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Abstract— This paper addresses the rarely considered issue of hardware implementation of the S-transform, a very important time-

frequency representation with many practical applications. Various improved, adaptive, and signal-driven versions of the S-

transform have been developed over the years, but only its basic (non-adaptive) form has been implemented in hardware. Here, a 

novel hardware implementation of the adaptive S-transform is proposed extending the previously developed design. To minimize 

hardware demands, the proposed approach is based on an appropriate approximation of the frequency window function considered 

in the S-transform. The adaptivity of the transform to the signal is achieved by an optimal choice of a window parameter from the 

set of predefined values, meaning that for each window parameter the S-transform is calculated. To additionally save hardware 

resources, the proposed design does not require storing all calculated values, but only two in each iteration. The proposed multiple-

clock-cycle architecture is developed on the field-programmable gate array device and its performance is compared with other 

possible implementation approaches such as the hybrid and single-clock-cycle ones. It is demonstrated that the developed design 

minimizes hardware complexity and clock cycle time compared to alternative approaches, and is significantly more efficient than 

the software realization. Both noiseless and noisy multicomponent highly nonstationary signals were considered. An excellent 

match between the results of the hardware and the “exact” adaptive S-transform evaluation obtained through the MATLAB 

implementation is demonstrated. Lastly, the execution time that can be estimated in advance is also an important practical feature 

of the developed design. 

 

Keywords— Adaptive S-transform, Time-frequency representation, Hardware implementation, FPGA.  
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1. INTRODUCTION 

The short-time Fourier transform has a constant resolution along both time and frequency. However, for nonstationary signals 

with the fast spectrum and instantaneous frequency variations, the constant time-frequency resolution can be a limiting factor. For 

example, a time-frequency resolution can be adjusted for allowing separation of close signal components at low frequencies, but 

this can be unfeasible for separating components at high frequencies since they will overlap in the time-frequency plane. The 

wavelet and other time-scale transforms can partially resolve this issue by producing varying time-frequency resolution [1]. 

However, experts in many fields have difficulties interpreting the time-scale representations leading to difficulties when it comes 

to the design of algorithms for detection and feature extraction. 

The S-transform has been developed as an attempt to overcome pointed drawbacks of classical time-frequency and time-scale 

transforms [2, 3]. Moreover, the wavelet transforms require phase correction which is not the case when considering the S-

transform [2]. Therefore, the S-transform is used in the time-frequency analysis as an alternative to the short-time Fourier and 

wavelet transforms [2-5]. It can be considered as a combination of classical time-frequency and time-scale representations sharing 

many properties with the Gabor transform [6]. The S-transform is very popular in the biomedical field since these applications 

require varying time-frequency resolution (better frequency resolution at low frequencies and better time resolution on higher 

frequencies) and keeping a common frequency domain [7-13]. The nonstationary signals with rapid changes in the spectral content 

and in the instantaneous frequency appear in numerous other fields. For example, hyperbolic frequency modulation appears in 

geological and geophysical systems, radars, underwater acoustics, etc [14, 15]. The S-transform and its improved versions are 

proven to be excellent tools for the analysis of these and similar signals. Stockwell noted in his seminal paper [3] that in years to 

come it can be expected significant developments in the S-transform alleviating its limitations. Driven by a wide application area, 

it was fulfilled through the enormous development of various adaptive, signal-driven, modified, and upgraded S-transforms over 

the past 20 years, [16-20]. Among them, the adaptive S-transforms have attracted significant attention, and need for its efficient 

hardware implementation was imposed. 

A fast and reliable evaluation of underlying time-frequency representations is very important in practical applications. However, 

the time-frequency-based transforms have large computational demands since the corresponding transform functions are calculated 

in a large number of time-frequency points. This can limit their real-time applicability. Often such fast response/evaluation is not 

possible with software realization, but a hardware implementation of time-frequency techniques can overcome this issue. The 

development of fast and low-cost hardware systems for evaluation of the S-transforms and their advanced forms able to rapidly 

respond to changing signal (frequency and spectral) content is very important for sensor nodes, drones, and other devices. There 

are two common approaches to accomplish this:  
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1) single-clock-cycle implementation [21-23] - provides excellent execution time, but at the expense of the hardware 

complexity and  

2) multiple-clock-cycle implementation [24-27] - reduces hardware complexity providing a larger execution time than the 

single-clock-cycle approach. 

To combine desired properties of approaches, low hardware complexity, and execution time, the signal adaptive and pipelined 

hardware implementations of time-frequency methods are recently proposed [28-32]. Hardware realization of the standard (non-

adaptive) S-transform is considered in [33], as well as its implementation on the FPGA Cyclone III EP3C16E144C7 circuit. This 

paper extends research toward the S-transform with a data-driven window function [16]. The concentration of the S-transform in 

the time-frequency plane is improved by evaluating several S-transforms calculated for different window functions and selecting 

the best one based on the concentration measure [34]. This leads to an improved, adaptive S-transform, [16-18]. However, 

compared with its basic form, the adaptive S-transform has a significantly increased time consumption and calculation complexity 

leading to a limited number of applications. Hence, creating an efficient hardware design with reasonable (minimal possible) 

hardware demands (to be suitable for on-a-chip implementation and consequently to enable the deployment of the transform in 

various applications) is the main challenge in the hardware development of this transform. Our approach relies on the idea that we 

have to approximate frequency window function with simpler realization than in [33] and to address the evaluation of multiple S-

transforms within the same memory resources by developing a mechanism not requiring the simultaneous presence of all calculated 

values. The main contribution of the paper is development of the design satisfying the following requirements: conditions of 

efficiency (regarding execution and clock cycle times, and the hardware complexity), operation in real-time, suitability for on-a-

chip implementation, and high accuracy. 

The paper is organized as follows. Theoretical background related to the S-transform, adaptive S-transform, concentration 

measure, and frequency window function approximation is given in Section 2. Section 3 provides the hardware implementation, 

while Section 4 presents testing, verification, and results of the proposed design. Discussion about the design including possibilities 

for further development is outlined in Section 5, while concluding remarks are given in Section 6.  

2. S-TRANSFORM AND ITS ADAPTIVE FORMS 

The S-transform of a signal, x(t), is defined as 

 2( , ) ( ) ( , ) ,j f
xS t f x w t f e d



  



      (1) 

where the window function is given by 
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At low frequencies, the S-transform has a higher frequency resolution compared to time resolution, while at high frequencies it 

can better separate close components in time than in frequency domain. Such a behavior is desirable in numerous practical 

applications, and it resembles the wavelet analysis while maintaining phase information which is important for signal 

reconstructions. However, numerous signal types appear in the time-frequency analysis, and a “one-size-fits-all” approach is not 

possible. A potential solution is the development of time-frequency representations having design parameter(s) that can be selected 

considering some appropriate criterion [34-36]. The time-frequency concentration measures are the common criterion for the 

selection and adjustment of time-frequency representations. 

To obtain an optimal time-frequency representation with the S-transform, consider the following window function: 
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where
( ) ( , )p
xS t f  denotes the S-transform evaluated with ( , )pw t f . As demonstrated in [16], larger p value provides a narrower 

window (better time resolution), while for a smaller p value, a wider window that can improve frequency resolution is obtained. 

An appropriate range of p values proposed in [16] is p[0,1].  

Our goal is to design an objective function to lead an optimal p value yielding 
( ) ( , )p
xS t f . This can be done using the proposed 

three steps procedure given in the following: 

Step 1: Normalize the energy of all S-transforms from the set: 
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Step 2: Calculate the concentration measure1 CM(p) for all p values and their corresponding S-transforms [16, 34]: 

 
( )

( , )
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t f
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S t f dtdf




 (5) 

 
1 There are several concentration measures for time-frequency representations. The commonly used measures are based on the 

Renyi entropy. However, all of them have drawbacks analyzed in [34]. Nevertheless, the measure used in this paper avoids some 

of the drawbacks outlined in the previous publication. In general, by keeping constraint (4), this measure minimizes the region of 

the time-frequency plane covered by signal components that correspond to high resolution. It is already used in various research 

papers including consideration of the adaptive S-transform in [16]-[20].  
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Step 3: Select an optimal p value by maximizing (5): 

 arg max ( ).opt
p

p CM p  (6) 

Note that popt represents the global maximum of all CM(p), (5). Precisely, within the adaptive S-transform calculation, Np S-

transforms are evaluated, CM is calculated for each of them, and popt corresponds to the S-transform reaching the highest CM. 

Simply, the S-transform calculated with popt represents an adaptive S-transform, commonly referred to as the S-transform with a 

data-driven window function: 

 
( )

( , ) ( , ).optp

xAS t f S t f  (7) 

For the fast realization of the S-transform, calculating the convolution integral in equation (1) should be avoided. Instead, the 

frequency domain expression can be used [2, 3]: 

 ( , ) ( ) ( , )p

x p

a

S t f X f a W f a da   (8) 

where 
22 /

( , )
p

a f

pW f a e


  is the window function expressed in the frequency domain. Hardware implementation of Wp(f, a) is 

not a simple task since its Taylor series expansion requires a large number of terms to converge at higher f. An efficient evaluation 

of the window function is studied in [33] where two Taylor series expansions around f=0 and f=f1 are performed. Then, the 

frequency window function is approximated considering the first three terms of the selected Taylor series expansion (around f=0 

or f=f1). The selection of expansion series is done by the switching rule depending on f. 

The data-driven S-transform requires multiple S-transform calculations, and it is imperative for these calculations to be carried 

out in an efficient manner. Now, our goal is to find an efficient approximation of Wp(f, a) by considering two Taylor series 

expansions with two terms. We propose the following approach. As in [33], the first Taylor series expansion is evaluated around 

f=0. The second expansion point f=f1 and parameters of the switching rule are determined by simulations. The optimization criteria 

considered minimization of the mean squared difference between the approximated and true ( , )pW f a  values and resulted by the 

following approximation: 
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Fig. 1. Approximation of the frequency window function: Exact value – blue line, approximation from [33] – red line, and 

approximation (9) – yellow line 

Table 1. List of abbreviations and notations used within the presentation of the hardware implementation. 

Abbreviation/notation Description 

CLK Clock cycle 

Register file One-dimensional structure of M registers 

Register block Two-dimensional structure of M×N registers 

CumADD Cumulative pipelined adder 

CM1 Concentration measure of S-transform from Register block_1 

CM2 Concentration measure of S-transform from Register block_2 

 

where: 
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Fig. 1 depicts the exact value of the frequency window function (blue color line), approximation from [33] (red line), and the 

proposed approximation (9) (yellow line). It can be observed a good match between these functions. In the case of the 

approximation from [33], the mean squared difference between the exact and approximated value is 4.8110-4 while for 

approximation (9) it is slightly higher, 5.2610-4, but with a reduced number of terms in the Taylor series expansion. 

Note that within the adaptive S-transform calculation, the multiple S-transform evaluations with different p and hence multiple 

evaluations of the frequency window function are performed. Approximation (9) provides both savings in hardware resources and 

adequate precision. 

3. HARDWARE IMPLEMENTATION OF THE ADAPTIVE S-TRANSFORM 

The proposed hardware implementation of the adaptive S-transform is shown on Fig. 2. The system inputs are stored in 3 ROM 

blocks, named ROM_1, ROM_2, and ROM_3. 
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Fig. 2. Proposed hardware design of the adaptive S-transform. Unit denoted by “abs” calculates absolute value of the input value, 

unit denoted by “div” performs division operation, unit denoted by “sqrt” performs square root operation, whereas the 

Comparator checks whether the first input value is greater than the second one. 

These ROMs are used as follows: 



 

8 

 

- ROM_1 contains a set of parameter p values. Owing to each M-th clock cycle (CLK), determined by the control signal 

Start_1, a new parameter p value is read. Within the M CLKs in which parameter p takes the same value, a particular 

window function ˆ ( , )pW f a  is calculated. Note that parameter p values are sequentially read from ROM_1. 

- ROM_2 contains the vector of values (–M/2) : (M/2+1) stored N times (one after another, in a way that after each particular 

vector (i.e. after its last element (M/2+1)), the first element (–M/2) of the next vector follows), where M and N represent the 

analyzed signal duration and the S-transform window width, respectively. For simplicity reasons, the content of ROM_2 

will be referred to as M-vector in the rest of the paper. With each CLK, a value from M-vector is read; 

- ROM_3 contains samples of the Fourier transform of the analyzed signal. These samples can be created in a standard module 

for the Fourier transform realization [22–24]. The same module, but intended for the inverse Fourier transform realization, 

is used at the output for the creation of a particular S-transform. Here, the standard fast Fourier transform (FFT) and inverse 

fast Fourier transform (IFFT) modules are used. Within the M CLKs, determined by the Start_2 control signal, M Fourier 

transform samples (FTs) are read from the ROM_3, but in following M CLKs, reading from ROM_3 is disabled (by the 

zero value of the Start_2 control signal). Note that FTs are sequentially read from ROM_3.  

Outputs of the system are: 

- A value of the parameter p corresponding to the adaptive S-transform, 

- The adaptive S-transform. 

The implementation includes 4 Register files (Register file_1, 2, 3, 4, where Register file_2, 3, 4 are used within the 

Multiplication block) and 3 Register blocks (Register block _1, 2, 3, where Register block_3 is used within Multiplication block). 

Each Register file contains M memory locations, while Register blocks contain M×N memory locations. The initial values of all 

these locations are zeros. Register file_1 denotes the used FIFO delay block, whereas Register files_2, 3, 4 are shift memory 

buffers. 

Based on the parameter p value read from the ROM_1 and the value of the M-vector element read from the ROM_2, the 

corresponding a value is calculated and stored in an appropriate register of the Register file_1. Note that within M CLKs, 

determined by the control signal Start_1, the same parameter p value is used. In each of these CLKs (once per a CLK), this 

parameter participates within the calculation of different values of a. Further, the obtained a values are used within the calculation 

of the window function ˆ ( , )pW f a . 

The de-multiplexor DMUX 1/4 in combination with the multiplexor MUX 4/1 is used to implement the window function in the 

frequency domain ˆ ( , )pW f a , based on its approximation from equation (9). To this end, DMUX 1/4 and MUX 4/1 are controlled 

by the same selection signals I1 and I0. With each CLK, a values are led one by one to the input of DMUX 1/4. Depending on a, 
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control signals I1 and I0 select one of 3 possible options of ˆ ( , )pW f a  (see eq. (9)). Calculated samples of ˆ ( , )pW f a are then 

stored in Register file_2 (Fig. 3). Simultaneously, Fourier transforms samples of the analyzed signal are read from ROM_2 and 

are stored in the Register file_3, and Register file_4 (Fig. 3). As shown in Fig. 3, the corresponding samples of ˆ ( , )pW f a  and 

Fourier transforms samples of the analyzed signal are multiplied in parallel, and the obtained products are stored in the parallel-in-

parallel-out Register block_3 (also in parallel and managed by the Start_3 control signal). Products saved in the Register block_3 

are inputs of the IFFT block, which produces the S-transform at the system output. 

Control signals I1 and I0 are created in a way presented in Fig. 4. With each CLK, a values are led to a set of 4 comparators that 

produce control signals A, B, C, and D at their outputs. As seen, each of these comparators is used to compare a value with the 

corresponding limit defined in ˆ ( , )pW f a  approximation (9). Finally, based on the values of the produced signals A, B, C, and D, 

the signals I1 and I0 are defined in a way shown by the functional table given in Fig. 4 (b). 

Samples of the calculated S-transform are imported to the Register block_1 or the Register block_2. During (N×M) CLKs 

determined by the Start_4 control signal, these samples are propagated through the Register block in which they are imported, 

such that each sample propagates through each location of the Register block (in the corresponding CLK). In this way, all S-

transform samples are used in the concentration measure calculation (Fig. 2). In our design, S-transform samples are taken from 

the first location of the Register block in the corresponding CLK. Note that the storage location (Register block_1 or _2) in the n-

th time instant depends on the control signal RW, created in the previous, (n-1)th, time instant. The control signal RW, created by 

the Comparator (Fig. 2) checks whether the concentration measure of the S-transform from the Register block_1 (CM1) is greater 

than or equal to the concentration measure of the S-transform from the Register block_2 (CM2), where the concentration measures 

CM1 and CM2 are calculated according to equation (5). The following cases can be distinguished: 

- CM1≥CM2, when the control signal RW takes a unit value that provides the S-transform samples to be imported to the Register 

block_2; 

- CM1<CM2, when the control signal RW takes zero value that provides the S-transform samples to be imported in the Register 

block_1; 

In this way, the S-transform with the greater concentration measure is preserved and the S-transform with a lower concentration 

measure will be rewritten by the S-transform calculated for the next parameter p value. Note that the memory resources of the 

system are saved by using only two Register blocks. Precisely, Np S-transforms are evaluated, but only two of them are stored: the 

currently calculated S-transform and the S-transform with the highest concentration measure. After calculating all S-transforms, 

the optimal S-transform is stored in one of two Register blocks (_1 or _2), while the control signal RW value describes in which of 

these blocks it is placed. 
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Fig. 3. Multiplication block from Fig. 2. 

 

 (a) (b) 

Fig. 4. (a) Unit that creates multiplexer/de-multiplexer selection signals I1, I0. (b) Functional table determining input-output 

dependence of the simple control logic from graphic (a). 

Similar logic is used to preserve the value of the parameter p corresponding to the optimal S-transform. To this end, registers 

p1 and p2 are used to store parameter p values corresponding to S-transforms with greater and lower concentration measures, 

A B C D I1 I0 

0 0 0 0 1 0 

1 0 0 0 0 1 

1 1 0 0 0 0 

1 1 1 0 0 1 

1 1 1 1 1 0 
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where the register containing the parameter p corresponding to the S-transform with the lower concentration measure is rewritten. 

The register with the optimal parameter p value is also determined by the control signal RW. 

The concentration measure, based on (5), is implemented by using units that perform the absolute value, square root, and the 

division operations, as well as the cumulative adder CumADD. The CumADD operation is managed by the control signals Start_4 

and Reset. The CumADD starts its calculation after 2M CLKs (the time consumed within the calculation of the S-transform) and 

performs calculations during (N×M) CLKs. Within these CLKs, all S-transform samples calculated for a particular parameter p 

value are included in addition. The CumADD is reset after (2M+N×M) CLKs by using the control signal Reset. After that, the 

process is repeated: the CumADD waits for the next 2M CLKs (thanks to the control signal Start_4) until the S-transform 

corresponding to the next parameter p value is obtained and the addition during the next (N×M) CLKs is performed. This procedure 

ends with the processing of the S-transform corresponding to the last parameter p value. 

The unity value of the control signal End terminates the calculation. At that moment, the optimal S-transform is placed in either 

Register blocks_1 or _2, while the corresponding p value is stored in one of the registers p1 or p2: 

- if the final value of control signal RW is one, the optimal S-transform is stored in Register block_1, while the corresponding 

parameter p value is stored in register p1; 

- otherwise, the optimal S-transform is stored in Register block_2, while the corresponding parameter p value is stored in 

register p2. 

Control signals Start_1, Start_2, Start_3, Start_4, Reset, and End are determined by the parameters from the Configuration 

registers given on Fig. 5(a). These signals are generated by modules consisting of binary counters (of variable lengths) combined 

with binary magnitude comparators whose references are corresponding parameters from Configuration registers. The timing of 

these signals is presented on Fig. 5(b). 

As it can be noted, Fig. 5(b), control signals can disable the functioning of some parts of the system for specific periods of time. 

It can appear that latency is introduced in the system in this way, making its real-time execution questionable. However, there are 

parts of the system that are working during these periods of time since they are not controlled with the same signals as the disabled 

parts. For example, the control signal Start_2 enables importing of the FT samples of the analyzed signal in the Multiplication 

block within M CLKs, but in the following M CLKs the same control signal disables that importing (and so on). However, while 

the importing of the FT samples is disabled, samples ˆ ( , )pW f a  are calculated. In this way, the latency in the specific part of the 

system does not cause the latency of the whole system and therefore does not endanger the real-time execution. 

To complete the calculation, the developed design takes a fixed number (per S-transform sample and parameter p) of CLKs. 

Calculation of each S-transform and its concentration measure takes the same number of CLKs, that is (2M+N×M) CLKs. Since 
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  (a) 

(b) 

Fig. 5. (a) Control unit for determination of control signals Start_1, Start_2, Start_3, Start_4, Reset, and End, (b) Timing of 

these signals. 

this calculation is repeated as many times as there are different values of parameter p (Np), (2M+N×M)×Np CLKs are required to 

complete the overall calculation process. As it can be seen, the total number of required CLKs depends on a priory known algorithm 

parameters Np, N and, M. Therefore, the time required for the execution of the developed system can be estimated in advance. 

Note that this can be very important in practice. 

4. TESTING, VERIFICATION, AND RESULTS OF THE PROPOSED APPROACH 

The proposed hardware design is implemented on the FPGA EP4CGX150CF23C7 device from the Cyclone IV GX family. The 

testing of the implementation is done considering the following two-component signal: 

 
2( ) (cos(2 (20log(5 1))) cos(2 (5 ) 2 (45 )))x t A t t t        (11) 

observed within the range t∈[0,1). The first signal component has hyperbolic modulation while the second one is the linear FM 

signal. Both components are of practical importance. The hyperbolic modulated signal is sensitive to time-frequency resolution 

since it can rapidly change within short time interval. Within the testing, the unity signal amplitude, A=1, sampling rate of Ts=1/256, 

and the window width of N=128 are selected. The signal is further corrupted with the additive white Gaussian noise and different 
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Table 2. Utilization of hardware resources of the FPGA Cyclone IV GX EP4CGX150CF23C7 device used within the 

implementation of the developed design. The design is determined with the following parameters M=256, N=128, Np=100, and 

input data length l=32 for test signal 1, (11). 

Resources Utilization 

Total Logic Elements 99,348/149,760 (66%) 

Combinational Functions 13/149,760 (<1%) 

Dedicated Logic Registers 99,335/149,760 (66%) 

Total Pins 65/287 (23%) 

Total Virtual Pins 0 

Total Memory Bits 1,641,600/6,635,520 (25%) 

Embedded Multiplier 9-bit elements 257/720 (36%) 

Total GXB Receiver Channel PCS  0/4 (0%) 

Total GXB Receiver Channel PMA  0/4 (0%) 

Total GXB Transmitter Channel PCS  0/4 (0%) 

Total GXB Transmitter Channel PMA  0/4 (0%) 

Total PLLs 0/6 (0%) 

 

input signal-to-noise ratios (SNRs) are considered, where 
2 2

1010log ( / )in nSNR A   and 
2
n  is the variance of the additive noise. 

Input data, as well as data obtained within the implementation, are written in the signed 32-bit fixed-point notation including an 8-

bit fraction. All details regarding the on-a-chip implementation are given in Table 2. Note also that within the execution, the CLK 

rate of 100MHz is achieved. The software implementation was achieved in MATLAB. 

Three different cases of the input signal are observed: the noiseless signal (11), the noisy signal (11) with SNRin=10dB, and the 

noisy signal (11) with SNRin=5dB. For each of these cases, the standard (non-adaptive) S-transform, the adaptive S-transform (8) 

obtained by using the software (MATLAB) simulation, and the adaptive S-transform (8) obtained by using the real-time hardware 

implementation, are presented in Fig. 6. As can be noted, among the considered time-frequency representations and in all observed 

cases, the adaptive S-transform provides significantly improved signal concentration and substantially higher signal representation 

quality in comparison to the standard (non-adaptive) S-transform. This is particularly noticeable at lower SNR as shown in Fig. 6 

(c). The results obtained by the developed real-time hardware implementation of the adaptive S-transform (Fig. 6, right-hand 

column graphics), correspond well to the software simulations (Fig. 6, central column graphics). This statement can visually be 

noted from Fig. 6, but also can numerically be proven by presenting both the hardware- and the software-based results regarding 

the optimal parameter p-value and differences between corresponding S-transforms (Table 3). 

To measure similarities between two representations, the following difference measures between the adaptive S-transform 

obtained by hardware ( , ( , )p

x HS t f ) and software ( , ( , )p

x SS t f ) implementations are used: 
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   (a) 

   (b) 

  (c) 

Fig. 6. (a) Noiseless test signal 1 x(t), (b) Noisy test signal 1 x(t) with SNR=10dB, (c) Noisy test signal 1 x(t) with SNR=5dB. 

Left-hand graphics present the standard (non-adaptive) S-transform, central graphics present the adaptive S-transform obtained 

by using the software simulation, whereas right-hand graphics present the adaptive S-transform obtained by using the developed 

hardware implementation. 
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Table 3. Hardware-based and software-based results regarding the optimal parameter p value, and differences between adaptive 

S-transforms. 

Considered cases 
Optimal parameter p 

MAX MEAN PSNR[dB] 
Hardware Software 

Noiseless test signal 1 0.7663 0.7657 0.0018 1.8∙10-4 38.53 

Noisy test signal 1, SNRin=10dB 0.3297 0.3293 0.0028 7.0∙10-4 30.83 

Noisy test signal 1, SNRin=5dB 0.2242 0.2240 0.0071 1.6∙10-3 22.63 

Noiseless test signal 2 0.6364 0.6359 0.0025 3.8∙10-4 44.56 

Noisy test signal 2, SNRin=10dB 0.6040 0.6036 0.0042 9.2∙10-4 37.68 

Noisy test signal 2, SNRin=5dB 0.5475 0.5471 0.0089 2.1∙10-3 29.61 

 

An excellent match can be observed for all considered measures. It can readily be concluded that the software-based results 

coincide with the hardware-based ones. Precisely, PSNR, as probably the most reliable measure in this case, is above 22dB even 

for relatively strong noise of SNR=5dB. Small differences are the consequence of the used approximation (9)-(10), as well as the 

different lengths of registers used in the hardware development (32-bit notation) and the software simulations (64-bit notation). 

Obtaining time-frequency representations with varying time-frequency resolution is recently addressed with numerous 

techniques developed for biomedical signals. In particular, it is recognized as a growing need for these representations in the EEG 

signal analysis [37], [38], but also in other fields [39–41]. Accordingly, it is interesting to test the proposed design on real-life 

signals. To this end, the famous bat signal recorded by a team from Beckman Institute of the University of Illinois is also considered 

here. We have considered 310 samples of the bat signal sampled with a sampling interval of 7ms. 

As in the case of test signal 1, three different cases of the input bat signal (test signal 2) are observed: the noiseless bat signal, 

the noisy bat signal with SNRin=10dB, and the noisy bat signal with SNRin=5dB. For each of these cases, the standard (non-

adaptive) S-transform, the adaptive S-transform (8) obtained by using the software (MATLAB) simulation, and the adaptive S-

transform (8) obtained by using the real-time hardware implementation, are presented in Fig. 7. As expected, excellent agreement 

between “exact” results (obtained by using MATLAB simulations) and output of the proposed hardware can be visually observed. 

Excellent agreement is supported by the numerical results given in Table 3 (last three rows). 

After comparing results achieved with the software simulation and the proposed hardware implementation, these two approaches 

are additionally compared regarding the execution times. As considered in Section 3, the developed hardware implementation 

requires multiple and fixed number of CLKs to complete the calculation and to create signals at the output (see Table 4). For 

parameters M=256, N=128, Np=100, and the CLK time of 10ns (corresponds to the maximum CLK rate of 100MHz), the execution 

time of the developed hardware implementation coincides with 32.7ms. On the other hand, the MATLAB simulation, performed 

on a high-performance computer (32GB RAM, i7 2.60 GHz Intel processor) requires the execution time of 0.539s, i.e., about 16.5 

times more than the hardware implementation.  
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  (a) 

  (b) 

  (c) 

Fig. 7. (a) Noiseless test signal 2, (b) Noisy test signal 2 with SNR=10dB, (c) Noisy test signal 2 with SNR=5dB. 

Left-hand graphics present the standard (non-adaptive) ST, central graphics present the adaptive ST obtained by using the 

software simulation, whereas right-hand graphics present the adaptive ST obtained by using the developed hardware 

implementation. 

Lastly, we will compare the computational complexities of various implementations of the S-transform. Specifically, calculating 

a set (Np) of the particular S-transforms increases the execution time of a system Np times in comparison to the systems that 

implement the single time-frequency transformation, [22–24], [33]. Hence, comparing the development proposed here with the 

development of single time-frequency transformations, such as the STFT, is not meaningful [22–24]. It is better to compare the 

developed design with the other possible designs of the adaptive S-transform. To this end, the multiple-clock-cycle implementation 

of the adaptive S-transform developed in this paper is compared with the other possible implementations such as the single-clock- 
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Table 4. The developed multiple-clock-cycle implementation design vs other possible (single-clock-cycle implementation and 

hybrid) designs of the adaptive S-transform regarding the hardware complexity, CLK cycle time, and the execution time. The 

given number of functional units corresponds to the total number of used adders, multipliers, sqrt units, division units, units for 

absolute value calculation, and comparators, respectively separated by square brackets, whereas the given number of memory 

locations corresponds to the total number of used registers and locations contained within the integrated memories used in 

implementations, also respectively separated by squared brackets. Ta, Tm, Tdiv, and Tcomp are the addition, multiplication, division, 

and comparison times, Tabs and Tsqrt are times required by the absolute value and sqrt functional units, whereas CLKSCI, 

CLKHybrid, and CLKMCI denote CLK cycle times in the cases of single-clock-cycle implementation, Hybrid and the proposed 

multiple-clock-cycle implementation designs, respectively. SCI denotes the single-clock-cycle implementation, while MCI 

denotes the multiple-clock-cycle implementation. 

Approach 
Hardware complexity 

CLK time Execution time 
Functional units Memory locations 

SCI 

[3MNp] + [Np×(MM+7M)] + 

 + [2MNp] + [4MNp] +  

+ [2MNp] + [4MNp+1] 

[MN+1] +  

+ [2MN+Np] 

CLKSCI=2Ta+6Tm+ 

 + 2Tsqrt+3Tdiv+2Tabs+Tcomp 
CLKSCI 

Hybrid 
[4M+2] + [16M] +[4] +  

+ [6M+2] + [2M+2] + [4M+1] 

[2MN+4] +  

+ [2MN+Np] 
CLKHybrid=Ta+6Tm+2Tdiv+Tabs (Np/2)CLKHybrid 

Developed 

MCI 

[4] + [M+7] + [4] + [5] + 

+ [3] + [5] 

[3MN+4M+13]+  

+ [2MN+Np] 
CLKMCI=Ta+4Tm+Tdiv (2M+NM)Np×CLKMCI 

 

cycle and hybrid implementations. The corresponding single-clock-cycle implementation design assumes simultaneous single-

clock-cycle implementations of all considered S-transforms with different p values, their comparison by a set of comparators, and, 

following the performed comparison, the adaptive S-transform selection. The hybrid implementation would correspond to the 

implementation from this paper, but only if it includes the single-clock-cycle implementation of each of two S-transforms with 

different p values that are compared within the process of determining the optimal p value. 

The proposed system provides a one-by-one calculation of a set (Np) of the S-transforms with different parameter p values, as 

well as a selection of the desired S-transform based on the concentration measure criterion. The bordered part of the architecture 

shown in Fig. 2 provides a calculation of the S-transforms with different parameter p values. The rest of the architecture given in 

Figs. 2-4, managed by the appropriate control signals, provides a selection of the desired S-transform and the corresponding 

parameter p value based on the concentration measure criterion. This part of the architecture increases hardware complexity of the 

developed system for 11 functional units (2 adders, 4 sqrt units, 2 division units, 2 units for absolute value calculation, 1 

comparator) and (2MN + 6) memory locations. This is the difference between the architecture developed here from developments 

of other common time-frequency transformations like the S-method, [32], or the short-time Fourier transform [22–24]. The 
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comprehensive comparative analysis concerning the hardware complexity, CLK cycle time, and execution time is presented in 

Table 4. 

As it can be expected, the developed multiple-clock-cycle implementation design optimizes hardware complexities of the 

considered implementations and minimizes the CLK cycle time. The single-clock-cycle implementation optimizes the execution 

time, but due to the complexity caused by the parameter Np, the single-clock-cycle implementation is not always suitable for 

implementation on an integrated chip. Finally, the developed multiple-clock-cycle implementation and the hybrid design provide 

comparable execution times. However, the developed multiple-clock-cycle implementation design uses a larger number of memory 

locations with respect to counterparts, but memory capacities required by the considered designs are fairly small and do not 

represent the critical design performance (only 25% of memory capacity is used for the proposed implementation, Table 2). 

Accordingly, the multiple-clock-cycle implementation of the adaptive S-transform is realized in this paper as the optimal solution 

among the considered designs. In addition, its complexity does not depend on Np. Therefore, it is always suitable for the 

implementation on an integrated chip. Note that the similar challenges are solved by developing multiple-clock-cycle 

implementations in the case of systems providing the advanced one-dimensional, [24, 26–28], and two-dimensional, [25], signal 

representations, or the efficient parameter estimation of nonstationary signals, [29–32].  

5. DISCUSSION 

Our aim to develop a hardware solution able to evaluate the adaptive S-transform is achieved. The developed solution is suitable 

for an on-a-chip implementation, such as the implementation on an FPGA device, and it provides improved execution times 

regarding the software-based solution. These improved results were demonstrated via several test examples. Our results have also 

demonstrated that the hardware output is almost identical to the software (simulation) one despite employing approximation of the 

frequency window function needed to facilitate the hardware implementation. These findings clearly demonstrate that FPGA 

devices provide a suitable (pseudo) real-time framework for the analysis of non-stationary signals, as such analyses have been 

typically carried out via offline means using personal computers. 

Following recent trends in design of the signal processing systems, [24–33], the multiple-clock-cycle implementation of the 

proposed hardware solution that optimizes complexities of the other corresponding designs is developed in this paper. In this way, 

our initial hypothesis that it is possible to implement an adaptive time-frequency representation, such as the adaptive S-transform, 

and therefore to extend its applicability in practice is proven, i.e. the adaptive S-transform can be implemented on an inexpensive 

hardware device. All the challenges we have faced within the process of the hardware design, including replacement of the 

frequency window function with appropriate approximation, and providing evaluation of Np different S-transforms, but storing 
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only two of them (the currently evaluated and the one which currently has the best concentration measure) to save hardware 

resources, are resolved. 

The main advantage of the proposed hardware approach is the significantly reduced execution time with respect to the software-

based realization. At the same time, the proposed solution provides an ability to implement computationally demanding time-

frequency representation on a simple device that can be deployed on low-cost sensor nodes and remote devices processing 

nonstationary and in particular frequency modulated signals. This is critical for many practical applications that depend on real-

time decision support systems such as biomedical applications, speech processing, and radar processing, just to name a few. 

The next step in our study could be an implementation of the S-transform with a “greater level of adaptivity”, or, precisely, the 

hardware implementation able to produce adaptivity on a local level (for the particular time instants, or frequency range, or a part 

of the time-frequency plane). Such S-transform, with possibilities for time or frequency adaptivity, would enable the design to 

change parameter p in time and frequency domains and to produce optimized time-frequency representations in both domains. This 

opens an entirely new area of practical applications of time-frequency representations, specially optimized time-frequency 

representations, as a major drawback of time-frequency representations in real-life applications is their lack of adaptability. Our 

proposed solution provides a framework that can be adopted for any time-frequency representation. The second important 

development is the improvement of scalability of the hardware for time-frequency representations. Namely, a well-established 

recursive relationship exists to evaluate the short-time Fourier transform in the current instant based on its previous values. Similar 

recursive or iterative relationships are available for other time-frequency representations, as well. Such connections are also useful 

for the adaptive S-transform facilitating processing of long signals that are common for medical and other recordings. 

6. CONCLUSION 

An efficient multiple-clock-cycle implementation of the adaptive S-transform was developed, tested, and verified. The 

developed design was verified by implementation on an FPGA device and the achieved results were compared with the results 

obtained by a MATLAB simulation. It was shown that those results fully correspond to each other, which proves the high accuracy 

of the developed design. In terms of the execution time, which can be calculated in advance, the proposed hardware implementation 

significantly outperforms the software simulation. The proposed design has been compared with the single-clock-cycle and hybrid 

hardware implementations. It was shown that a developed design is an optimal solution among the considered implementations.  
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