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LECTURE NOTES

1053-5888/19©2019IEEE

Understanding the Basis of Graph Signal Processing  
via an Intuitive Example-Driven Approach

G raphs are irregular structures that 
naturally account for data integrity; 
however, traditional approaches have 

been established outside signal process-
ing and largely focus on analyzing the 
underlying graphs rather than signals 
on graphs. Given the rapidly increasing 
availability of multisensor and multinode 
measurements, likely recorded on irregu-
lar or ad hoc grids, it would be extremely 
advantageous to analyze such structured 
data as “signals on graphs” and thus ben-
efit from the ability of graphs to incorpo-
rate spatial sensing awareness, physical 
intuition, and sensor importance, togeth-
er with the inherent “local versus global” 
sensor association. The aim of this lec-
ture note is, therefore, to establish a com-
mon language between graph signals that 
are observed in irregular signal domains 
and some of the most fundamental para-
digms in digital signal processing (DSP), 
such as spectral analysis, system transfer 
function, digital filter design, parameter 
estimation, and optimal denoising.

Scope
The move to gather more data from 
our environment, for our applications, 
health, and general well-being, is an 
established fact. The increase in the 
modalities of data acquisition and signal 
sensors, together with the correspond-
ing increase in their structure and the 
complexity of information, has high-
lighted the need for a shift in thinking 

and new analytical frameworks. This 
need becomes even clearer when we 
take into consideration the intermodal-
ity and interlocality attributes and their 
interactions, which effectively call for 
radically new data analytics approach-
es. Such a paradigm shift is provided 
by graph signal theory, a framework 
that goes beyond the standard “vertices, 
links, and their structural properties” 
components of a graph. It is the aim of 
this lecture note to introduce a unifying 
perspective based on a real-world multi-
sensor problem.

This is achieved through a physi-
cally meaningful and intuitive real-world 
example of geographically distributed 
estimation of multisensor temperature 
measurements. A similar spatial mul-
tisensor arrangement has already been 
widely used in signal processing cur-
ricula to introduce minimum variance 
estimators and Kalman filters, and by 
adopting this framework we facilitate a 
seamless integration of graph theory into 
the curriculum of existing DSP courses. 
By bridging the gap between standard 
approaches and graph signal processing, 
we also show that standard methods can 
be thought of as special cases of their 
graph counterparts, evaluated online 
graphs. This article was, therefore, pri-
marily written in response to the urgent 
need to bring graph signal processing into 
the curricula of existing statistical signal 
processing and machine learning courses, 
and this material corresponds to a 2-h lec-
ture that could come at the very end of the 
standard lecture course syllabi. We also 

hope that our approach will not only help 
to demystify graph-theoretic approaches 
for education purposes but will also 
empower practitioners and researchers 
to explore a whole host of otherwise pro-
hibitive modern applications. The sup-
porting material, lecture slides, data, and 
MATLAB code can be found at http://
www.tfsa.ac.me/ln-gsp and http://www 
.commsp.ee.ic.ac.uk/~mandic/DSP 
_ML_Education.htm. <AU: Kindly pro-
vide a valid URL; the last URL appears 
to be broken.> 

Relevance
In classical signal processing, the signal 
domain is determined by equidistant time 
instants or by a set of spatial sensing 
points on a uniform grid. Increasingly, 
however, the actual data sensing domain 
may not even be related to the physical 
dimensions of time and/or space, and 
it typically exhibits various forms of 
irregularity, as, for example, in social or 
web-related networks, where the sensing 
points and their connectivity pertain to 
specific objects or nodes and the ad hoc 
topology of their links. It should be noted 
that even for the data acquired in well-
defined time and space domains, the 
introduction of new relations between 
the signal samples, through graphs, 
may yield new insights into the analysis 
and provide enhanced data processing 
(for example, based on local similar-
ity, through neighborhoods). We there-
fore set out to show that the advantage 
of graphs over classical data domains 
is that graphs account  naturally and 
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 comprehensively for irregular data rela-
tions in the problem definition, together 
with the corresponding data connectiv-
ity in the analysis.

Through a real-world tempera-
ture estimation example, we show that 
graph signal and information process-
ing is particularly well suited to making 
sense from data acquired over irregular 
data domains, which can be achieved, 
for example, by leveraging intuitions 
developed on Euclidean domains, by 
employing analogies with other irregu-
lar domains such as polygon meshes and 
manifolds, or by learning the mutual 
connectivity patterns from the available 
sets of data. In many emerging applica-
tions, for example, big data, this also 
introduces a number of new challenges:

 ■ Basic concepts must be revisited to 
accommodate structured but often 
incomplete information.

 ■ New physically meaningful frame-
works, specifically tailored for hetero-
geneous data sources, are required.

 ■ Tradeoffs between performance and 
numerical requirements are a pre-
requisite when operating in real 
time, especially given often combi-
natorial ways to analyze graphs.
The common language and enhanced 

intuition between the standard approach-
es and their graph counterparts, illu-
minated in this article through the 
relationships between the vertex and 
time domains, and between the corre-
sponding eigenspectrum and frequency 
domains, may be naturally generalized 
to address the aforementioned challenges 
and spur further developments in the 
curricula on statistical signal processing, 
graph signal processing, and big data.

Prerequisites
This lecture note assumes a basic 
knowledge of linear algebra and DSP.

Problem statement and solutions

History of graph-theoretic  
application
Graph theory, as a branch of mathemat-
ics, has existed for almost three centuries. 
The beginning of graph theory appli-
cations in electrical engineering dates 
back to the mid-19th century and the 

 definition of Kirchhoff’s laws. Owing to 
their inherent “spatial awareness,” graph 
models have since become a de facto 
standard for data analytics across the 
science and engineering areas, including 
chemistry, operational research, social 
networks, and computer sciences.

A systematic account of graph theory 
as an optimization tool can be attrib-
uted to the seminal book by Nicos 
Christofides of Imperial College Lon-
don, published in 1975 [1]. Soon after 
graph theory gained prominence in 
general optimization, it was very natural 
to explore its application in signal pro-
cessing and related data analytics areas 
[2]. <AU: Please check whether the 
preceding edited sentence conveys the 
intended meaning.> Indeed, perhaps 
the first lecture course to teach graph 
theory to then emerging communication 
networks and channel coding student 
cohort was introduced by the author 
Anthony Constantinides in the 1970s. 
This helped to establish and formalize 
the connections between general opti-
mization and the topology of a commu-
nication network and has spurred further 
applications in image processing [3].

After a relative lull in the field over 
more than two decades, current devel-
opments in graph theory owe their 
prominence to the emergence of modern 
data sources, such as large-scale sen-
sor and social networks, which inher-
ently provide rich underlying physical, 
social, and geographic structures. These 
require new ways to establish statis-
tical inference, such as through data 
analytics on graphs and within a new, 
fast-maturing field of graph signal pro-
cessing [4]–[10].

An illustrative example
Graph signal processing represents 
quite a general mathematical formal-
ism that, while different from classic 
concepts, does admit the development 
of graph-domain counterparts of well-
established DSP paradigms. It would, 
therefore, be quite valuable to introduce 
such a general concept in an inductive 
and intuitive way, through a simple yet 
general enough and well-understood 
example of a commonly considered 
topic in classical DSP.

To this end, consider a multisensor 
setup, shown in Figure 1, for measuring 
temperature field in a known geographi-
cal region; such a setup is typically used 
in the context of minimum-variance 
estimation and Kalman filters. The tem-
perature sensing locations are chosen 
according to the significance of a partic-
ular geographic area to local users, with 
N 64=  sensing points in total, as shown 
in Figure 1(a). The temperature field is 
denoted by { ( )},x n  and a snapshot of its 
values is given in Figure 1(b). Each such 
measured temperature signal can then 
be mathematically expressed as

 ( ) ( ) ( ),x n s n nf= +  (1)

where ( )ns  is the true temperature that 
would have be obtained in ideal mea-
suring conditions, while the term ( )nf  
comprises the adverse effects of the 
local environment on sensor readings 
or faulty sensor activity and is referred 
to as noise in the sequel. For illustrative 
purposes, the noise ( )nf  was modeled in 
our study as a realization of white, zero-
mean, Gaussian process, with standard 
deviation ,4v =f  that is ( , ),0 16N+f  
which was added to the signal, ( ),s n  to 
yield the signal-to-noise ratio in { ( )}x n  
of . .14 2SNR dB0 =

Remark 1
Classical signal processing requires an 
arrangement of the quintessentially spa-
tial temperature samples in Figure 1(a) 
into a line structure shown in Figure 1(c). 
Obviously, such “lexicographic” order-
ing is not amenable to exploiting the 
spatial information related to the actual 
sensor arrangement, dictated by the 
terrain. For example, this renders clas-
sical analyses of this temperature field 
inadequate (or at best suboptimal), as 
in this case the performance critically 
depends on the chosen sensor ordering 
scheme. This exemplifies that even a 
most routine temperature measurement 
setup requires a more complex estima-
tion structure than the simple linear one 
that corresponds to the classical signal 
processing framework, as in Figure 1(c).

To introduce a “situation-aware” noise 
reduction scheme for the temperature 
field in Figure 1, we proceed to explore 
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a  graph-theoretic framework for this 
class of problems, starting from a local 
signal average operator. In classical 
signal processing, this can be achieved 
through a moving average operator, for 
example, through averaging across the 
neighboring data samples, or equiva-
lently neighboring nodes, as in the 

line graph in Figure 1(c), and for each 
sensing point. Physically, such a local 
neighborhood should indeed include 
geographically close neighboring sens-
ing points, but these should also exhibit 
similar meteorological properties 
defined by the distance, altitude differ-
ence, and other terrain properties. In 

other words, since the sensor network 
in Figure 1 measures a set of related 
temperatures from irregularly spaced 
sensors, an effective estimation strat-
egy should include domain knowledge, 
which it is not possible to achieve with 
standard DSP (line graph).

Problem setup 
Consider the local neighborhoods for 
the sensing points ,n 20=  29, 37, and 
41, shown in Figure 2(a). The cumula-
tive temperature for each sensing point 
is then given by

( ) ( ),y n mx
at and around m n

= /

so that the local average temperature for 
a sensing point n  may be easily obtained 
by dividing the cumulative temperature, 

( ),y n  by the number of sensing points 
involved. For example, for the sensing 
points n 20=  and ,n 37=  presented 
in Figure 2(a), the “domain knowledge 
aware” local estimation takes the form

( ) ( ) ( ) ( ) ( )y x x x x20 20 19 22 23= + + +

 (2)

( ) ( ) ( ) ( )

( ) ( ) .

y x x x

x x

37 37 32 33

35 61

= + +

+ +
 

(3)

For convenience, the full set of relations 
among the sensing points can now be 
rearranged into a matrix form, to give

 ,y x Ax= +  (4)

where the matrix A indicates the connec-
tivity structure of the neighboring sensing 
locations that should be involved in the 
calculation for each estimate, ( ).y n  The 
matrix A is therefore referred to as the 
connectivity or adjacency matrix of a 
graph. Its elements are either 1 (if the 
corresponding vertices are related) or 0 (if 
they are not related). Figure 2(b) shows the 
sensing locations with the corresponding 
connectivity patterns for the temperature 
estimation scenario in Figure 2(a). From 
(2) we can observe, for example, that 
the 20th row of the adjacency matrix A  
will have all zero elements, except for 

,A 1,20 19=  ,A 1,20 22=  and A 1,20 23=  
(see the supplementary materials in 
IEEE Xplore for more information).
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FIGURE 1. An illustration of temperature sensing as a classical signal processing problem. (a) A map 
of sensing locations in a geographic region along the Adriatic Sea (Montenegro). (b) A graph of 
the temperatures measured at N 64=  sensing locations. In standard signal processing, the spatial 
sensor index is used for the horizontal axis and serves as the signal domain. (c) This domain can 
also be interpreted as a directed line graph, but lacks physical intuition, as for example, sensor 37 
(mountains) is followed by sensor 38 (coast), with a drastic difference in temperature. <AU: Please 
confirm whether the updated figure caption is acceptable.> 
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This simple real-world example can 
be interpreted within the graph signal 
processing framework as follows:

 ■ The sensing points where the signal 
is measured are designated as the 
graph vertices (see Figure 1).

 ■ The vertex-to-vertex lines that indi-
cate connectivity among the sensing 
points are called the graph edges.

 ■ The vertices and edges form a graph, 
as in Figure 2(b), a new and very 
structurally rich signal domain.

 ■ The graph, rather than a standard 
vector of sensing points, is then used 
for analyzing and processing data, as 
it is equipped with spatial and physi-
cal awareness.

 ■ The measured temperatures are now 
interpreted as signal samples on a 
graph, as shown in Figure 3.

 ■ Similar to traditional signal process-
ing, this new graph signal may have 
many realizations on the same graph 
and may include noise, thus paving 
the way for statistical approaches.

 ■ Through relation (4), we have there-
fore introduced a simple system for 
graph signals that performs physi-
cally and spatially aware signal 
averaging (a linear first-order system 
for a graph signal).
To emphasize our trust in a particu-

lar sensor and to model mutual sensor 
relevance, a weighting scheme may be 
imposed on the edges (connectivity) 
between the sensing points, in the form

 ( ) ( ) ( ).y n x n W x mnm
m n

= +
!

/  (5)

The weight Wnm  indicates the strength 
of the coupling between signal values at 
the sensing points n  and m; it has the 
value W 0nm=  if the points n  and m  are 
not related or if .n m=  We have now 
arrived at a weighted graph, whereby 
each edge has an associated weight, 

,Wnm  which adds “mutual sensor rele-
vance” information to the already estab-
lished spatial awareness modeled by the 
edges. This equips graph signal models 
with additional flexibility. In our exam-
ple, a matrix form of a weighted cumu-
lative graph signal now becomes

 .y x Wx= +  (6)
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FIGURE 2. A temperature estimation setup as a domain-aware graph signal processing problem. 
(a) The local neighborhoods for the sensing points ,n 20=  29, 37, and 41. These neighborhoods 
are chosen using “domain knowledge,” dictated by local terrain and by taking into account the 
distance and altitude of sensors. This allows for the neighboring sensors for each of these sens-
ing locations (vertices) to be chosen in a physically meaningful way, with their relation indicated 
by the connectivity lines, called edges. (b) The local neighborhoods for all sensing vertices from 
Figure 1, presented in a graph form. 
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To produce unbiased estimates, instead 
of the cumulative sums in (4) and (5), 
the weighting coefficients within the 
estimate for each ( )y n  should sum up to 
unity. This may be achieved through a 
normalized form of (6), given by

 ( ),
2
1y x D Wx1= + -  (7)

where the elements of the diagonal 
normalization matrix, ,D  called the 
degree matrix, are /D Wmnn nm=  while 
the term D W1-  is referred to as a ran-
dom walk or diffusion weight matrix. 
When this simple normalized first-
order system is employed to filter the 
original noisy signal from Figure 3, 
the .  20 2SNR dB=  was achieved—an 
improvement of 6 dB over the original 
signal-to-noise ratio, .14SNR 2 dB.0 =

Another important operator for 
graph signal processing is the graph 
Laplacian, ,L  which is defined as

.L D W= -

Remark 2
A graph is fully specified by the set of 
its vertices and their connectivity scheme 
(designated by edges). The edges may be 
defined by the adjacency matrix, ,A  with 

,{ },A 0 1mn !  for unweighted graphs or 
by the “connectivity strength” matrix, 
referred to as the weight matrix,  ,W  
with ,W Rmn ! +  for weighted graphs. 
The degree matrix, ,D  and the Laplacian 
matrix, ,L  with ,L Rmn !  are defined 
using the adjacency/weight matrix. When 
the relations between all pairs of vertices 
are mutually symmetric, then all the 
matrices involved are also symmetric, 
and such graphs are called undirected. If 
that is not the case, then the adjacency/
weight matrix is not symmetric, and such 
graphs are called directed graphs.

The previously introduced graph 
framework is quite general and admits 
application to many different scenarios. 
For example, when performing an opin-
ion poll within a social network, the 
members of that social network are treat-
ed as vertices (data acquisition points), 
while their friendship relations are rep-
resented by the edges that model graph 
connectivity, with the member attributes 
playing the role of graph signal values.

Remark 3
The definition of an appropriate graph 
structure is a prerequisite for physi-
cally meaningful and computationally 
efficient graph signal processing appli-
cations. Three important classes of 

problems, regarding the definition of the 
graph topology, are described in “Graph 
Topology (Edges and Weights).” In the 
following, we demonstrate how this 
simple and intuitive concept provides 
a natural and straightforward platform 
to introduce the graph counterparts of 
several fundamental signal processing 
algorithms.

System for graph signals
In classical signal processing, a system 
is an operator that transforms an input 
signal into another (output) signal. The 
purpose of this section is to provide a 
definition of a system that operates over 
graph signals. Our focus will be on a 
subclass of systems called graph shift 
invariant systems, also referred to by 
some authors as simply graph filters. 
As illustrated in the following pages, 
this class of systems accounts for the 
topology of the graph where the signals 
reside, while maintaining analytical and 
computational tractability.

Signal shift on a graph
The signal shift operator (unit time 
delay) is the linchpin in discrete-time 
signal processing, but its definition 
on graphs is not so obvious due to the 
rich underlying connectivity structure. 
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FIGURE 3. The move from a multisensor measurement to a graph signal. (a) The temperature field is represented on a graph that combines spatially 
unaware measurements from Figure 1(b) and the physically relevant graph topology from Figure 2(b). (b) The graph signal intensity may also be desig-
nated by the vertex color, as in the right half of the panel. 
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 Topologically, the signal shift on a graph 
can be viewed as the movement of a sig-
nal sample from the considered vertex 
along all edges connected to this vertex. 
The (backward) shift operator on a graph 
can then be compactly defined using the 
graph adjacency matrix as .x Axshifted=

To draw distinction between the stan-
dard shift and the graph shift operator, 
consider the line graph in Figure 1(c) 
and the spatially aware graph in Fig-
ure 2, and assume that the input signal 
is a pulse that occurs only at the sen-
sor ,n 29=  that is, ( ) ( ).x nn 29d= -  

The shifted signal in classical sig-
nal processing [line graph in Figure 
1(c)] will be ( ) ( )x nn 28–shifted d=  and 
can be considered as a movement of 
the delta pulse along the line graph 
from vertex n  to vertex ( ).n 1-  The 
same principle can be applied to the 

While in classical graph theory, the graphs are typically 
given (e.g., in various computer, social, road, transporta-
tion, and power networks), in graph signal processing 
oftentimes the first step is to employ background knowl-
edge of signal-generating mechanisms to define the graph 
as a signal domain. This poses a number of challenges; 
e.g., while the data sensing points (graph vertices) are usu-
ally well defined in advance, their connectivity (graph 
edges) is often not available. In other words, the data 
domain definition within the graph signal paradigm repre-
sents a part of the problem itself and has to be determined 
based on the properties of the sensing positions or features 
of the acquired set of data. All in all, the definition of an 
appropriate graph structure is a prerequisite for physically 
meaningful and computationally efficient graph signal pro-
cessing applications.

Three important classes of problems regarding the defini-
tion of graph edges are as follows:
• Geometry of the vertex positions: The distances 

between vertex positions play a crucial role in establish-
ing relations among the sensed data. In many physical 
processes, both the existence of edges and their associ-
ated connecting weights are defined based on vertex 
distances. To this end, an exponential function of the 

Euclidean distance between vertices, ,rmn  may be used, 
where for a given distance threshold, ,x

or if ,W e W e r/ /
mn

r
mn

r
mn

mn mn
2

1 x= =a a- -

and W 0mn=  for .rmn $ x  This form has been used in the 
graph in Figure 2, whereby the altitude difference, ,hmn  
was accounted for as .W e e/ /

mn
r hmn mn= a b- -

• Physically well-defined relations among the sensing 
positions: Examples include electric circuits, linear 
heat transfer systems, spring-mass systems, and vari-
ous forms of networks such as social, computer, or 
power networks. In these cases, the edge weights are 
given as a part of problem definition.

• Data similarity dictates graph topology: This scenario is the 
most common in image and biomedical signal processing 
(see “Graph Topology Based on Signal Similarity: An 
Image Processing Example”). Various approaches and met-
rics can be used to define data similarity, including the cor-
relation matrix between the signals at various vertices or the 
corresponding inverse covariance (precision) matrix, com-
bined with signal smoothness and edge sparsity conditions.

Learning a graph (its edges) based on the set of the avail-
able data is an interesting and currently extensively studied 
research area.

Graph Topology (Edges and Weights)

(a) (b)
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FIGURE 4. A shift operator on a graph. (a) A single-pulse graph signal, ,x  located at the vertex ,n 29=  and given by ( ) ( ).x n n 29d= -   
(b) The graph shifted version of ,x  given by .x xAshifted=  The graph shift operator is demonstrated on the northeast part of the graph from  
Figure 3, around the vertex .n 29=  
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graph domain in Figure  2(a), whereby 
the delta pulse from vertex n 29=  is 
moved to all its connected vertices, 
to obtain the shifted graph signal, 

( ) ( ) ( )nx n n27 28– –shifted d d= + +  
( ) ( ),n n51 59– –d d+  as shown in 

 Figure 4.
If the values of the shifted signal are 

also scaled by the weighting coefficients 
of the corresponding edges, then the 
shifted signal is given by .x xWshifted=  
Observe that the Laplacian operator 
applied on a signal, ,Lx  can also be con-
sidered as a graph shift operator, since 
it is a combination of the scaled original 
signal, ,Dx  and its weighted shifted ver-
sion, ,xW  that is, – .Lx Dx Wx=  In 
the sequel, we will adopt the symbol S 
to denote a general shift operator on a 
graph, which yields a graph shifted sig-
nal .x xSshifted=

Remark 4
The standard shift operator, ( )x n =  

( ),x n 1-  is a “one-to-one” mapping, while 
the graph shift operator, ,x Sxshifted=  
is a “one-to-many” mapping, which 
accounts for the underlying physics of 
the sensing process (as in our example), 
not possible to achieve with standard 
DSP. Moreover, by its very nature, the 
graph shift also allows us to incorporate 
a contextual relation between the ver-
tices within an irregular grid through 
the weight matrix .W  Notice that the 
graph shift operator does not satisfy 
the isometry property, since the ener-
gy of the shifted signal is not the same 
as the energy of the original signal.

System for graph signals
In analogy with the pivotal role of time 
shift in standard system theory, a system 
for graph signals can be implemented as a 
linear combination of a graph signal and 
its graph shifted versions. Here, the notion 
of a system is used in its classical sense, 
as a set of physical rules (an algorithm) 
that transforms an input graph signal into 
another (output) graph signal. The output 
graph signal can then be written as

,

h h h

h

y S x S x S x

S x

M
M

m
m

M
m

0
0

1
1

1
1

0

1

g= + + +

=

-
-

=

-

/ (8)

where, by definition ,S I0=  while ,h0  
,h1  ,f  hM 1–  are the system coefficients 

(see the section “Spectral Domain 
Graph Filter Design”).

Remark 5
Common choices for the graph shift oper-
ator are 1) adjacency matrix, ,S A=  and 
2) graph Laplacian, .S L=  Normalized 
versions of the adjacency matrix, graph 
Laplacian, ,S D LD1/2 1/2= - -  and ran-
dom walk (diffusion) matrix, ,S D W1= -  
can also be used.

Notice that for the directed and 
unweighted line graph in Figure 1(c), the 
system for graph signals in (8) reduces to 
the well-known standard finite impulse 
response filter, given by

 
( ) ( ) ( )

( ).

y n h x n h x n

h x n M

1

1M

0 1

1

g= + - +

+ - +-  (9)

Remark 6
The previously established link bet-
ween the classical transfer function 
of a physical system and its graph-the-
oretic counterpart may serve to promote 
new algorithmic approaches that stem 
from signal processing into many appli-
cation scenarios that may be related to 
graphs.

Remark 7
A system defined based on the graph 
Laplacian, ,L  is obtained from (8) by 
replacing S L=  and allows us to pro-
duce an unbiased estimate of a constant, 

,c  whereby if x c=  then ,y c=  since 
by the definition of the graph Laplacian, 

0.Lc =  Hence, a simple first-order sys-
tem based on the graph Laplacian can be 
written as

 hy x Lx1= +  (10)

and is amenable to being used for efficient 
low-pass graph filtering (see “Smooth-
ness and Filtering on a Graph”).

Remark 8
A system for graph signals is conve-
niently defined by the graph transfer 
function, ( ),H S  as

 ( ) .Hy S x=  (11)

Properties of a system for  
graph signals
Following the aforementioned discus-
sion, it is now possible to define the 
properties of systems for graph signals. 
From (8)–(11), the system for graph sig-
nals is said to be as follows:

 ■ Linear, if

 ( ) ( ) .H a a a aS x x y y1 1 2 2 1 1 2 2+ = +

 ■ Shift invariant, if

( ) ( ) ( ) .( )H HS Sx S S x=

Remark 9
A system for graph signals, defined as in 
(8), in the form

( )H h hhS S S Ss
M

0
0

1 1
1 1g= + + + -

-

 (12)

is linear and shift invariant, since the 
matrix multiplication of the square shift 
matrices is associative ( ) ( )( )S SS SS S= , 
that is, .SS S Sm m=

Graph Fourier transform
While classic spectral analysis is per-
formed in the Fourier domain, spectral 
representations of graph signals employ 
the eigenspectrum (or simply “spec-
trum” hereafter) of the graph shift oper-
ator, ,S  given by

,S U U 1K= -

where U  is an orthonormal matrix of 
the eigenvectors, ,uk  in its columns, 
and K  is a diagonal matrix of the cor-
responding eigenvalues, .km

As in the majority of works in the 
literature dealing with the analysis of 
the frequency content of graph signals, 
here we will use S L=  in numerical 
examples, while S A=  is also used in 
illustrative examples, especially when 
relating graph signal processing to clas-
sical signal processing. The eigenvec-
tors of graph Laplacian, ,L  may then 
be used for the spectral-based clustering 
of graph vertices, as shown in “Vertex 
Clustering.”

The graph Fourier transform (GFT), 
,X  of a graph signal, ,x  is then defined as

 .X U x1= -  (13)
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The quadratic form of a graph signal is 
given by

( ( ) ( ))E W x n x m
2
1x Lxx

T
nm

m

N

n

N

1

2

1
= = -

==

//

and can be used to define signal 
smoothness, since small values of the 
squared local deviation, ( ( ) ( )) ,x n x m 2-  
correspond to a smooth, slow-varying 
signal. For a constant signal, ,x c=  we 
therefore have .E 0x =

Physically, the minimum of x LxT  
implies the smoothest possible signal, and 
to arrive at this solution we may employ 
steepest descent. Then, the signal value at 
an iteration p  is adjusted in the opposite 
direction of the gradient, toward the mini-
mum of x Lx.T  The gradient of this qua-
dratic form is / ,E 2x Lxx

T2 2 =  which 
yields the iterative procedure

( ) .x x Lx I L xp p p p1 a a= - = -+

Notice that the signal xp 1+  can be con-
sidered as an output of the first-order sys-
tem in (11), with ,h1 a=-  and this 
relation can be used for simple and effi-
cient filtering of graph signals.

Since the minimum of the quadratic 
form x LxT  corresponds to a constant 
signal, to avoid obtaining only a  constant 
steady state (that is, to also account for  
the slow-varying part of the graph signal), 
the aforementioned iteration process  
can be used in alternation with 

( ) .x I L xp p2 1b= ++ +  A compact form of 
these two iterative processes is known as 
Taubin’s a b-  algorithm and is given by

 
( ) ( ) .x I L I L xp p2 b a= + -+  (S1)

For appropriate values of a  and ,b  
this system can give a good and very 
simple approximation of a low-pass 
graph filter with transfer function  

( ) ( ( )H 1k km b a m= + - -  ) ,k
P2abm  and in 

P  iterations, where k  denotes the spectral index (see the 
section “Spectral Domain Graph Filter Design”).

In our experiment, the original noisy signal from Figure 
3 was filtered using Taubin’s algorithm, with .0 2a=  and 

. .0 1b=  After 50 iterations, the signal-to-noise ratio 

improved from the original .14 2SNR dB0 =  to 26.8 dB 
(see Figure S1). <AU: Kindly check whether the citation 
of Figure S1 is appropriate.> With these parameters, the 
transfer function, ( ),H km  retained seven out of 64 spec-
tral components in the signal (with an attenuation lower 
than 3 dB).

Smoothness and Filtering on a Graph
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FIGURE S1. An illustration of low-pass filtering on a graph. (a) The original noisy signal. (b) The 
filtered signal. The graph signal intensity is designated by the vertex color.
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The GFT domain is referred to 
as the graph spectral domain, since 
the domain for the GFT, X  (with ele-
ments commonly denoted by ( )X k  
or ( )),X km  is the graph spectrum, 

, , , , .k N1 2k fm =

Physically, since ,U UT1 =-  the ele-
ment ( )X k  of a GFT, ,X  represents a 
projection of the graph signal, ,x  onto 
the kth eigenvector, ,u Uk !  that is

 ( ) ( ) ( ).X k x n u n
n

N

k
1

=
=

/  (14)

The inverse GFT is then straightfor-
wardly obtained as

 x UX=  (15)

or

 ( ) ( ) ( ) .x n X k u n
k

N

k
1

=
=

/  (16)

Remark 10
In analogy to the classical Fourier trans-
form where the signal is projected onto a set 
of harmonic orthogonal bases, ,X U x1= -  

where U is the matrix of harmonic bases, 
uk=  [ , , , ] / ,e e N1 / ( ) /j k N j N k N T2 2 1fr r -  
the GFT can be understood as a signal 
decomposition onto the set of eigenvec-
tors of the graph Laplacian (or the adja-
cency matrix) that serve as orthonormal 
basis functions. In the case of a circular 
graph, the GFT reduces to the standard 
discrete Fourier transform (DFT). For this 
reason, the transform in (14) is referred to 
as the GFT.

Classic spectral analysis can thus be 
considered as a special case of graph sig-

The term vertex clustering here refers to the task of identify-
ing and arranging the vertices of a graph into nonoverlap-
ping vertex subsets, with data in each subset expected to 
exhibit relative similarity in some sense. One efficient 
approach to vertex clustering is based on spectral graph 
analysis. For a graph with N  vertices, the orthogonal 
eigenvectors of its Laplacian build an N-dimensional 
space, called the spectral space. The elements ( )nuk  of the 
eigenvector ,uk  ,k 1=  2, …, ,N  can then be assigned to 
vertices ,n  ,n 1=  2,…, N  to form an N-dimensional spec-
tral vector ( ) ( ), ,[ ( ), ].u n u nu nq N21n f=  The elements of the 
first eigenvector, ,u1  of the graph Laplacian are constant 
and are omitted, since they do not convey any spectral dif-
ference to the graph vertices.

For the purpose of vertex clustering, the original 
N-dimensional spectral vector space may be reduced to a 
new L-dimensional spectral space ( ),L N1  where the spec-
tral vectors,

[ ( ), ( ), , ( )],u n u n u nqn L2 3 1f= +

are used to define the spectral similarity between any two 
vertices, n and ,m  as .q qn m 2< <-  Vertex clustering is then 
performed by grouping spectrally similar vertices.

The simplest (and most widely used) case is when only 
one eigenvector, ,u2  is used for spectral clustering, where-
by the order of vertices in the sorted u2 corresponds to its 
smoothest representation. This procedure can be used for 
ordering the vertices in graphs, even if we desire to per-
form any form of classical presentation or processing with 
vertices on a line graph, as in Figure 1(c).

The spectral vector, ,qn  either can be used to designate a 
position of a vertex in a new low L-dimensional space, or it 
can be used for coloring of the vertices at their original posi-
tions. For the graph from Figure 2, such coloring was per-
fo rmed us ing the  spec t ra l  vec tor  e lemen ts 

[ ( ), ( ), ( )]u n u n u nq 2 3 4n=  as color coordinates for the vertex n  

(see Figure S2). Similar colors indicate high spectral similarity. 
<AU: Kindly check whether the citation of Figure S2 is appro-
priate.> 

Note that vertex clustering is a signal-independent opera-
tion. It just roughly indicates the expected relation between 
sensor data values on the considered graph and suggests 
that data processing operations (including processing of 
the signal from Figure 3) will be predominantly localized 
within these clusters.

Formally, the so-achieved reduction in spectral vertex 
dimensionality, from the original N  eigenvectors to L  eigen-
vectors with lowest variations (with the smallest smoothness 
index ),u Luk

T
k km=  corresponds to low-pass filtering in 

graph signal processing, whereby a signal with N  spectral 
components is projected onto a reduced spectral space 
with L  slowest-varying spectral components, within a given 
set of basis functions (cf. truncated Fourier representation).

Vertex Clustering

FIGURE S2. The vertices in the graph from Figure 2 have been colored 
using the spectral vectors [ ( ), ( ), ( )]u n u n u nqn 2 3 4=  as red, green, blue 
color coordinates.
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nal spectral analysis, with the adjacency 
matrix defined on an unweighted circu-
lar directed graph (a line graph with the 
connected last and first vertex), where 
uk=  [ , , , ] / .e e N1 / ( ) /j k N j N k N T2 2 1fr r -  
This becomes obvious upon recogniz-
ing that the eigenvalues of a directed 
unweighted circular graph, ,e /j k N

k
2m = r  

are easily obtained as a solution of 
the eigenvalue/eigenvector relation 

.Au uk k km=  For a vertex ,n  this rela-
tion is of the form ( ) ( ) .u n u n1–k k km=  
The solutions of this difference equa-
tion are the elements of the previously 
discussed eigenvector, ( ) ,u n e /

k
j nk N2= r  

and the corresponding eigenvalues, 
.e /

k
j k N2m = r-  It can be shown that the 

eigenvectors of the graph Laplacian of a 
circular graph are real-valued harmonic 
functions, whose combinations can pro-
duce the standard complex-valued DFT 
basis functions, albeit in an indirect 
way. The standard signal representation 
in Figure 1(b), therefore, corresponds to 
a signal whose domain is a line graph.

As is common in signal process-
ing, for our example in Figure 1 and (1) 
the temperature values were generated 
through a linear combination of several 
graph Laplacian eigenvectors (serving as 
basis functions) in the form 160x u1= +   

( ),n16 8 40 16 24u u u u u2 3 4 5 6 f- - + - +   
where the random Gaussian noise, 

( ),nf  had standard deviation ,4v =f  
to yield the signal-to-noise ratio of 

.  .14 2SNR dB0 =

Spectral domain of a system for 
graph signals
Consider a system for graph signals, as 
in (8), defined by a general shift opera-
tor on a graph ,S  given by

 .hy S xm
m

M
m

0

1

=
=

-

/  (17)

Upon employing the eigendecomposi-
tion of the shift operator, ,S U U 1K= -  
we arrive at

( ) ,h Hy U U x U U xm
m

M
m

0

1
1 1K K= =

=

-
- -/

 (18)

where

 ( )H hm
m

M
m

0

1

K K=
=

-

/  (19)

is the transfer function of the system for 
graph signals.

From (18), ,( )U y U xH1 1K=- -  or in 
terms of the GFT of the input and output 
signal

 ( ) .Y XH K=  (20)

The classic spectral transfer function 
for (9) is then obtained by using the adja-
cency matrix of an unweighted directed 
circular graph, whose eigenvalues are 

.e /
k

j k N2m = r-

Spectral domain graph filter design
A system for graph signals that is 
designed to modify spectral content of 
graph signals in a desired way shall be 
referred to as a graph filter. Consider a 
graph filter with a desired transfer func-
tion, ( ) .G K  As in classical signal pro-
cessing, a filter with this transfer function 
can be implemented either in the spectral 
domain or in the vertex domain.

The spectral domain implementation 
is straightforward and can be performed 
in the following three steps:

 ■ Calculate the GFT of the input graph 
signal, ,x  in the form .X U x1= -

 ■ Multiply the GFT of x  with the 
transfer function, ( ),G K  to obtain 

( )G .Y XK=

 ■ Calculate the output graph signal as the 
inverse GFT of ,Y  to yield .y UY=

Notice that this procedure may be 
computationally very demanding for 

large graphs, where it may be easier to 
implement the desired filter (or its close 
approximation) in the vertex domain, in 
analogy to the time domain in the classi-
cal approach. In other words, we have to 
find the coefficients, , , ,h h hM0 1 1–f  in 
(8), such that their spectral representation, 

( ),H K  is equal (or at least as close as pos-
sible) to the desired graph filter ( ) .G K

The previously mentioned condi tion 
that the transfer function of the vertex 
domain system for graph signals in (19), 
given by ( )H h hk k0 1

1 gm m= + + + 
,hM k

M
1

1m-
-  should be equal to the desired 

transfer function, ,( )G km  for each spec-
tral index, ,k  leads to a system of linear 
equations

( )

( )

( )

h h h G

h h h G

h h h G

M
M

N M N
M

N

M
M

0 1 1
1

1 1
1

1

0 1
1

1
1

0 1 2
1

1 2
1

2

g

g
h

g

m m m

m m m

m m m

+ + + =

+ + + =

+ + + =

-
-

-
-

-
-

 (21)

of which the matrix form is given by

 ,V h g=m  (22)

where Vm  is a Vandermonde matrix 
formed of the eigenvalues, ,km  while 

[ , , , ]h h hh M
T

0 1 1f= -  is the vector of 
system coefficients that we wish to esti-
mate, and

[ ( ), ( ), , ( )]

( ( )) .

G G G

Gdiag

g N
T

1 2 fm m m

K

=

=

Consider the following cases.
1) All the eigenvalues of S are distinct:

a) For ,M N=  the solution is unique.
b)  For M N1  (overdetermined system), the least squares solution is 

obtained.
2) Some of the eigenvalues are of a degree higher than one, the system re-

duces to NNm1  linear equations.
a)  For N NMm1 #  (underdetermined system), ( )M Nm-  filter coefficients 

are free variables, and an infinite number of equivalent filters is obtained.
b) For ,M Nm=  the solution is unique.
c)  For M Nm1  (overdetermined system), the least squares solution is 

obtained.
3) Any filter of an order M Nm2  has a unique equivalent filter whose order 

is at most .Nm  Such equivalence can be obtained by setting the free vari-
ables to zero, h 0i=  for ,Ni m=  , , .N N1 1m f+ -

Comments on the Graph Filter in (22)
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In practice, the system order 
,M  or equivalently the order of 

the graph filter, is typically sig-
nificantly lower than the number 
of equations, ,N  in (21). For such 
an overdetermined case, the least-
squares approximation of h  is 
obtained by minimizing the squared 
error, .e V h g2

2
2< <= -m  As in stan-

dard least-squares, the solution is 
obtained by a direct minimization, 

/ ,e 0hT22 2 =  to yield the coefficient 
estimates, ,ht  in the form

( ) ( ) .pinvh V V V g V gT T1= =m m m m
-t  (23)

The so obtained solution, ,ht  there-
fore represents the mean-square 
error minimizer for .V h g=m  Notice 
that this solution may not satisfy 

,V h g=m  in which case the coeffi-
cients gt  (its spectrum ( ))G Kt  may be 
used, that is

.V h g=m
t t

Such a solution, in general, differs from 
the desired system coefficients g  (its 
spectrum ( )) .G K

Example
Consider the graph signal from Figure 
3 and the graph Laplacian employed 
as the shift operator. The task is to 
design a graph filter whose frequency 
response is ( ) ( ),expg k km m= -  to fil-
ter the graph signal using this spec-
tral domain graph filter. For ,M 4=  
the corresponding system coeffi-
cients can be found to be . ,h 0 96060=  

. ,h 0 74531=-  . ,h 0 19362=  and 

. .h 0 01623=-  Upon filtering the graph 
signal using the so-defined graph 
transfer function, the output signal-
to-noise ratio was . ,21 74SNR dB=  
that is, a 7.54 dB improvement over 
the original signal-to-noise ratio of 
SNR 14.2 dB.0 =  More detail on the 
solution of the system in (21) and 
(22) is provided in “Comments on the 
Graph Filter in (22).”

Optimal denoising
Consider a measurement, as in the 
temperature measurement scenario in 
Figure 1, that is composed of a slow-
varying desired signal, ,s  and a super-
imposed fast-changing disturbance, ,f  
to give

.x s f= +

The aim is to design a graph filter for 
disturbance suppression (denoising), the 
output of which is denoted by y  [11]. 
The optimal denoising task can then be 
defined through a minimization of the 
cost function

 ( ) ,J
2
1y x y x y LyT

2
2; < < a= - +  (24)

where the minimization of the first 
term, ,/1 2 y x 2

2< <-  enforces the output 
signal, ,y  to be as close as possible, in 
terms of the minimum residual distur-
bance power, to the available observa-
tions, .x  As shown in “Smoothness 

The graph weights in our temperature field example are 
defined based on the geometric distance of vertices (sensing 
points). However, in some applications signal values them-
selves may be used as an indicator of signal similarity, as is 
the case with image processing, where this is achieved in 
combination with the pixel/vertex distances. For the image 
intensity values at pixels indexed by n and ,m  denoted by 

( )x n  and ( ),x m  a simple difference of intensities

( , ) ( ) ( ) ,n m s x n x mintensity distance nm ; ;= = -

may be used in an exponential kernel to 
define the corresponding edge weights as

 ,W e rfor( ( ) ( )) /
nm

x n x m
nm

2 2
# l= x- -

and W 0nm=  for ,rnm $ l  where rnm  is 
a geometric distance of the considered 
pixels/vertices.

We next present an example of this 
kind of edge weighting applied to a 
simple graph image filtering problem.

Example
Consider the problem of denoising a 
50-pixel-square, 8-bit grayscale, 

image (see Figure S3). <AU: Kindly check whether the cita-
tion of Figure S3 is appropriate.> The vertices of the graph 
are the pixels. The edge weights for the graph representa-
tion of this noisy image were calculated with 2l=  and 

.20x=  This value of l  means that each vertex is connect-
ed with eight neighboring vertices (including diagonal 
ones) with the weights, ,Wnm  defined by the exponential 
kernel. Low-pass filtering was performed on the corre-
sponding image graph using iterative filtering (Taubin’s 
algorithm) over 200 iterations, with .0 1a=  and . .0 15b=

Graph Topology Based on Signal Similarity: An Image Processing Example

FIGURE S3. (a) The original image, (b) the noise-corrupted image, and (c) the image filtered us-
ing Taubin’s algorithm (see “Smoothness and Filtering on a Graph”).

Original Image Noisy Image Graph Filtered Image

(a) (b) (c)
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and Filtering on a Graph,” the second 
term, ,yy LT  represents a measure of 
smoothness of the graph filter output, 

,y  while the parameter a  models a 
balance between the closeness of the 
output, ,y  to the observed data, ,x  and 
the smoothness-constrained output esti-
mate .y  While the problem in (24) could 
also be expressed through a constrained 
Lagrangian optimization, we here focus 
more on the graph-theoretic issues and 
hence adopt a simpler option whereby 
the mixing parameter a  is chosen 
empirically.

The solution to the minimization 
problem in (24) follows from

)J
2

(

y
y x

y x Ly 0
T2

2 ;
a= - + =

and results in a smoothing optimal 
denoiser in the form

( 2 ) .y I L x1a= + -

The Laplacian spectral domain form of 
this relation then becomes

( 2 ) ,Y I X1aK= + -

with the corresponding graph filter 
transfer function given by

( ) .H
1 2

1
k

k
m

am
=
+

Observe that for a small ,a  ( )H 1k .m  and 
,y x.  while for a large ,a  ( ) ( )H kk .m d  

and .,consty .  which enforces y  to be 
maximally smooth (a constant, without 
any variation). Using 4,a=  the obtained 
output signal-to-noise ratio for the graph 
signal from Figure 3 was ,26SNR dB=  
an 11.8 dB improvement over the origi-
nal .14SNR 2 dB.0 =

Remark 11
There are many cases when the graph 
topology is unknown, so that the graph 
structure, that is, the graph edges and 
their weights, is also unknown. To 
this end, we may employ a class of 
methods for graph topology learn-
ing, which are based on the mini-
mization of the cost function in (24) 
with respect to both a chosen graph 

connectivity matrix and the output 
signal, ,y  with additional (commonly 
sparsity) constraints imposed on the 
elements of the considered connectiv-
ity matrix.

What we have learned
Natural signals (speech, biomedi-
cal, video) often reside over irregular 
domains and are, unlike the standard 
signals in, for example, communica-
tions, not adequately processed using 
standard harmonic analyses. While 
data analytics on graphs as irregu-
lar domains are heavily dependent on 
advances in DSP, neither the electri-
cal and electronics engineering <AU: 
Kindly check that “EEE” is spelled 
out correctly.> graduates worldwide 
nor practical data analysts are yet best 
prepared to employ graph algorithms in 
their future jobs. Our aim has been to 
fill this void by providing an example-
driven platform to introduce graphs, 
signals on graphs, and their properties 
through a well-understood multisensor 
measurement scenario and the graph 
notions of transfer function, Fourier 
transform, and digital filtering.

We have illuminated that while both 
a graph with N  vertices and a classi-
cal discrete time signal with N  samples 
can be viewed as N-dimensional vec-
tors, structured graphs represent much 
richer irregular domains that convey 
information about both the signal and 
its generation and propagation mecha-
nisms. This allows us to employ intu-
ition and physical know-how from 
Euclidean domains to revisit basic 
dimensionality-reduction operations, 
such as coarse graining of graphs (cf. 
standard downsampling). In addition, 
in the vertex domain a number of dif-
ferent distances (shortest-path, resis-
tance, diffusion) have useful properties 
that can be employed to maintain data 
integrity throughout the processing, 
storage, communication, and analysis 
stages, as the vertex connectivities and 
edge weights are either dictated by the 
physics of the problem at hand or are 
inferred from the data. This particu-
larly facilitates maintaining control and 
intuition over distributed operations 
throughout the processing chain.

It is our hope that this lecture note 
has helped to demystify graph signal 
processing for students and educators, 
together with empowering practitio-
ners with enhanced intuition in graph-
theoretic design and optimization. This 
material may also serve as a vehicle to 
seamlessly merge curricula in electrical 
engineering and computing. The generic 
and physically meaningful nature of this 
 example-driven lecture note is also likely 
to promote intellectual curiosity and serve 
as a platform to explore the numerous 
opportunities in manifold applications in 
our ever-growing interconnected world, 
facilitated by the Internet of Things.
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The beginning of graph 
theory applications in 
electrical engineering 
dates back to the mid-19th 
century and the definition 
of Kirchhoff’s laws.

In analogy with the pivotal 
role of time shift in 
standard system theory, a 
system for graph signals 
can be implemented as 
a linear combination of a 
graph signal and its graph 
shifted versions.

When the relations 
between all pairs of 
vertices are mutually 
symmetric, then all the 
matrices involved are 
also symmetric, and 
such graphs are called 
undirected.

This article was primarily 
written in response to 
the urgent need to bring 
graph signal processing 
into the curricula of 
existing statistical signal 
processing and machine 
learning courses.

Structured graphs 
represent much richer 
irregular domains that 
convey information 
about both the signal 
and its generation and 
propagation mechanisms.

Owing to their inherent 
“spatial awareness,” graph 
models have since become 
a de facto standard for 
data analytics across the 
science and engineering 
areas.

We show that graph 
signal and information 
processing is particularly 
well suited to making 
sense from data acquired 
over irregular data 
domains.

The advantage of graphs 
over classical data 
domains is that graphs 
account naturally and 
comprehensively for 
irregular data relations in 
the problem definition.

Graphs are irregular 
structures that naturally 
account for data integrity.


