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Frequency-based window width optimization for S-transform
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Abstract

The S-transform combines properties of the short-time Fourier (STFT) and wavelet transforms. It preserves the phase
information of a signal as in the STFT, while providing the variable resolution as in the wavelet transform. However, the
S-transform suffers from poor energy concentration for some classes of signals. A modification to the existing S-transform
is proposed in this paper to enhance the energy concentration in the time–frequency domain. An improvement is achieved by
introducing an additional parameter which can be used to optimize the window width. The optimization is performed over
frequency and the proposed modification keeps the frequency marginal of the S-transform. The proposed scheme is tested on
a set of synthetic signals. The results show that the proposed algorithm produces enhanced energy concentration in compari-
son to the standard S-transform. Also, the results show that for various signal types the proposed algorithm achieves higher
signal concentration in comparison to other standard time–frequency transforms, such as, STFT and pseudo Wigner–Ville
distribution (PWVD). Furthermore, it is concluded by numerical study that the proposed algorithm provides more accurate
estimation of the instantaneous frequency than the standard S-transform.
� 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

The time–frequency analysis of a signal depicts varia-
tion of the signal’s spectrum with time. In an ideal case,
the time–frequency representation provides only informa-
tion about the frequency occurring at a given instant without
cross-information about adjacent instants [1,2]. Therefore,
the main objective of time–frequency distribution functions
is to be as close as possible to the ideal time–frequency rep-
resentations, that is, to obtain time-varying spectral density
function with high resolution, and to overcome any inter-
ference if exist [3]. Hence, the energy concentration in the
time–frequency domain is one of its very important and in-
tensively studied aspects in time–frequency analysis [4].
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In recent years, many different algorithms have been
proposed to obtain the time–frequency representations of
a signal. The recently proposed S-transform is a combi-
nation of short-time Fourier (STFT) and wavelet trans-
forms, since it employs a variable window length and the
Fourier kernel [5]. The advantage of S-transform is that
it preserves the phase information of signal, and also pro-
vides a variable resolution similar to the wavelet tilings. In
addition, the S-transform is a linear transform that can be
used as both an analysis and a synthesis tool, which is
not the case with some of the bilinear transforms such as
Wigner–Ville distribution. However, the S-transform suf-
fers from poor energy concentration in some situations.
Especially poor energy concentration is achieved at the
higher frequencies (the terms low and high frequencies
are loosely used, and they describe whether the particu-
lar frequency is close to the highest analyzed frequency
or it is much lower). For example, let us assume that a
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linearly increasing FM signal (i.e. a chirp) is being analyzed.
At the high frequency, the energy concentration around the
instantaneous frequency of the chirp is very poor, since the
S-transform provides excellent time localization at higher
frequencies, but poor frequency localization.

The major contribution of this paper is an optimization of
the window width used in the S-transform through an ad-
ditional parameter in the transform, which will enhance the
energy concentration around the component’s instantaneous
frequency. The optimization is performed for each frequency
resulting in the modified S-transform with preserved fre-
quency marginal property.

The proposed scheme has been tested on a set of synthetic
signals. The time–frequency representations obtained by the
proposed algorithm are compared with those obtained from
the standard S-transform. The results have shown that the
proposed algorithm enhances the energy localization of the
signals. Also, the results show that for some signal classes,
the proposed algorithm is capable of achieving higher con-
centration than other standard techniques, such as, the short-
time Fourier transform and pseudo Wigner–Ville distribution
(PWVD). Furthermore, the results show that the proposed
algorithm is more accurate than the standard S-transform
for the instantaneous frequency estimation. This can be of
significant importance in many applications where precise
energy concentration is desirable, such as communications
and time series analysis.

This paper is organized as follows. In Section 2, a review
of the standard S-transform is given along with the modified
form of the S-transform. Details of the optimization process
for the proposed algorithm are covered in Section 3. Section
4 evaluates the performance of the proposed scheme using
synthetic signals. Numerical study of the proposed transform
as the instantaneous frequency estimator is also given in this
section. Conclusions are drawn in Section 5.

2. Background theory

The standard S-transform of a signal x(t) is given by a
convolution integral as [5]

Sx(t, f ) =
∫ +∞

−∞
x(�)w(t − �, f )e−j2�f � d�

=
∫ +∞

−∞
x(�)

1

�(f )
√

2�
e−(t−�)2/2�(f )2

× e−j2�f � d�. (1)

The advantage of the S-transform over the STFT is that the
standard deviation � is a function of frequency, f, defined as

�(f ) = 1

|f | . (2)

In other words, the window function is a function of time
and frequency. Width of the window is determined by

frequency. It can be seen that the window is wider in the
time domain for lower, and narrower for higher frequencies.
In other words, the window provides good localization in
the frequency domain for low frequencies, while it provides
good localization in the time domain for higher frequencies.
It is clear that the time–frequency atoms for the S-transform
are arranged in the same way as for the wavelet transform.

An important property of the S-transform is that its inte-
gral over time is equal to the Fourier transform:

X(f ) =
∫ +∞

−∞
Sx(t, f ) dt , (3)

where X(f ) is the Fourier transform of the signal, x(t).
This is an important property, since it distinguishes the
S-transform from the wavelet transform [5], and also it rep-
resents a form of the frequency marginal property [6].

The disadvantage of the S-transform is the same assign-
ment of the standard deviation for all signal components at
all frequencies. That is, � is always defined as a reciprocal
of the frequency. Some signals would benefit from differ-
ent value of the standard deviation for the window function.
A simple, but powerful improvement to the S-transform can
be made by defining the standard deviation of the window as

�(f ) = 1

|f |p , (4)

resulting in the modified S-transform given as

S
p
x (t, f ) = |f |p√

2�

∫ +∞

−∞
x(�)e−(t−�)2f 2p/2e−j2�f � d�, (5)

where the new parameter p controls the width of the window.
If an appropriate value of p can be determined for a given
signal, an improved time–frequency localization becomes
possible. It can be shown that the proposed modification of
the S-transform keeps the frequency marginal property:

X(f ) = 1

W(0, f )

∫ +∞

−∞
S

p
x (t, f ) dt , (6)

where W(�, f ) is a Fourier transform (from t to �) of the
window function, w(t, f ).

3. Proposed optimization algorithm

The proposed implementation of the S-transform provides
us with the additional parameter, p, which can be adjusted
to achieve the time–frequency representation of the signal
with improved energy concentration. It is desired to develop
a scheme that can be used to obtain the optimal value of the
parameter p for a given signal. In the time–frequency analy-
sis, the aim of the optimization is to obtain a time–frequency
representation as close as possible to the ideal one, i.e.,
signal components most closely resemble the instantaneous
frequency.
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Therefore, the optimal value of p will be found based on
the variation of the concentration measure proposed in [7].
The measure is designed to minimize the energy concen-
tration for any time–frequency representation based on the
automatic determination of some time–frequency distribu-
tion parameter. In this case, the objective is to minimize the
energy concentration through the parameter p which con-
trols the window width.

The optimization can be performed either with respect
to time or to frequency. To understand the outcome of
either approach, it is critical to understand the marginals
of the S-transform. The time and frequency marginals are
important quantities in time–frequency analysis since they
ensure that the spectral, temporal, and total signal energies
are accurately reflected in the time–frequency domain. They
also assure that global quantities such as mean time, mean
frequency, duration, and bandwidth are correctly given [8].
As shown by (3), the S-transform has well-defined fre-
quency marginal. However, the S-transform does not satisfy
the time-marginal property. This implies that in a case of
a signal with a time-varying amplitude, integrating over
the frequency in the time–frequency domain would destroy
the information about the signal’s amplitude, while inte-
gration over the time preserves information on the spectral
content.1 Therefore, it is a natural choice to perform the
optimization in the frequency domain. In this way, the fre-
quency marginal of the S-transform can be preserved, and
information about the amplitude of spectral components is
not destroyed.

For the above reasons, a scheme for finding the optimal
variation of the parameter based on frequency is given
below. The scheme provides us with the frequency-varying
parameter, p(f ), which is used in the proposed S-transform
modification. Therefore, the algorithm for p(f ) can be
summarized through the following steps:

1. For p selected from the set p ∈ (0, 1], compute
S-transform of the signal, S

p
x (t, f ) according to (5).

2. For each p and a frequency f compute

CM(f, p) = 1∫ +∞
−∞ |Sp

x (t, f )|q dt
, (7)

where q ∈ (0, 0.25].
3. Optimal value of p for the considered frequency f max-

imizes concentration measure CM(f, p)

popt(f ) = arg max
p

[CM(f, p)]. (8)

4. Set the modified S-transform as

Sa
x (t, f ) = S

popt(f )
x (t, f ). (9)

1 We developed a technique for optimization of p for each instant that
requires elaborate normalization strategy. This technique will be reported
elsewhere.

The algorithm specifies that the parameter p should not
exceed 1. The reason is that for p?1 the window function
becomes very narrow in the time domain, and for very high
value of p it approaches the Dirac function. Very narrow
window in the time domain is suitable only for analysis of
the Dirac function itself, or a sum of the Dirac functions.

All time–frequency representations obtained in step 1 sat-
isfy the frequency marginal, and for a given frequency, the
representation, which provides the best localization in the
time–frequency domain, is chosen in the step 2. Parameter
q in step 2 is selected to be within q ∈ (0, 0.25]. Namely,
parameter q = 0 would produce

∫ ∞
−∞ |Sp

x (t, f )|q dt equal to
time interval in which component is detected for given fre-
quency. This time-interval could be caused by actual com-
ponent on this frequency but also by spread of components
from adjacent frequency bins. Then the measure CM(f, p)

would be maximal if influence of adjacent frequency bins is
minimized (value

∫ ∞
−∞ |Sp

x (t, f )|q df minimal). However,
due to the potential presence of noise, sidelobes of the sig-
nal and other effects, it is not a good idea to use q = 0.
Instead, we propose to use a q in the range q ∈ (0, 0.25].
Note that using larger values of q, namely q ≈ 1, could not
produce appropriate results since value

∫ ∞
−∞ |Sp

x (t, f )|q dt

approaches toward constant (toward marginal property) for
each p. Then it would be difficult to highlight any difference
among the time–frequency representations for different p.

In an actual implementation of the algorithm, it might
be beneficial to use some of the available signal processing
tools to reduce the effects of the discrete implementation.
Such tools include zero-padding the signal or windowing
the signal before proceeding to the step 2. This is especially
critical for wideband signals, which might show some
irregular properties unless they are properly windowed [9].
A wide selection of the windows is available in the literature
and usually Gaussian or Kaiser windows are used to smooth
the edges of the finite duration signals, due to the fact that
they have a parameter to control the width of the window.

While discussing the implementation of the proposed
scheme it is important to mention that in our simulations
only one global optimum point for p or q exists and the lo-
cal minimums do not exist. Therefore, a least mean square
based technique could be developed in order to diminish
computation complexity [7].

As a last remark, it should be mentioned that further
improvements to the concentration of the S-transform could
be achieved by introducing a method for the time–frequency
analysis similar to an S-method or its signal adaptive varia-
tion [10], which is developed based on the relation between
the Wigner–Ville distribution and a spectrogram.

4. Simulation results and discussion

In this section, the performance of the proposed algorithm
for the S-transform is examined using a set of synthetic test
signals. The goal is to examine how the proposed algorithm
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Fig. 1. Test signal x1(t): (a) time domain representation; (b) STFT;

(c) PWVD; (d) standard S-transform; (e) S
p(f )
x (t, f ); and (f)

optimal variation of parameter p across the frequencies, p(f ).

performs in comparison to the standard S-transform. Fur-
thermore, a comparison with other standard time–frequency
techniques, such as the STFT and the PWVD is given. In
the actual implementation, the sampling period used is
T = 1/256 s, and the set of p values is selected by
p = {0.01n : n ∈ N and 1�n�100}. For the STFT and the
PWVD, a Gaussian window is used with standard deviations
equal to 0.05 and 0.1, respectively.

Let us begin the performance analysis of the algorithm
with the following signal:

x1(t) = cos(68�t − 20�t2) + cos(2� sin(5�t) + 120�t)

+ cos(168�t + 28�t2), (10)

where 0� t < 1, and the signal does not exist outside the
interval. By examining the time–frequency representations
of the signal, it can be noticed that the STFT is capable of
concentrating the two chirps well, but the concentration of
the sinusoidally modulated component is poor.

The representation obtained by the PWVD contains sig-
nificant cross-terms. The standard S-transform suffers from
the same problem as the wavelet transform, that is, at the
low frequencies it has good frequency resolution, but as the
frequency increases, the frequency resolution deteriorates.
This is evident from Fig. 1(d). With the proposed algorithm
more uniform resolution is obtained at both low and high
frequencies as shown in Fig. 1(e). It is worthwhile to con-
sider the behavior of p(f ), which is shown in Fig. 1(f).
It is apparent that as the frequency increases, the value of p
decreases, which means that the window is becoming wider
in the time domain. A wider window in the time domain
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Fig. 2. Test signal x2(t): (a) time domain representation; (b) STFT;

(c) PWVD; (d) standard S-transform; (e) S
p(f )
x (t, f ); and (f)

optimal variation of parameter p across the frequencies, p(f ).

provides better localization in the frequency domain. There-
fore, this indeed enhances the time–frequency representation
of the signal in comparison to the standard S-transform, and
resulting in better concentrated time–frequency representa-
tion.

In the first example, the signal with linearly increas-
ing/decreasing frequencies along with a sinusoidally mod-
ulated frequency component is examined. It is worthwhile
to examine how the algorithm behaves for a multicompo-
nent signal with the crossing components and parabolic
instantaneous frequency:

x2(t) = cos(144�(t − 0.3)3 + 30�t)

+ cos(128�t − 50�t2), (11)

where 0� t < 1, and the signal does not exist outside the
given interval. The signal is examined again by the STFT, the
PWVD, the standard S-transform and the proposed scheme.

Even though, the representation obtained by the PWVD,
shows that the components are well concentrated in the
time–frequency domain, the presence of the cross-terms
diminishes readability of the representation. The STFT is
capable of concentrating the chirp; however, the concentra-
tion of the parabolic component is very poor, especially, at
the higher frequencies. The standard S-transform provides
higher concentration of the parabolic component than the
STFT, but the concentration of the linear chirp is poor
at the higher frequencies. From Fig. 2(e), it is obvious
that the proposed algorithm for the S-transform is able to
diminish the spectral leakage which is occurring with the
standard S-transform. It also provides good concentration
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Fig. 3. MSE for the instantaneous frequency estimation for
S

p
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of the parabolic component. By examining the behavior of
p(f ) shown in Fig. 2(f), it can be seen that the window
for the proposed algorithm becomes wider in comparison
to the window in standard S-transform, that is significant to
form more concentrated time–frequency representation of
the signal.

So far, it has been shown that the proposed algorithm for
the S-transform is capable of enhancing the energy concen-
tration. Now, it is interesting to examine the behavior of the
proposed algorithm in the presence of noise, and how noise
affects the accuracy of the instantaneous frequency estima-
tion based on the peak values [11] of S

p
x (t, f ) for various

values of p. To examine such behavior the following signal
is used:

x3(t) = A sin(100�t + 4� cos(4�t)), (12)

where 0� t < 1 and A=1. The signal is contaminated with an
additive white Gaussian noise, and the signal-to-noise ratio
(SNR) is given by SNR = 10 log10(A

2/�2
n) with A being a

signal’s amplitude and �2
n being the variance of the noise. To

investigate the behaviour of the proposed algorithm in the
presence of noise, a range of SNR values are used, and the
mean square error (MSE) is evaluated for the instantaneous
frequency estimation of the given sinusoidally modulated
signal. The estimation is performed based on the peaks of
the S

p
x (t, f ) for various values of p, namely, p = 0.1, 0.3,

0.5, 0.7, 1 and adaptive value, p(f ). It is noted that S
p
x (t, f )

for p=1 corresponds to the standard S-transform. The SNR
varies from 0 to 15 dB in a 1 dB step. For each SNR value,
100 realizations are used.

Fig. 3 represents the results of such analysis. The hori-
zontal axis represents the SNR (in decibels), and the vertical
axis represents the MSE for the instantaneous frequency
estimation. The simulation results show that the proposed

algorithm yields a smaller MSE than the standard
S-transform and, therefore, is more accurate in estimating
the instantaneous frequency of the noisy signal. Similar
situation has been observed for other test signals as well.

5. Conclusions

In this paper, a window width optimized algorithm for the
S-transform is developed, that provides enhanced energy
concentration of the signal in the time–frequency domain.
The improvement is performed through an additional
parameter p, which controls the width of window used in
the S-transform. The parameter is determined through the
optimization procedure that maximizes the energy concen-
tration of the time–frequency representation for each fre-
quency bin. The proposed scheme is evaluated numerically
and compared with the standard S-transform by using a set
of synthetic test signals. The results have shown that the
proposed algorithm can significantly enhance the energy
localization of the signals in comparison to the standard
S-transform. Also, it is showed that the proposed algo-
rithm is capable of achieving higher energy concentration
than other standard algorithms, such as, the STFT and the
PWVD. Furthermore, it has been numerically shown that
the proposed algorithm provides more accurate estima-
tion of the instantaneous frequency in comparison to the
standard S-transform.
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Igor Djurović was born in Montene-
gro in 1971. He received B.S., M.S.
and Ph.D. degrees, all in electrical
engineering from the University of
Montenegro, in 1994, 1996 and 2000,
respectively. He is currently an associate
professor at the University of Montene-
gro. During 2002, he was on leave at the
Department of Mechanical and System
Engineering, Kyoto Institute of Tech-
nology, Japan, as a fellow of the Japan

Society for the Promotion of Science. He was on short stays and
was involved in joint research at the AIIA Laboratory, Aristotle
University, Thessaloniki, Greece; Signal Theory Group, Ruhr Uni-
versity, Bochum Germany; ENSIETA, Brest, France; International
Center for Signal Processing, Tampere University of Technology,
Tampere, Finland; and National Aerospace University, Kharkov,
Ukraine. He received the biannual award of the National Academy
of Science and Art of Montenegro as the young scientist with
the best achievements in the technical sciences in Montenegro
from 2000 to 2002. He published over 90 papers in the inter-
national scientific journals and conferences. He contributed to
“Time–frequency signal analysis and processing”, ed. B. Boashash,
Prentice-Hall. His current research interests include application
of virtual instruments, time–frequency analysis based methods for
signal estimation and filtering, fractional Fourier transform appli-
cations, image processing, robust estimation, motion estimation,
and digital watermarking. Dr. Djurović is author of two books and
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