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Improving Non-invasive Aspiration Detection
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Abstract— Aspiration is a serious complication of
swallowing disorders. Adequate detection of aspi-
ration is essential in dysphagia management and
treatment. High-resolution cervical auscultation has
been increasingly considered as a promising nonin-
vasive swallowing screening tool and has inspired
automatic diagnosis with advanced algorithms. The
performance of such algorithms relies heavily on the
amount of training data. However, the practical col-
lection of cervical auscultation signal is an expensive
and time-consuming process because of the clinical
settings and trained experts needed for acquisition
and interpretations. Furthermore, the relatively in-
frequent incidence of severe airway invasion during
swallowing studies constrains the performance of
machine learning models. Here, we produced supple-
mentary training exemplars for desired class by cap-
turing the underlying distribution of original cervical
auscultation signal features using auxiliary classifier
Wasserstein generative adversarial networks. A 10-
fold subject cross-validation was conducted on 2079
sets of 36-dimensional signal features collected from
189 patients undergoing swallowing examinations.
The proposed data augmentation outperforms basic
data sampling, cost-sensitive learning and other gen-

This work was supported by the Eunice Kennedy Shriver
National Institute of Child Health & Human Development
of the National Institutes of Health under Award Number
R01HD092239, while the data was collected under Award Num-
ber R01HD074819.

Kechen Shu and Shitong Mao are with the Department of
Electrical and Computer Engineering, Swanson School of En-
gineering, University of Pittsburgh, Pittsburgh, PA, 15260 USA
(e-mail: kes247@pitt.edu; shm136@pitt.edu).

James L. Coyle is with Department of Communication Sci-
ence and Disorders, School of Health and Rehabilitation Sci-
ences, University of Pittsburgh, PA, 15260, USA, and also with
Department of Otolaryngology, School of Medicine, University of
Pittsburgh, PA, 15260, USA(e-mail: jcoyle@pitt,edu).
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erative models with significant enhancement. This
demonstrates the remarkable potential of proposed
network in improving classification performance us-
ing cervical auscultation signals and paves the way
of developing accurate noninvasive swallowing eval-
uation in dysphagia care.

Index Terms— Aspiration detection, cervical aus-
cultations, data augmentation, deep learning, genera-
tive adversarial networks, swallowing accelerometry,
swallowing vibrations.

I. INTRODUCTION

SWALLOWING is a complex and coordinated bio-
mechanical process that allows safe intake and trans-

portation of substance while eating and drinking [1].
Neurological and other medical conditions or iatrogenic
factors may lead to swallowing disorders also known
as dysphagia [1], [2]. Aspiration, which defines the
incursion of food or liquid into airway, is one of the
most clinically significant symptoms of dysphagia, and
may result in various unobservable effects to mortal
consequences including airway obstruction or severe
aspiration pneumonia [3]–[5]. Aspiration presence and
severity is commonly measured by 8-point Penetration-
Aspiration scale (PAs) that classifies possible observa-
tion of airway protection based on a videofluoroscopic
swallow study (VFSS) [6]. According to its rating rules,
PAs score of 1 represents the complete airway protection
and score of 2 suggests mild, shallow and temporary
airway invasion. PAs of scores of 3 and greater indicates
deeper invasion of the airway and the presence of post-
swallow airway residue [6]. The detailed description of
PAs representations can be found in Appendix.

The VFSS is an x-ray imaging examination for clinical
experts to visualize and evaluate swallowing physiology
and airway protection [5]. However, the VFSS is not
always feasible or desirable to many patients, since it
exposes patients to radiation and is relatively expensive
in both terms of imaging equipment and human resources
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[7], [8]. Recently, high-resolution cervical auscultation
(HRCA) is considered as a promising and alternative
noninvasive swallowing screening tool [9]. The HRCA
signals are collected by attaching a microphone and a
tri-axial accelerometer to anterior neck. Previous studies
have revealed the associations between HRCA charac-
teristics with swallowing kinematic events including hy-
oid bone displacement, laryngeal vestibule opening, and
upper esophageal sphincter opening [10]–[14]. Further
deep learning algorithms established on HRCA signals
have contributed to more systematic and reliable analysis
comparable to human interpretations of VFSS such as
swallow identification, upper esophageal sphincter open-
ing segmentation, hyoid bone tracking, laryngeal closure
duration estimation and automatic detection of aspiration
[15]–[23]. Although the HRCA signals have demon-
strated effectiveness in detecting a variety of swallowing
kinematic events, the capability of identifying unsafe
swallows has not been fully investigated.

One major challenge in developing such advanced
diagnostic models is to collect sufficient HRCA signal
samples accompanied by appropriate interpretations. In
this study, laborious annotations on concurrent VFSS
images by trained human judges were used as ground
truth. However, the high financial and infrastructural re-
quirements constrain the VFSS acquisition therefore pro-
vide an insufficient amount of exemplars of the ground
truth reference data. Moreover, the need of specific
training for VFSS annotations and the limited number
of enrolled patients also leads to HRCA data paucity.
Data augmentation, defined by the process of data over-
sampling by applying certain transformations to current
real data samples, is an efficient technique to improve the
generalization and prevent overfitting of deep learning
models [24], [25]. Common data augmentation in time
domain performs noise injection, temporal permutation,
scaling, and cropping [24]. In feature spaces, manipula-
tions including upsampling, perturbation, interpolation,
and extrapolation also produces additional training sam-
ples. Nonetheless, such approaches may induce unde-
sired distortion and alter the physiological representation
when dealing with HRCA features [26].

Furthermore, the collected HRCA samples showed
strong imbalance with limited occurrences of unsafe
swallows. This class imbalance problem may also affect
the diagnostic performance as most machine learning
methods assumed balanced distribution by assigning
equal misclassification cost for each class [27], [28].
A variety of solutions have been developed to handle
imbalanced samples at both data and algorithm levels
[29]. Straightforward data sampling techniques include
random over-sampling and under-sampling strategies that

enlarges minority class by adding duplicated samples,
and decreases the size of majority class by reducing
samples in random manner respectively [29], [30]. The
synthetic minority over-sampling technique (SMOTE),
which creates synthetic samples by exploring the fea-
tures space, was considered fundamental to other syn-
thetic sampling methods [27], [31]. However, the over-
sampling techniques may cause overfitting, and under-
sampling methods may discard useful information [29],
[32]. Additionally, Cost-sensitive learning imposes dif-
ferent cost for misclassification of positive and negative
instances in algorithm level but the implementation is
not always feasible for all classification algorithms [31],
[32].

Generative adversarial networks (GANs) are strong
candidates for data augmentation and have been increas-
ingly applied to imbalance learning [33]–[35]. GANs’
potential in modeling underlying distribution of data
allows production of infinite amounts of realistic samples
[36]. Besides its convincing performance in synthetic
image generation, recent studies attempted to synthesize
sequential or high-level feature samples for various ap-
plications in medical domain [37]–[39].

In this work, we produced HRCA signal features using
an auxiliary classifier Wasserstein GAN (AC-WGAN)
under the hypothesis that incorporation of synthetic
HRCA features will improve the performance for HRCA
based aspiration detection. HRCA feature data are clas-
sified to either safe(healthy) or unsafe(abnormal) accord-
ing to subjective PAs ratings during VFSS examinations.
To address the issues of imbalanced class distribution and
small sample size, we implement AC-WGAN to generate
more HRCA feature samples for positive class. Addition-
ally, the proposed AC-WGAN based data augmentation
is compared to an ensemble of basic data augmenta-
tion and imbalance data approaches, including random
over-sampling, random under-sampling, SMOTE, cost-
sensitive learning, Wasserstein GAN (WGAN) and con-
ditional WGAN (CWGAN).

II. METHODS

A. Data acquisition and description
This study was under approval of Institutional Review

Board of the University of Pittsburgh under the study
number 19040040 and 19030185. A total number of 189
patients (115 males ages ranged between 23–94, 74 fe-
males ages ranged between 19–89) with suspected neuro-
genic dysphagia participated and provided informed con-
sent. Each participant underwent swallowing assessment
using VFSS conducted by speech language pathologists
(SLPs) in the context of clinical standard rather than
solely for research purposes.
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During the VFSS, subjects were positioned laterally
to a standard x-ray machine (Ultimax system, Toshiba,
Tustin, CA) with a contact microphone (model C 411L,
AKG, Vienna, Austria) and a tri-axial accelerometer
(ADXL 327, Analog Devices, Norwood, Massachusetts)
attached to subjects’ anterior neck as shown in Figure 1.
The accelerometer was attached with surgical tape over
the cricoid cartilage for optimal signal quality [42]. Its
main axes were aligned parallel to the sagittal axis,
longitudinal/vertical axis and frontal/horizontal axis of
the neck. These axes were referred to anterior-posterior
(AP), superior-inferior (SI) and medial-lateral (ML)
directions respectively. The microphone was placed,
slightly below the accelerometer, over the anterolateral
side of larynx to avoid occlusion of swallowing mecha-
nism in the VFSS [43], [44]. The video stream was cap-

Fig. 1. Data collection setup: the video was captured on
the lateral side of subject with microphone (indicated by yel-
low ellipse shape) and tri-axial accelerometer (green rectangle
shape) attaching to the neck. Axes of accelerometer (in red
arrows) align the anterior-posterior (AP), superior-inferior (SI)
and medial-lateral (ML) directions of subject correspondingly.

tured by AccuStream Express HD (Foresight Imaging,
Chelmsford, MA) at 30 frames per second (FPS). The
audio and acceleration signals were band-pass filtered
to 0.1-3000 Hz and amplified by gain of 10 using AC
amplifier (model P55, Grass Technologies, Warwick,
Rhode Island) before sampled to 20kHz via National
Instrument 6210 DAQ. In the final stage, the video and
signal recordings were acquired and synchronized using
Labview Program Signal Express (National Instrument,
Austin, Texas).

B. Data pre-processing and feature representation
Segmentation of concurrent video and signal record-

ings to individual swallows was performed by a frame-
by-frame analysis solely based on VFSS images. A com-
plete swallow begins when the head of bolus reaches the
ramus of mandible and ends when the hyoid returns to its
lowest position after full clearance of bolus from pharynx
[44]. 2079 swallows obtained from VFSS segmentation
were considered in this study.

Segmented HRCA signals were firstly downsampled at
4kHz to overcome undesirable noise due to other physio-
logical events or environmental sources while preserving
most of swallowing-related information according to
previous studies [45]–[47]. Inherent device noise from
both accelerometer and microphone were initially char-
acterized by fitting an autoregressive model to their zero-
input responses. The autoregressive coefficients were
then used to create finite impulse response filters to
remove the device noise [47]. Additional low-frequency
components caused by motion artifacts were eliminated
from acceleration signals using fourth-order least-square
spline models. Lastly, wavelet denoising was applied to
reduce the effect of broadband noise through tenth order
Meyer wavelet decomposition [42], [48].

A set of essential features which have been proven
significant to swallowing pathology were extracted from
preprocessed acceleration and audio signals [44], [46],
[47]. As presented in Table I, these signal features in-
volve analysis in time, frequency, information-theoretic,
and time-frequency domains. In this study, the HRCA
signal of each swallowing recording is composed of 4
channels: 3 vibrations and 1 audio. As we extracted
9 features from each channel, final dataset contains
therefore 36 features.

C. Data labeling
Single segmented swallow videos were analyzed by

trained judges. The presence and severity of aspiration
was rated using the 8-point PAs based on the extent of
airway invasion [6]. The annotations involved in swal-
lowing segmentation and PAs rating maintained excellent
intra-rater and inter-rater reliability by achieving high
interclass correlation coefficients (> 0.99) on a randomly
10% of the selected swallow data. In this study, the
swallows with PAs less or equal to 2 were consid-
ered safe and PAs greater or equal to 3 were defined
as disordered/unsafe swallows. The aspiration detection
was implemented by establishing a binary classification
model to identify safe (negative) and unsafe (positive)
swallows. Unsafe swallows are less frequently observed
than safe swallows according to our dataset. The number
of swallow samples in different PAs is presented in Table
II. Examples of AP acceleration from both categories are
shown in Figure 2.

D. GAN-based data augmentation
The framework of our HRCA data augmentation using

AC-WGAN is illustrated in Figure 3. The synthetic
HRCA features S were obtained by estimating the true
distribution of original feature dataset R using proposed
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TABLE I
FEATURES EXTRACTED ON BOTH VIBRATORY AND ACOUSTIC HRCA SIGNALS.

Domain Feature Definition
Time Standard deviation Variation of the signal around mean value

Skewness Asymmetry of statistical distribution of the signal
Kurtosis Sharpness of the peak of signal amplitude distribution

Information-
theoretic

Lempel-Ziv complexity [49] Regularity of the signal
Entropy rate Randomness of the signal

Frequency peak frequency Frequency that corresponds to the maximal spectral energy
Centroid frequency Frequency that divides the spectrum into two equal parts
Band width Difference between the uppermost and lowermost frequencies of the

signal spectrum
Time-frequency Wavelet entropy [50] Disordered/ordered behavior of the signal

TABLE II
DATA SUMMARY

PAs 1 2 3 4 5 6 7 8
# of samples 1026 675 173 60 30 51 27 37

1701 (safe) 378 (unsafe)
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Fig. 2. HRCA signal examples from safe and unsafe instances

AC-WGAN model. By merging generated HRCA fea-
tures to real ones, data augmented and balanced dataset
S∪R is deployed to train the further aspiration detection
model.

AC-WGAN

Real HRCA
features 

Aspiration
detection
classifier

Synthetic
features

Prediction

Fig. 3. Aspiration detection with AC-WGAN augmented HRCA
data.

1) AC-WGAN: The fundamental structure of GAN con-
sists of two independent components: a generator (de-
noted as G) and a discriminator (denoted as D) [36].
While the D attempts to distinguish real or generated
samples, the G tends to fool the D by capturing the
distribution of real samples (x) thus producing realistic
samples (x̃) from noise input (z). The two networks
are jointly trained to reach convergence. However, the
vanilla GAN is prone to instability and mode collapse

[51]. WGAN then employed Wasserstein divergence
with better convergence and gradient penalty component
was further applied to enforce the Lipschitz constraint
of D in WGAN approach [52], [53].

To introduce the categorical information into synthetic
data generation, Conditional GAN and CWGAN take
supplementary class label (c) into both G and D struc-
tures [40], [54]. In our case, c refers to 0 for safe
swallows and 1 for aspirated swallows.

And to further enforce production of distinguishable
sample from different classes, CWGAN can be modi-
fied by reshaping D to output additional classification
results without feeding the label information to it [41].
Thus, we implement auxiliary decoder(classifier) net-
work embedded in D and constructed AC-WGAN as
shown in Figure 4. In the AC-WGAN model, both label
representation and noisy latent vector are fed into G to
condition the generated samples. The D performs two
tasks: 1. differentiate the generated data from real data;
2. classify both real and fake data into categories. Our
proposed objective function of D and G can be expressed
as follows:

min
θD

L = Ex̃∼Pg ,c∼Pc
[
y|x̃, c

]
− Ex∼Pr,c∼Pc

[
y|x, c

]︸ ︷︷ ︸
Wasserstein loss

+λgp Ex̂∼Px̂,c∼Pc

[(∥∥∥∇x̂|c(y|x̂, c)∥∥∥
2
− 1

)2
]

︸ ︷︷ ︸
gradient penalty

−λac Ex∼Pr,c∼Pc [log( s|x, c )]︸ ︷︷ ︸
auxiliary classification loss

(1)

min
θG

L = −Ex̃∼Pg ,c∼Pc
[
y|x̃, c

]︸ ︷︷ ︸
Wasserstein loss

−λac Ex̃∼Pg ,c∼Pc [log( s|x̃, c )]︸ ︷︷ ︸
auxiliary classification loss

(2)

Where θG and θD represent the trainable weights of G
and D; Px̂ stands for the distribution of sampled inter-
polation between real data distribution Pr and generated
distribution Pg.

In (1), Wasserstein loss and gradient penalty term
are optimized on both real and fake samples, whereas
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the classification loss is optimized solely on real data
samples by maximizing the log-likelihood of correct
class prediction. As for (2), the auxiliary classification
loss, that depends on generated samples, makes G more
sensitive to the label prediction s (as indicated in Fig-
ure 4) and thus drives G to generate category-specified
data samples according to the input condition c.

The constant of gradient penalty λgp is set to 10
as in the original work [53]. The constant of auxiliary
classification loss λac is updated to 30 percent of current
Wasserstein loss of D for each training iteration [55].

Generator

Discriminator
generated
samples

real
samples

class label

noise
vector

fake/real

class
0/1

Auxiliary
decoder

Fig. 4. Structure of AC-WGAN.

2) Implementation setup: Each HRCA sample have 36
dimensions. The outputs of both auxiliary decoder com-
ponent of AC-WGAN (s in Figure 4) and aspiration
classifier model (as illustrated in Figure 3) are proba-
bilities representing either unsafe or safe swallows. G
and D were both neural networks with fully connected
layers. These two networks were constructed in nearly
symmetric way except D divides into two branches
correspond to fake/real identification and unsafe/safe
classification in the output. The design of generator
and discriminator have been studied with different depth
of networks and various number of neurons in each
layer. A final architecture of AC-WGAN generator and
discriminator, as shown in Figure 5, was decided with
optimal Maximum mean discrepancy (MMD) values and
minimized network complexity.

32
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Fig. 5. Network architectures of AC-WGAN (FC stands for fully
connected layers)

The generative network was optimized by RMSprop

optimizer as suggested by the work [53]. The learning
rate was set to 1× 10−4 for both generator and discrim-
inator and the weights of discriminator is updated for 8
times whereas generator is trained for 1 step during each
training iteration.

E. Aspiration detection classifier
To predict aspiration from HRCA features, we imple-

mented several machine learning algorithms including
Support Vector Machine (SVM), K-means, Naive Bayes,
and Artificial Neural Network (ANN) [23]. For SVM,
a radial basis function was used as kernel, in which
the coefficient was set to 1/

(
nfeatures ∗ V ar(x)

)
where

the number of features equals to 36. The K-means was
applied to form 2 centroids for clustering and the Naive
bayes algorithm assumed Gaussian likelihood function.
The ANN was composed of 3 fully connected layers
with 60, 40, and 1 neurons. All layers, except the last
one, were constrained by dropout (0.3 dropout rate), L1
and L2 weight regularization with a regulation values of
1× 10−5 and 1× 10−4 to avoid overfitting. The model
was then trained to optimize binary cross entropy loss
by an Adam optimizer, and the learning rate was set
to 2× 10−4. The training process of the ANN classifier
model was stopped when the improvement of training
loss did not exceed 1× 10−4 over the last 10 epochs.
The hyper-parameter tuning of all the classifiers were
performed according to achieve optimal classification
performance on validation dataset for each data augmen-
tation approaches.

F. Training and testing set
In this study, a total of 2079 swallow samples were

collected, and a 10-fold subject cross-validation was
applied. In detail, the subjects were randomly divided
into 10 groups to include approximately 10% swallow
samples for each group. Each group contains roughly
208 swallowing trials (range 199-233) from 18.9 (range
16-21) different subjects. For each fold of the cross-
validation, One of the 10 groups was used for testing
whereas the rest (approximately 1871 samples) was for
training purpose. This procedure was repeated 10 times
until each group has been treated as validation set for
once. This subject based cross validation avoids intra-
subject dependencies between training/testing sets and
only performs analysis on swallow data from unseen
subjects.

G. Evaluation metrics
1) MMD: The MMD that estimates the difference be-

tween two distributions from two set of samples over
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Kernel Hilbert space has been widely used in GANs
evaluation [39], [56]. The general value of MMD ranges
between zero and one, where zero represents complete
equality between two samples and one correspond to
minimum similarity. The MMD is defined as follow:

MMD2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=1

K
(
xi, xj

)
− 2

mn

n∑
i=1

m∑
j=1

K
(
xi, yj

)
+

1

m(m− 1)

m∑
i=1

m∑
j 6=1

K
(
yi, yj

)
(3)

We used Gaussian RBF kernel expressed by:
K (x1, x2) =

∑k
j=1 exp−αj‖x1 − x2‖

2 Where the
bandwidth α equals the median of pairwise distance
between two set of samples [56], [57].

The MMD was computed during training cycle be-
tween testing samples and generated samples of same
size to evaluate synthesized data quality. We also em-
ployed MMD to compare interclass similarity between
fake samples for measurement of data discriminability.

2) Classification evaluation: The classification perfor-
mance of aspiration detection model is estimated by a
set of metrics: accuracy, sensitivity, specificity, F1 score
and Matthews correlation coefficients (MCC), of which
the mathematical definitions were shown in Equation 4.
Among these metrics, F1 score and MCC are particular
meaningful when imbalanced dataset was considered
[58]. The MCC value ranges from -1 to 1. A value
of -1 corresponds to complete misclassification and +1
signifies perfect predictions [59].

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

Sensitivity =
TP

TP + FN
× 100%

Specificity =
TN

TN + FP
× 100%

F1 score =
TP

TP + 0.5 ∗ (FP + FN)
× 100%

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

Where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative predictions
correspondingly.

H. Experiment baseline

To further investigate the efficacy of AC-WGAN,
we conducted comparative experiments with other ap-
proaches in imbalance learning: random over-sampling,
random under-sampling, SMOTE and cost-sensitive
learning. The data augmentation performance of the

AC-WGAN was further compared to other state-of-the-
art GAN based methods including WGAN and CW-
GAN as described in [54]. Two independent WGANs
were established to generate safe and unsafe samples
respectively while a single CWGAN and AC-WGAN
produced features from both classes. All GAN models
were implemented with similar structures.

III. RESULTS

A. Performance of proposed AC-WGAN

In this section, we performed HRCA feature genera-
tion using proposed AC-WGAN framework. During the
training process of AC-WGAN, the negative critic loss
(negative Wasserstein divergence) and auxiliary classi-
fication loss rapidly converged towards their minimums
(around 0.4 and 1.0 respectively). The MMD between
testing samples and synthetic samples converged to a
small value (around 0) as well. The mean values of train-
ing losses and MMD throughout 10-fold patient cross-
validation were shown in Figure 6, in which the shaded
area refers to the standard deviation. The optimization
process indicates that the additional auxiliary decoder
component did not affect the training stability.

Fig. 6. Negative critic loss, auxiliary classification loss, and
MMD values during AC-WGAN training.

We discovered that the AC-WGAN generated HRCA
feature samples resemble the true underlying distribution
of real features by comparing 200 random synthetic
features with same amount of real ones and as shown
in Figure 7. The synthetic HRCA features demonstrated
diversity and the mode-collapse problem which is a
critical issue in GAN training did not occur in our
experiments. Both sets of samples showed consistency
in median values and most synthetic features exhibited
greater variances from larger interquartile ranges. An
analysis of feature importance were applied on practical
collected HRCA data and AC-WGAN generated samples
using Random Forest algorithm, as shown in Figure 7.
The original features presented relatively similar impor-
tance, while certain features gained more importance
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with AC-WGAN augmented data. These most influential
features correspond to kurtosis and peak frequency of AP
vibration, centroid frequency and peak frequency of SI
vibration and kurtosis of ML acceleration respectively.

To visually examine the characteristics of generated
samples by AC-WGAN, we plotted 200 real and syn-
thetic HRCA features by t-SNE algorithm, as shown
in Figure 8 [60]. The generated features shared similar
distributions with real samples from same classes (Fig-
ure 8b and 8c). Albeit original samples suffered from
overlapping distributions as shown in Figure 8a, the
generated signal features showed significant distinction
from different classes (Figure 8d).

The diversity and representativeness of generated sam-
ples were then further examined by computing MMD
over 200 real and generated samples from safe and
unsafe classes, as shown in Figure 9. WGAN generated
more distinct features from different classes than AC-
WGAN as greater interclass MMD values suggested.
However, compared with WGAN, the intraclass MMD
achieved higher values, indicating that the WGAN gen-
erated features less resembled the real ones. Since safe
and unsafe samples were individually modeled by two
WGANs, only a subset of training data were fed into
each WGAN, which might cause WGAN synthetic data
less representative than conditional GANs. In compar-
ison to CWGAN, synthetic samples generated by AC-
WGAN exhibited more realistic characteristics from
lower intraclass MMD between real and fake data in both
positive and negative classes (filled in green in Figure 9).
In addition, greater interclass MMD between synthetic
safe and unsafe swallows (filled in red) suggested more
distinguishable samples were generated by AC-WGAN.

B. Effect of data augmentation on aspiration
detection

Aspiration detection was carried out by 10-fold pa-
tient cross-validation with various GAN based data aug-
mentation and other basic data sampling and learning
techniques. The classification effectiveness is evaluated
by accuracy, sensitivity, specificity, F1-score and MCC
metrics as shown in Table III. Averaged number of
training data are provided for each experiments. For
GAN based methods, the number of data points were
determined by the optimal classification performances.
Four common types of classifiers: Naive Bayes, K-
means, SVM, and ANN were employed as described in
section II-E. Among the four classifiers, only SVM and
ANN are applicable for cost-sensitive learning.

A set of paired t-test were conducted to compare
classification performance on all classifiers using differ-
ent data sampling and augmentation techniques and the

results were listed in table IV. The testing hypothesis
was that the first-listed method outperforms the second.
According to the table IV, All techniques except AC-
WGAN significantly reduced overall accuracy and speci-
ficity. The sensitivity and F1-score improved remarkably
but the MCC rarely changed in these experiments. AC-
WGAN is the only method that boosted sensitivity, F1-
score and MCC without affecting overall accuracy and
specificity notably.

Among common data imbalance methods, random
over-sampling techniques outperforms the random over-
sampling and SMOTE with greater accuracy, specificity
and MCC despite of the decreased sensitivity. The over-
sampling experiment also led to better accuracy and
specificity compared to cost-sensitive learning on SVM
and ANN models.

The effectiveness of AC-WGAN as an over-sampler
was then compared to the random over-sampler and
other GAN-based methods. AC-WGAN defeats the ran-
dom over-sampling with higher sensitivity, F1-score and
MCC. It also outperforms significantly WGAN in all
metrics and CWGAN in all aspects other than sensitivity.

The statistical analysis was further applied on paired
classification performance before and after the AC-
WGAN augmentation on classifier basis as shown in
last lines in Table IV. The accuracy of Naive Bayes
was reduced while the sensitivity and F1-score had been
boosted by AC-WGAN. K-means resulted in increased
specificity and decreased sensitivity. As for the SVM
and ANN classifiers, significant improvements on sen-
sitivity, F1 score and MCC were discovered. However,
the specificity has been degraded in ANN after the
implementation of AC-WGAN.

IV. DISCUSSION

In this work, we propose the AC-WGAN architec-
ture to conduct HRCA feature augmentation and thus
improved the overall aspiration classification accuracy.
The original HRCA data present limited sample size
and contains much more healthy instances than abnor-
mal ones. This data imbalance issue results in strongly
biased classification outcomes. The AC-WGAN, derived
from CWGAN and AC-GAN, produced class specific
synthetic samples and effectively enlarged training set
for aspiration detection. The auxiliary classification loss
component in AC-WGAN objective function enforced
generation of representative and diverse synthetic data
for different classes. Both generator and discriminator
of AC-WGAN consist of fully connected layers and the
time complexity of these networks are proportional to
number of weights, number of iterations and training
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Fig. 7. Up: Box plots of real(blue) and generated(orange) features which has been previously defined in Table I; Down: Feature
importance analysis using Random Forest before(green) and after(red) AC-WGAN data augmentation
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Fig. 8. t-SNE visualization of real and AC-WGAN generated HRCA features: (a) shows safe and unsafe swallows from the original
real data, (b), (c) compares intra-class samples from real and generated datasets, and (d) presents synthetic samples for different
classes.
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Fig. 9. Average MMD between real and synthetic samples generated by (left): WGAN, (center): CWGAN, and (right): AC-WGAN.
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TABLE III
CLASSIFICATION RESULTS FOR ASPIRATED SWALLOW DETECTION.

Methods None Under-sampling Over-sampling SMOTE Cost-sensitive WGAN CWGAN AC-WGAN
# of data points 1871 680.4 3061.8 1871 1871 4× 104 4× 104 2× 105

Classifier: Naive Bayes
Accuracy (%) 74.47 64.91 71.42 33.97 64.92 67.58 66.38
Sensitivity (%) 12.88 24.79 19.26 67.92 30.26 23.95 39.03
Specificity (%) 85.39 72.34 80.37 26.03 70.80 77.27 74.60
F1-score (%) 12.79 19.70 17.89 26.62 22.38 20.53 22.02
MCC -0.0065 -0.0129 0.0019 -0.0508 0.0158 0.0123 0.0324
Classifier: K-means
Accuracy (%) 70.32 71.66 71.17 69.74 69.89 68.35 72.94
Sensitivity (%) 17.64 15.00 15.36 17.68 18.33 22.25 12.40
Specificity (%) 82.06 83.99 83.40 80.94 81.31 78.60 86.41
F1-score (%) 17.46 15.51 15.72 17.06 17.31 19.85 13.24
MCC 0.0035 -0.0076 -0.0093 -0.0067 -0.0011 0.0128 -0.0009
Classifier: SVM
Accuracy (%) 77.19 53.64 64.22 59.06 61.80 69.67 68.76 75.02
Sensitivity (%) 10.17 44.02 29.72 30.04 33.02 13.32 19.91 21.71
Specificity (%) 93.21 55.67 71.82 65.56 68.17 82.28 78.46 86.84
F1-score (%) 13.13 24.72 22.72 20.63 23.03 13.12 17.76 22.83
MCC 0.0615 0.0315 0.0138 -0.0343 0.0077 -0.0356 -0.0133 0.0938
Classifier: ANN
Accuracy (%) 69.20 51.09 70.15 67.15 69.70 68.91 60.91 71.39
Sensitivity (%) 17.07 43.92 20.87 20.5 18.93 18.59 28.83 32.84
Specificity (%) 80.67 52.13 80.9 77.70 81.00 79.97 67.51 79.78
F1-score (%) 16.46 24.12 19.52 18.04 17.78 17.82 20.31 28.75
MCC -0.0207 -0.0306 0.0157 -0.0137 -0.0005 -0.0079 -0.0318 0.1171

TABLE IV
P VALUES OF PAIRED T-TEST ACROSS 10-FOLD VALIDATIONS BETWEEN DATA SAMPLING METHODS

Comparison Accuracy Sensitivity Specificity F1-score MCC
Under-sampling & None 1 < 0.0001 1 0.0015 0.869
Over-sampling & None 0.9735 0.0094 0.9822 0.0215 0.5802
SMOTE & None 1 < 0.0001 1 0.0018 0.9703
Cost-sensitive & None(SVM, ANN) 0.9992 0.0003 0.9996 0.0021 0.7958
WGAN & None 0.9939 0.0122 0.9929 0.0496 0.7908
CWGAN & None 0.9998 < 0.0001 0.9999 0.0033 0.7608
AC-WGAN & None 0.8284 0.0003 0.9245 0.0043 0.0110
Over-sampling & Under-sampling < 0.0001 1 < 0.0001 0.9874 0.0384
Over-sampling & SMOTE < 0.0001 0.9989 < 0.0001 0.9069 0.0004
Over-sampling(SVM, ANN) & Cost-sensitive 0.0466 0.6293 0.0823 0.3113 0.2368
AC-WGAN & Oversampling 0.0624 0.01644 0.1171 0.0384 < 0.0001
AC-WGAN & WGAN 0.0029 0.0774 0.0393 0.0095 0.0002
AC-WGAN & CWGAN 0.0001 0.4417 0.0393 0.0922 0.0003
AC-WGAN(Naive Bayes) & None(Naive Bayes) 0.9822 0.0496 0.9147 0.0274 0.1729
AC-WGAN(K-means) & None(K-means) 0.0652 0.9538 0.0319 0.9087 0.6586
AC-WGAN(SVM) & None(SVM) 0.1546 0.0003 0.6248 0.0003 0.0006
AC-WGAN(ANN) & None(ANN) 0.9229 0.0021 0.9979 0.0069 0.0485

data size. Therefore, nepoch training epochs of AC-
WGAN has O(nepoch ∗ ndata ∗ (8 ∗ nθD + nθG)) time
complexity, where ndata equals to 2× 105, nθD and
nθG are approximately 12.5k and 13.1k respectively.
Adding more neurons or layers in AC-WGAN, as well as
increasing the number of generated samples into training
set, would remarkably raise the time complexity of the
algorithms without further improvement on detection
performance.

The t-SNE visualizations and MMD evaluations, as
illustrated in Figure 8 and Figure 9, suggest that AC-
WGAN produced more separable and realistic HRCA
samples compared to CWGAN. This implies that en-
couraging discriminability and diversity in GAN-based
algorithms is constructive for representative generated
samples [26], [41].

The effect of all data sampling methods and GAN-
based augmentation experiments was analyzed by per-
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forming aspiration detection on resampled/generated
training data. Our baseline experiments on real dataset
showed insufficient classification outcome due to the im-
balance distribution of the swallowing data [23]. When
the safe data were under-sampled, both SVM and ANN
classifiers showed poor accuracies, which demonstrate
that the aspiration detection are sensitive to limited data
size. The random over-sampling methods resulted in
better classification performance than SMOTE which
may indicate that the linear combination of neighboring
unsafe samples does not represent validated distribution
of HRCA features. Cost sensitive learning had similar
outcome to over-sampling as both methods forced better
prediction on minority class by assigning higher weights
to these samples. Although WGAN and CWGAN over-
sampler succeeded in improving the sensitivity and F1
score for all classifiers, the accuracy and specificity were
significantly degraded and the MCC value remains rarely
increased. This may caused by the less representative
and separable features generated by both models than
AC-WGAN as illustrated by Figure 9.

Overall performance of the four common classi-
fiers have been significantly improved by inducing AC-
WGAN synthesized samples. The AC-WGAN outper-
forms other data sampling methods in almost all the
evaluation metrics. While considering AC-WGAN aug-
mentation influence on each classifier, only Naive Bayes
classifier resulted in significantly decreased accuracy
after data augmentation as shown in Table IV. For K-
means classifier, none of the accuracy, F1 score and
MCC had significantly improved. This suggests that
the associations between augmented multi-dimensional
HRCA signal features could be highly nonlinear and
more sophisticated methods are required. Therefore, both
the ANN and SVM model largely improved the classifi-
cations performances with boosted F1 score and MCC.
Meanwhile, if the classifiers were trained solely on real
data, the hidden complexity of the data may increase
the burden of the classifiers when exploring mapping
functions between inputs and outputs. In contrast, AC-
WGAN helped capturing more underlying pattern of safe
and unsafe feature distributions and leverages classifiers
by enriching prior knowledge from original HRCA fea-
ture statistics.

The proposed AC-WGAN in data augmentation have
proven considerable boost in aspiration detection perfor-
mance. However, more experiments on general image or
signal dataset are needed to validate the model. In current
study, the sensitivity and specificity of aspiration detec-
tion with AC-WGAN data augmentation are not suffi-
cient for practical swallow screening. Since the HRCA
features were selected based on previous statistical anal-

ysis. Further studies would focus on alternative feature
selection using advanced methods such as autoencoder
to achieve better results. Moreover, only dysphagia sus-
pected population was involved in this study, including
more swallowing data from healthy subjects may pro-
duce more generalized samples and better explore the
predictive relation between HRCA signal features and
aspiration. AC-WGAN may also help to develop more
robust predictive models for other swallowing related
classification problems and provide accurate assistance
of noninvasive swallowing assessment.

V. CONCLUSION

In this paper, a WGAN with auxiliary classifier (AC-
WGAN) was proposed to improve the noninvasive as-
piration detection on imbalanced HRCA dataset. The
AC-WGAN is trained by optimizing a combination of
Wasserstein losses and auxiliary classification loss, and
therefore forcing more distinguishable and representative
sample generation. Inducing the AC-WGAN synthetic
samples to training data significantly improves the clas-
sification performance. The ANN-based model trained
on augmented dataset achieved the best aspiration detec-
tion. Our findings further demonstrate HRCA’s potential
in dysphagia assessment and contribute to developing
HRCA diagnosis adjunctive to instrumental swallowing
evaluation.

APPENDIX

A detailed description of 8-point PAs decision is
presented in Table V according to original publication.
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