     Right PFC HBO 0.221 (3.029) -0.733 (2.321) 0.728 (0.887) 0.4 

     Left PFC HBR 0.557 1.001 
(42.058135) 

-0.210889 
(33.952.279) 

01.613304 
(10.007884) 0.52 

     Right PFC HBR 0.465 (3.589) -0.691 (3.326) 0.501 (0.897) 0.6 



Table 3: Intervention-induced changes in the whole sample. 

Measure 
Pre- to Post-

Intervention Change 
Mean (SD) 

p-Value 

Gait speed (m/s) 0.050 (0.102)* 0.007* 
Alphabet performance (letters/s)  0.014 (0.150) 0.6 
Accelerometry (n = 27)   
     Single-Task Features   
 RMS ML (G/s) 0.001 (0.009) 0.7 
 RMS AP (G/s) -0.001 (0.031) 0.8 
 CFR AP (Hz) -0.008 (0.089) 0.6 
 BND ML (Hz) 0.047 (0.435) 0.6 
 ENTR AP -0.000 (0.013) 1 
 WE ML 0.003 (0.277) 1 
 CORR ML-AP 0.029 (0.082) 0.07 
     Dual-Task Features   
 RMS ML (G/s) -0.001 (0.004) 0.5 
 RMS AP (G/s) -0.007 (0.021) 0.1 
 CFR AP (Hz) -0.023 (0.114) 0.3 
 BND ML (Hz) 0.076 (0.514) 0.4 
 ENTR AP 0.001 (0.015) 0.8 
 WE ML 0.102 (0.393) 0.2 
 CORR ML-AP 0.023 (0.131) 0.4 
fNIRS t-Statistics (n = 33)   
     Left PFC HBO PFC 
HBO -0.201011 (2.54724) 0.71 

     Right PFC HBO -0.271 (2.689) 0.6 
     Left PFC HBR PFC 
HBR 0.162027 (2.9043.960) 0.81 

     Right PFC HBR -0.131 (3.451) 0.8 
* p<0.05 
Abbreviations: SD = standard deviation; ML = medial-lateral; AP = anterior-posterior; RMS = root-mean-square; 
CFR = centroid frequency; BND = bandwidth; ENTR = entropy rate; WE = wavelet entropy; CORR = cross correlation; 
PFC = prefrontal cortex; fNIRS = functional near-infrared spectroscopy; HBO = oxy-hemoglobin; HBR = deoxy-
hemoglobin, GLM = generalized linear model 
 


