
1 
 

High resolution cervical auscultation and data science: New tools to 1 

address an old problem. 2 

 3 

James L. Coyle, Ph.D., CCC-SLP, BCS-S 4 
Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences 5 

Department of Otolaryngology, School of Medicine 6 
University of Pittsburgh, Pittsburgh, PA, USA 7 

 8 

Ervin Sejdić, Ph.D. 9 
Department of Electrical and Computer Engineering, Department of Bioengineering 10 

Swanson School of Engineering 11 
University of Pittsburgh, Pittsburgh PA, USA 12 

 13 
 14 
 15 
Corresponding Author: 16 
 17 
James L. Coyle, PhD 18 
University of Pittsburgh 19 
Department of Communication Science and Disorders 20 
6035 Forbes Tower 21 
Pittsburgh, PA  15260 22 
412.383.6608 23 
jcoyle@pitt.edu 24 
 25 
Conflict of Interest Statement:   26 
Financial:  The authors disclose that they receive financial support under two grants from the National 27 
Institute of Child Health and Human Development (2R01HD074819-04, and 1R01HD092239-01), and the 28 
National Science Foundation (NSF Career Award – E. Sejdic; grant #1652203).   29 
Non-financial:  the authors disclose that they have no non-financial conflicts of interest. 30 
 31 
Funding Statement:  This work was supported by grants from the National Institutes of Health – 32 
National Institute of Child Health and Human Development: #2R01HD074819-04 (E. Sejdic, J. Coyle, co-33 
PI’s), and 1R01HD092239-01 (E. Sejdic, PI), and NSF Career Award (E. Sejdic) #1652203. 34 
 35 

 36 

 37 

38 



2 
 

High resolution cervical auscultation and data science: New tools to address an old problem. 39 

 40 

Abstract 41 

High resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of 42 

dysphagia that relies on data science, machine learning and wearable sensors to investigate of the 43 

characteristics of disordered swallowing function in people with dysphagia.  HRCA has shown promising 44 

results in categorizing normal and disordered swallowing (i.e., screening) and independent of human 45 

input, identifying a variety of swallowing physiologic events as accurately as trained human judges.  The 46 

system has been developed through a collaboration of data scientists, computer-electrical engineers and 47 

speech-language pathologists.  Its potential to automate dysphagia screening and contribute to evaluation 48 

lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate 49 

human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data.  50 

Potential contributions of HRCA when VFSS may be unavailable, undesired, or not feasible for many 51 

patients in various settings, is discussed along with the development and capabilities of HRCA.  The use of 52 

technological advances and wearable devices can extend the dysphagia clinician’s reach and reinforce 53 

top-of-license practice for patients with swallowing disorders. 54 

 55 
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High resolution cervical auscultation and data science: New tools to address an old problem. 63 

 64 

Introduction 65 

Why does the use of devices for measuring swallowing function matter?  For many years, human 66 

judgment of patient function was solely performed by empirical observation of the patient performing a 67 

target activity or task.  In fact, human judgment has been the gold standard for describing numerous 68 

human functions for many decades.  But, with the growth of technological advances in computer 69 

sciences and sensor technology have come opportunities to meld two areas of science to accomplish 70 

two common goals: 1. improving traditional screening, clinical assessment and treatment methods by 71 

including technology, and 2. developing individualized treatments designed to address the nuances of a 72 

specific patient’s impairment patterns.  The purpose of this manuscript is to 1) review the current and 73 

past use of cervical auscultation in assessing individuals with dysphagia, 2) describe the complex 74 

underpinnings of high resolution cervical auscultation (HRCA) and its application to dysphagia 75 

assessment, and 3) to describe a current, ongoing project that integrates collaborative HRCA advances in 76 

technology and clinical findings.  77 

 78 

Limitations of cervical auscultation and rationale for HRCA 79 

Cervical auscultation to observe swallowing function (CA) using ordinary stethoscopes has been a 80 

common clinical practice for many years by dysphagia clinicians.  Up to one-fourth of dysphagia 81 

clinicians use CA in diagnostic and management activities (Bateman et al., 2007; Rumbach et al., 2018; 82 

Vogels et al., 2015).  The use of CA was implemented following the observation that sounds emanate 83 

from the neck during swallowing, and that these sounds may reflect physiologic events occurring during 84 

swallowing (Borr et al., 2007).  CA is based on the principle that a stethoscope can transmit all available 85 

acoustic information from the anterior neck during swallowing, and that a human observer can 86 
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accurately interpret those sounds into a timeline of physiologic events. This also assumes the ability to 87 

form an impression as to the “normalness” of those events.  This concept is germane to dysphagia 88 

clinical practice, given the longstanding interest in developing inexpensive and noninvasive methods of 89 

evaluating swallowing function.  Support for CA was first described more than 20 years ago by Cichero & 90 

Murdoch (1998), in a theoretical paper in which a cardiac analogy theory was proposed.  Briefly, this 91 

theory proposes that the upper aerodigestive tract is analogous to the heart. Both consist of several 92 

tubes and valves that open and close in a certain pattern, and pumps that squeeze and propel fluids 93 

during the cardiac cycle and during swallowing.   Furthermore, the theory suggests that ordinary 94 

auscultation with a stethoscope, as is used in clinical evaluation of cardiac sounds, should translate to an 95 

equivalent interpretation of swallowing function that would be derived from an imaging study.  Because 96 

of its convenience and low cost, interest in adding stethoscope-based observations has grown in the 97 

past 20 years, and many clinicians rely on cervical auscultation in diagnostic assessments, sometimes as 98 

a replacement for imaging.  Several studies have reported data indicating that specific “sounds” 99 

occurring during swallowing represent discrete physiologic and kinematic events, and that these 100 

observations may be useful surrogates for videofluoroscopic (VF) imaging studies (Borr et al., 2007; 101 

Leslie et al., 2007; Zenner et al., 1995).   102 

 103 

Initially, research regarding CA produced results indicating its ability to identify when a swallow 104 

occurred, but this quickly spawned research into the nature of those sounds.  These studies described 105 

and named the sounds, often using a variety of labels (e.g., “lub,” “dub,” “first and second sound,” “pre-106 

click,” “click,” “swish,” Greek alphabet characters, etc.) to reflect what seemed to be associated with 107 

swallowing events. These events were observed with concurrent imaging including opening and closing 108 

of laryngopharyngeal valves, ventilatory sounds, and bolus flow (Borr et al., 2007).  Leslie and colleagues 109 

(2007) investigated CA by using an electronic microphone to standardize data acquisition during 110 
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concurrent imaging studies of swallowing. They described the many inconsistencies in the assumptions 111 

underlying CA’s utility.  The study identified associations between some sounds and observed kinematic 112 

events, while also noting an astonishingly broad range of patterns of CA sounds during swallowing in 113 

healthy participants.  The authors also demonstrated poor inter-judge agreement for CA while 114 

underscoring the conflict between the convenience benefits of stethoscope-based CA and its accuracy, 115 

cautioning readers that “there is no robust evidence cervical auscultation of swallowing sounds should 116 

be adopted in routine clinical practice…” (p. 296).  Both studies relied on human interpretation of the 117 

sounds produced during the swallows.  Regardless of the obvious limitations of the method, CA has 118 

persisted in clinical dysphagia work. 119 

 120 

CA’s limited value as an adjunct to dysphagia assessment lies in the stethoscope’s inability to collect and 121 

transmit, the entire spectrum of acoustic and vibratory information emanating from the pharynx and 122 

larynx during swallowing (Nowak & Nowak, 2018), as well as the human auditory system’s limitations in 123 

perceiving and interpreting in a standardized manner, the obtained sounds.  Stethoscopes are designed 124 

for specific purposes and tuned for specific frequency ranges based on those purposes (e.g., heart 125 

sounds, ventilatory sounds; adults, children), and likewise, the range of human auditory acuity across 126 

independent judges varies widely.  To illustrate the challenges presented by auscultation with 127 

stethoscopes, Favrat and colleagues (2004) investigated the accuracy of cardiologists, internists, family 128 

practitioners, and residents, in identifying cardiac sounds and generation of an accurate diagnosis based 129 

on chest auscultation.  The expert practitioners were 69% accurate recognizing heart sounds, and 130 

correctly diagnosed 62% of the cases, while the residents were 40% and 24% accurate, respectively. This 131 

underscores the degree of observation and interpretation imprecision based on auscultation for an 132 

actual disorder for which stethoscopes were developed.  Since there has been an explosion in the 133 
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development of electronic data acquisition and analyses over the past 10-15 years, potential 134 

alternatives to stethoscope-based CA have received increased attention. 135 

 136 

The growth of computerized signal processing capabilities and development of a variety of electronic 137 

sensors has delivered an opportunity to investigate the principles underlying CA using techniques that 138 

do not rely completely on human judgment, and to capitalize on advanced algorithm-based signal 139 

processing, machine learning, and artificial intelligence methods developed by our partners in related 140 

Engineering fields.  Though other research groups have explored sensor based swallowing observation 141 

over the past several years using surface electromyography, piezoelectric sensors, and accelerometers, 142 

Sejdić and colleagues  described the first steps toward development of a sensor-based HRCA system for 143 

use in dysphagia screening (Sejdic, Steele, et al., 2010).   144 

 145 

High resolution cervical auscultation (HRCA) was described by Dudik and colleagues (2015) following 146 

three years of research that deployed a tri-axial accelerometer and high resolution microphone to 147 

accrue the signals.  Preliminary studies examining the signal processing of swallowing accelerometry 148 

data indicated significant differences in signal features obtained during various bolus conditions and 149 

bolus head position during swallowing.  In 2013, the authors of this manuscript embarked on a long-150 

term NIH sponsored project that is ongoing, and the results of which have been published or are under 151 

analysis, submission, review, or revisions, as well as cited elsewhere in this manuscript.  In this study, 152 

patients with suspected dysphagia underwent concurrent videofluoroscopy and HRCA signal acquisition. 153 

The goals of the study are to 1) develop an autonomous HRCA screening system and test its efficacy in 154 

the clinical setting, and 2) compare the accuracy of autonomous and semi-autonomous HRCA prediction 155 

of various commonly analyzed swallowing temporal and spatial measurements to gold standard human 156 

judgment and raise that accuracy to acceptable levels, in an effort to improve clinical workflow, and to 157 
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provide a surrogate to VFSS when VFSS is not available, feasible, or desired by the patient.  To date, the 158 

study methodology has involved the use of three signal sources (VFSS, tri-axial accelerometry, high-159 

resolution microphone) collected simultaneously. Consented participants were comprised of patients 160 

referred for a VFSS due to suspected dysphagia. All participants were from an acute, tertiary care 161 

teaching hospital. From this cohort, approximately 4,000 imaged swallows were captured and stored. 162 

The authors (JC and ES) continue to collect the same type of data, using the same methodology, from a 163 

cohort of 200 healthy community dwelling adults. This collaborative clinical and engineering based 164 

endeavor permits the 1) development of an automated dysphagia screen while speeding clinical 165 

workflow of screening (e.g., nurse dysphagia screens) without compromising accuracy, 2) improvement 166 

of objectivity of judgments of swallowing function from imaging data, , and 3) capitalization on the 167 

advantages of advanced signal processing techniques within the dysphagia diagnostic process.  To 168 

develop such a system, traditional human-mediated manual measurement methods of VFSS data 169 

measurement serve as the gold standard, and machine learning is deployed to more quickly produce 170 

accurate measurements that reflect the same judgments and measurements performed by the human 171 

judges.   172 

 173 

Current Project: Protocol  174 

To date, we have accrued data from 274 adult patients who were referred for VFSS at the University of 175 

Pittsburgh Medical Center campus hospitals, and from 80 healthy community dwelling, age-matched 176 

adults recruited from community registries.  Patients were referred over the course of routine care due 177 

to confirmed or suspected dysphagia, and the examination procedures were controlled by the 178 

examining clinicians (i.e., SLP, Radiologist).  Data accrual was performed by two SLP’s (VFSS) and two 179 

engineers (HRCA) during each examination.  All procedures were approved by the Institutional Review 180 

Board at the University of Pittsburgh. 181 
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After providing informed consent, patients and healthy participants were prepared to undergo a VFSS 182 

(GE Ultimax system).  Prior to initiation of the VFSS, two sensors were attached to the anterior neck. The 183 

tri-axial accelerometer (ADXL 327, Analog devices, Norwood, MA)  was positioned at the anterior 184 

midline overlying the arch of the cricoid cartilage (based on palpation by the SLP investigators)The 185 

microphone (model C111L, AKG, Vienna, Austria) was placed approximately 1cm lateral (right) and 186 

inferior to the accelerometer to avoid interfering with the necessary VFSS imaging of the upper airway 187 

(Figure 1).  For the patient data collection, bolus administration was dictated by the examining clinical 188 

speech-language pathologist (SLP) and no effort to modify the VFSS protocol was made by the research 189 

team. This ensured that the data set would be consistent with VFSS data obtained during typical 190 

conditions that occur during routine clinical VFSS.  Patients swallowed varying numbers of boluses of 191 

multiple standardized textures and volumes of contrast (Varibar products, Bracco Diagnostics, Monroe 192 

Township, N.J.) in a neutral head position, as well as in various postural modifications based on clinician 193 

intervention efficacy trial needs.  Continuous, written logging by investigators during all data accrual 194 

ensured specification of bolus conditions. For the healthy participants (age 18 – 92), a standard research 195 

protocol of 10 swallows per participant was followed to minimize x-ray exposure durations (average 196 

fluoro time = 0.66 minutes per examination).  We also sought to accrue as much data from healthy 197 

participants as possible that would align with data accrued from patients to enable a sufficiently robust 198 

sample size for the machine learning components of the research.  Healthy participants were 199 

administered 10 boluses each in the neutral head position. Trials were comprised of the following: 1) 200 

five 3mL thin liquid (Varibar Thin, Bracco) boluses, administered by the research SLP from a spoon with a 201 

swallow command used to prompt swallows and 2) five unmeasured, self-selected volume boluses of 202 

thin liquid,  self-administered by participants from a cup without verbal or other prompts to swallow. 203 

These bolus size conditions were included in order to capture swallowing under both controlled and 204 

natural swallowing conditions, which have been shown to produce different temporal activity during 205 
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swallowing (Nagy et al., 2013).  The rationale for inclusion of a 3ml bolus condition was that this was the 206 

most common bolus condition to challenge the patient participants. The order of presentation of the 10 207 

boluses was randomized for each healthy participant.   208 

 209 

Fluoroscopy was performed at a pulse rate of 30PPS and images were accrued to a frame grabber card 210 

at 60 FPS and later down-sampled to 30FPS to eliminate duplicate frames (Bonilha et al., 2013; 211 

Oppenheim & Schafer, 2014).  Simultaneously, acoustic and accelerometric signals were accrued directly 212 

to a hard drive, time linked to corresponding VFSS imaging data.  The sensor placement is illustrated in 213 

figure 1, and the details of signal acquisition methods and hardware/software used are described by 214 

Dudik and colleagues (2018), as well as in other publications by this research group. 215 

 216 

Insert Figure 1 here 217 

 218 

Fundamentals of HRCA 219 

The overall aim in developing HRCA is to produce a system that is capable of independently performing 220 

some temporal, spatial and kinematic measurements that are traditionally performed by clinicians.  221 

After establishing HRCA’s accuracy in screening (Dudik, Coyle, et al., 2015), machine learning algorithms 222 

are deployed in order to test HRCA’s ability to accurately perform some temporal and spatial 223 

measurements as accurately as trained human judges.  Machine learning is an iterative process by which 224 

gold-standard data are first generated (e.g. human temporal and spatial measurements), after which 225 

some of that data is used to train computer algorithms to accurately produce acceptably similar 226 

judgments as the human judges, and the rest of the data, which is novel to the algorithms, is used to 227 

test their accuracy.  Training is a computationally expensive but necessary process required to enable 228 

algorithms to detect characteristics of signal features that correspond to human-identified temporal or 229 
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spatial events.  As we accrue more data, the training sets grow, resulting in increased precision across an 230 

expanding range of conditions and extraneous confounds.   231 

 232 

HRCA Data Acquisition 233 

Several commonly used parameters were selected to characterize swallowing impairments. These 234 

parameters have been widely reported in the literature over the years. .  The general scheme of HRCA 235 

data acquisition and analysis is illustrated in Figure 2.  All swallow videos were segmented to identify the 236 

swallow segments that would be entered into the machine learning processes by trained human judges 237 

using image processing software (ImageJ, NIH).  Temporal and spatial event measurements were 238 

performed based on the methods of others (Lof & Robbins, 1990) to ensure compatibility of measures 239 

with historical, published data.  Data were recorded manually into spreadsheets and through 240 

customized Matlab modules during measurement.  All judges underwent standardized training in each 241 

measure they were to perform, and their inter- and intra-rater reliability was tested prior to online 242 

analysis of study data. All judges returned high inter- and intra-rater reliability (e.g., 80% exact 243 

agreement within three frames (0.1 seconds) (Lof & Robbins, 1990) for frame selection during temporal 244 

analyses, and excellent intraclass correlation coefficients of 0.90 or greater for pixel-based spatial 245 

measures) for each measure.  These criteria were also applied during data analyses using to eliminate 246 

judgment drift during ongoing measurement/judgment. Events and scores from images that have been 247 

coded include categorical measurements (e.g., scores on the penetration aspiration scale (Rosenbek et 248 

al., 1996) and measurements of vallecular and pyriform sinus residue using the normalized residue ratio 249 

scale (Pearson et al., 2013)).  Temporal measurements relying on frame selection include: the video 250 

frames indicating first entry of bolus into the pharynx (bolus crosses ramus of mandible) and completion 251 

of bolus clearance through the UES (segment duration), onset of hyoid displacement, frame of maximal 252 

hyoid displacement, hyoid return to lowest position at the end of the swallow (duration of hyoid 253 
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displacement), onset and offset of UES opening, and onset and offset of laryngeal closure,.  Specific 254 

measurement methods for performing temporal measures of VFSS images have been described by 255 

Kurosu et al. (2019).  Spatial, pixel-based measurements include the position of the hyoid body on each 256 

frame (hyoid kinematics), the diameter of the UES at maximal distension, and the position and area of 257 

the bolus and its components on each video frame.  This latter measurement is being performed in 258 

ongoing efforts to develop algorithms to identify and quantify the proportion of boluses that enter the 259 

esophagus and that are retained in pharyngeal recesses or that enter the airway.  After processing the 260 

signals, the VFSS-derived data are entered into the machine learning process to train algorithms. 261 

 262 

Insert figure 2 here. 263 

HRCA Data Processing: Pre-processing Deglutition Signals 264 

It is critical to understand the basic data science and engineering definitions used in signal processing.  A 265 

signal typically represents a quantity recorded via various instruments that represents changes in values. 266 

In statistics, signals are typically referred as time series, but in engineering, these recordings as referred 267 

as signals as they typically represent a measurable physical quantity. Importantly, signal artifacts must 268 

be considered during signal processing. The two artifacts discussed here are related to noise and 269 

disturbances.  270 

 271 

Signal noise represents physical quantities that contaminate information present in these signals. In 272 

many cases, it is assumed that it stems from a random process (e.g., white Gaussian noise), while 273 

disturbances also represent signal contaminants that are not stemming from a random process (e.g., 274 

coughing, breathing sounds). There is also a major difference between noise and disturbances. Noise 275 

typically occupies all frequencies captured by signals, while disturbances are based in specific frequency 276 
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bands. Sounds and vibrations represents vibration signals that are acquired by microphones and 277 

accelerometers, respectively.  278 

Swallowing-related signals such as HRCA signals (i.e., swallowing vibrations or swallowing sounds) or 279 

surface electromyography signals are typically contaminated with various disturbances and noise (Dudik, 280 

Coyle, et al., 2015). Noise typically originates in electronic equipment used to acquire these signals or 281 

elsewhere in the immediate vicinity of data collection, while signal disturbances are caused by 282 

physiologic events that occur during the swallowing event (e.g., displacement of structures, bolus flow, 283 

breathing, head motions, vasomotion of major arteries).  All these additional and simultaneously 284 

occurring signal components “contaminate” the targeted swallowing-related signal components and 285 

make any subsequent analysis difficult to carry out. This is because it is difficult to understand whether 286 

trends observed in the raw data are due to swallowing or due to disturbances and/or noise, or the 287 

combination of both. Hence, the first priority is to preprocess these swallowing signals, and remove as 288 

much as possible of the contaminating signal components (Sejdic et al., 2019).  Steps in the 289 

preprocessing and feature extraction of HRCA signals are also illustrated in figure 2. 290 

 291 

HRCA Data Processing: Data Reduction   292 

The first task in the signal processing method is to remove any confounding effects of the data 293 

acquisition system via a process called whitening (Sejdic, Komisar, et al., 2010). Here, the idea is to 294 

develop filters mimicking the frequency behavior of the data acquisition system, and the inverses of 295 

these filters are then applied to acquired data to remove any contaminating effects of the data 296 

acquisition system. Next, noise needs to be removed from the deglutition signals, and this is typically 297 

achieved via a process called denoising (Sejdic, Steele, et al., 2010). Most efficient denoising algorithms 298 

are based on wavelets which are state-of-the-art mathematical functions that divide the signal data into 299 

components based on their frequency range, to enable each component to be analyzed using a scale 300 
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that is matched to its resolution (Graps, 1995).  Once whitening and denoising steps are completed, one 301 

would carry out any normalization steps (e.g., amplitude normalization), and lastly signal segmentation 302 

is completed.  303 

 304 

Segmentation is the process of identifying the components of the recorded data that represent the 305 

event of interest (i.e., a swallow event) and separating the segment from pre- and post-swallow 306 

recorded events.  For any automated method of segmentation to succeed, a segmentation gold 307 

standard must be used to provide the criterion for the onset and offset of any individual swallow, in 308 

order to enable comparison of the signal-derived predictions to the actual event duration, ensure face 309 

validity of the electronic measurement predictions, and to facilitate machine learning procedures which 310 

with multiple iterations of cross validation increase the efficiency and accuracy of the algorithms.  311 

Segmentation involves human frame-by-frame viewing and selection of the video frame in which the 312 

bolus head enters the pharynx (crosses the plane of the shadow of the mandible), and the frame in 313 

which the bolus tail clears through the UES, by trained dysphagia researchers in the swallowing research 314 

lab. These results are used to train the algorithms to detect the duration of the swallow.   315 

 A number of different algorithms have been proposed over the years to segment swallowing signals 316 

into individual swallows (Damouras et al., 2010; Dudik, Kurosu, et al., 2015; Sejdic et al., 2009).The main 317 

reason for the variety of algorithms is that this is one of the crucial steps in the analysis of signals, since 318 

incorrectly identifying a swallowing segment will obviously skew any subsequent analysis steps.   319 

 320 

HRCA Data Processing: Feature Extraction 321 

Once swallowing signals are segmented into individual swallows, signal features are identified and 322 

extracted. Most of the current literature considers features in various mathematical domains such as the 323 

time domain, frequency domain or the time-frequency domain. Features of segmented swallow signals 324 
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range in complexity between those that are more common (e.g., standard deviations of these 325 

swallowing signals), to more advanced features, such as the entropy rate of these signals, denoting the 326 

amount of randomness in these signals. Extracted features can be then used to form various statistical 327 

models to examine dependence between independent variables, in this case signal features, and various 328 

dependent variables, such as penetration-aspiration scores, hyoid bone displacements in the anterior, 329 

posterior, superior and inferior directions (Dudik et al., 2016; Dudik, Kurosu, et al., 2018; Kurosu et al., 330 

2019; Movahedi, Kurosu, Coyle, Perera, & Sejdić, 2017; Rebrion et al., 2019). 331 

 332 

On the surface, signal features based on mathematical domains do not appear germane to analysis of 333 

clinical data traditionally obtained solely through imaging methods and analyzed by human judges. They 334 

are highly relevant from a computational point of view, because extracting features that are directly 335 

related to various physiological events that occur during swallowing is of particular relevance to 336 

clinicians. However, extracting physiologically identifiable features from swallowing signals requires the 337 

use of modern data analytics tools, such as machine learning, which will be described next.  Moreover, 338 

human judges cannot perceive, nor can their judgment account for, many features of movement-related 339 

signals.  That is, there are numerous components embedded within signals and images generated during 340 

a swallowing VFSS, that a human judge is not capable of identifying and/or discriminating. 341 

 342 

HRCA and Machine Learning: Fundamentals 343 

Machine learning is the study of algorithms and various statistical models that can be used to infer 344 

about specific patterns in a data set, in a supervised or unsupervised manner. While this scientific 345 

discipline has been around for more than 50 years, it has gained much more attention in recent years 346 

due to the advances in available computational resources that make the use of these computationally 347 

intensive algorithms to solve various problems possible. 348 
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 349 

Most machine learning algorithms rely on two phases: training and testing phases. During the training 350 

phase, one provides data to these algorithms to enable the algorithms to compute and infer about 351 

patterns in the dataset, much like the process of inference. The training data from the VFSS images 352 

which have been labelled by human judges, (i.e., each data point is labelled as belonging to one of the 353 

classes present in the dataset). These classes represent the VFSS measurement parameters described 354 

earlier.  The training phase typically continues until training conditions, such as the accuracy of the 355 

algorithms in identifying human-identified events above a certain a priori percentage criterion, are met. 356 

Once the machine learning algorithm achieves desired performance on the training set, the algorithm is 357 

then applied to a testing set, (i.e., novel data to which the algorithms have not previously been 358 

exposed).  The performance metrics such as sensitivity, specificity or recall are then reported.  359 

It is important here to clarify that training and testing data need to be separate. In other words, we 360 

cannot use the same data points for training and testing phases. In an ideal situation, the training phase 361 

is conducted using a dataset that was initially collected specifically for the purpose of training the 362 

machine learning algorithm, while the testing phase is conducted on a completely new dataset collected 363 

specifically for testing the accuracy of the proposed/used algorithm.  364 

 365 

Unfortunately, this is not always possible, especially, in ordinary and often chaotic clinical settings due 366 

to a number of different issues such as funding, availability of staff, insufficient numbers of exemplars of 367 

the events of interest (e.g., swallows), and other constraints of clinical setting. In these cases, one can 368 

use a process called cross-validation in which the available data is randomly split into training and 369 

testing data, and the training phase is then completed only using the training data, and the testing phase 370 

is completed only using the testing data.  This method of developing training and testing data sets from 371 

a large mass of clinically-derived data increases the external validity of the resultant algorithms and 372 



16 
 

systems because all factors present in clinical testing environments that are mitigated in controlled 373 

studies are present during ordinary data collection and therefore, are components of the data sets.   374 

 375 

Clinical Application of Machine Learning 376 

While machine learning algorithms are much more complicated to use and more computationally 377 

intensive than other algorithms, they enable us to achieve various tasks that otherwise would be 378 

impossible to achieve by humans or other algorithms. For example, machine learning algorithms have 379 

been successfully applied in classifying swallowing signals to identify and differentiate swallows 380 

exhibiting no aspiration and those with aspiration with a very high accuracy (Celeste et al., 2012; Sejdić 381 

et al., 2013).  Certainly the ability to noninvasively and continuously monitor and identify adequate from 382 

inadequate airway protection during swallowing has clinical applications, but efforts to extend machine 383 

learning of HRCA signals to determine the potential diagnostic utility of the system has begun to 384 

demonstrate compelling results.  For instance, it was recently demonstrated that a combination of 385 

machine learning techniques, using non-invasive HRCA acceleration signals, can track the movement of 386 

the hyoid bone solely from the HRCA signals with a similar accuracy as trained human judges performing 387 

measurements using VFSS images (Mao et al., 2019). This study represents seminal work as it offers an 388 

alternative and widely available method for online hyoid bone movement tracking without any radiation 389 

risks and provides a pronounced and flexible approach for identifying clinically useful characteristics of 390 

dysphagia.   391 

 392 

Machine learning has other potential applications that may also increase the speed of interpretation of 393 

VFSS imaging data by the clinician.  Zhang, Coyle, & Sejdić (2018) recently sought to determine whether 394 

machine learning techniques could be used as a surrogate to manual spatial analysis to detect structural 395 

features of VFSS data from the video images themselves, demonstrating that unsupervised (i.e., without 396 
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human input) advanced machine learning algorithms can identify the location of at least half of the body 397 

of the hyoid bone, at any point in time of a VFSS sequence. The height of the human hyoid body ranges 398 

from 0.6 – 1.2cm (across adult males and females) (Loth et al., 2015).  We produced square bounding 399 

boxes surrounding the hyoid body on every VFSS frame based on the human judges’ frame-by-frame 400 

plotting annotations.  Through machine learning, a second bounding box denoting the predicted 401 

location of the human-determined hyoid body bounding box was generated by the algorithms.  The 402 

HRCA-generated bounding boxes exhibited >50% overlap with the human-measurement generated 403 

bounding boxes 89% of the time continuously throughout the swallow sequences.  We acknowledge 404 

that routinely 50% does not sound like a very good value; however, given the small dimensions of the 405 

hyoid body, accurately locating >50% of a 6-10 mm object is a reasonable preliminary result which we 406 

are refining with additional machine learning. 407 

A benefit to this result is a reduction in the time required to analyze this date from15-20 minutes per 408 

swallow required by a human judge to annotate the two hyoid body landmarks on each frame of the 409 

swallow, to less than 30 seconds per swallow.  410 

 411 

Other findings that we have published have demonstrated that HRCA signals combined with signal 412 

processing and machine learning techniques can detect a variety of swallow kinematic events with 413 

similar accuracy to trained human judges and can differentiate between safe (scores of 1, 2) and unsafe 414 

swallows (scores of 3 – 8), as determined by the penetration-aspiration scale, with a high degree of 415 

accuracy (Dudik, Coyle, et al., 2018; Dudik, Coyle, et al., 2015; Dudik, Jestrović, et al., 2015; Dudik, 416 

Kurosu, et al., 2015; Jestrović et al., 2013; Movahedi, Kurosu, Coyle, Perera, & Sejdic, 2017; Sejdić et al., 417 

2013). We have examined the association between HRCA signals and component scores of various 418 

swallow kinematic events from the Modified Barium Swallow Impairment Profile (MBSImP) (Martin-419 

Harris et al., 2008) and found strong associations between HRCA signals and anterior hyoid bone 420 
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movement (component #9), pharyngoesophageal segment opening (component #14), and pharyngeal 421 

residue (component #16) (Donohue et al., 2019; Donohue et al., 2018; Sabry et al., 2019). We have also 422 

found a strong association between HRCA signal features and hyoid bone displacement (He et al., 2019; 423 

Rebrion et al., 2019; Zhang et al., 2018).  424 

 425 

Conclusions and future directions 426 

Incorporation of technology into everyday life is a common practice.  Our smart devices, automobiles, 427 

and numerous other ordinary and common tools continue to demonstrate that developments in 428 

electrical and computer engineering can positively impact ordinary human activities.  Likewise, 429 

wearable, personalized machine-learning based technologies that provide real-time monitoring of 430 

ordinary activities and health conditions (e.g., smart watches, continuous glucose monitoring systems, 431 

wearable sweat sensors for endurance athletes) and assist with daily clinical work (e.g., dictation-432 

transcription software) are contributing real-time information that can improve the accuracy and depth 433 

of health information needed to provide screening, diagnostic and treatment data to individuals and 434 

clinicians in health care settings.  Many of these technologies produce similar results as a human judge 435 

but significantly more quickly, and many expand clinician capabilities beyond the limits of human 436 

judgment.   437 

 438 

In the same way that we strive to change the disordered physiology of swallowing in our patients 439 

through our observations, developments in advanced signal processing and machine learning in a variety 440 

of contexts enrich our observations. These advances show promise in augmenting our ability to not only 441 

perform services and procedures more efficiently, but also to perform them with greater depth of 442 

inference.  But, adoption of new technologies is often met with skepticism.  During development of our 443 

HRCA system and methods, and after collecting a few hundred samples of acoustic data obtained using 444 
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HRCA high resolution microphones, we played these audio files to dysphagia experts with experience in 445 

the use of stethoscope-based cervical auscultation.  Their response was almost universally “that’s not 446 

what swallows sound like.”  The sensors had obtained broader spectral and frequency ranges than are 447 

possible with a stethoscope.  This disbelief is likely rooted in the assumption that the human auditory 448 

system has complete receptive and processing capabilities, and that there is no additional information in 449 

the acoustic signals because “we can’t hear it.”  It will take time for many technological developments to 450 

be accepted in mainstream clinical work, and for medicine to embrace the contributions of these new 451 

and relatively unfamiliar fields of science are to our own profession and clinical practice, and to fully 452 

develop their potential.  We are embarking on a clinical trial of our HRCA system to assess its screening 453 

effectiveness, in an effort to extend screening beyond the acute care setting.  Likewise, we continue 454 

testing HRCA’s accuracy in predicting a variety of temporal and spatial measurements in an effort to 455 

strengthen clinicians’ impact on patient care.  Automated signal-processing based measurements can 456 

help shift clinician resources toward actual intervention by reducing some of the tedium of manual 457 

measurements that consume so much of the clinical process while increasing their depth. 458 

 459 

Numerous devices and systems are under development that capitalize on advances in other areas of 460 

science that carry the potential of extending the reach of clinicians.  Our own HRCA research is 461 

developing results with the hope that such a system that can (in the future) noninvasively analyze some 462 

aspects of deglutition on a swallow-by-swallow basis in real time. This could be done either with imaging 463 

to expedite measurements and interpretations, or without the use of imaging when it is unavailable, to 464 

identify swallowing disorders and impairments, and potentially inform the clinician regarding 465 

intervention options when traditional information (e.g., imaging data) is not available.  This will broaden 466 

the clinician’s capacity to interpret more information more efficiently while extending deployment of 467 

the scope of practice to patients who a) have no access to imaging centers for economic or other 468 
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logistical reasons,  b) do not want imaging studies,  c) do not have immediate or any access to imaging 469 

studies (e.g., underserved regions), , and d) who are physically unable to undergo imaging tests.  470 

Moreover, such developments are promising in that they enable clinicians to produce top-of-license 471 

practice patterns more efficiently and with comparable accuracy.  Collaborations between dysphagia 472 

researchers and clinicians, computer and electrical engineers, and many other disciplines, represent the 473 

future of development of personalized methods to improve the screening, diagnosis and 474 

treatment/management of people with dysphagia. 475 

 476 

 477 

 478 
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Figure legends 656 

Figure 1 Legend.  The sensors on a videofluoroscopic image.  Adapted from Kurosu, A., Coyle, J. L., 657 

Dudik, J. M., & Sejdic, E. (2019). Detection of swallow kinematic events from acoustic high-resolution 658 

cervical auscultation signals in patients with stroke. Archives of Physical Medicine and Rehabilitation, 659 

100(3), 501-508. 660 
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Figure 2 legend.  Typical setup of HRCA data acquisition and signal processing (top), and examples of 678 

acoustic (left) and vibratory (three axes) signals accrued during a sample swallow.  Adapted from Sejdic, 679 

E., Malandraki, G. A., & Coyle, J. L. (2019). Computational deglutition: Using signal- and image-680 

processing methods to understand swallowing and associated disorders. IEEE Signal Processing 681 

Magazine [Life Sciences], 36(1), 138-146.  Open access. 682 
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Figure 3 legend.  Steps in the preprocessing (above) and feature extraction (bottom) of the signals from 708 

each axis of the triaxial accelerometer (A-P = anterior-posterior axis, S-I = superior-inferior axis, M-L = 709 

medial-lateral axis).  Adapted from Movahedi, F., Kurosu, A., Coyle, J. L., Perera, S., & Sejdić, E. (2017). 710 

Anatomical directional dissimilarities in tri-axial swallowing accelerometry signals. IEEE Transactions on 711 

Neural Systems and Rehabilitation Engineering, 25(5), 447-458.  Open access. 712 
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