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Autonomous swallow segment extraction using deep
learning in neck-sensor vibratory signals from
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Abstract—Dysphagia occurs secondary to a variety of un-
derlying etiologies and can contribute to increased risk of
adverse events such as aspiration pneumonia and premature
mortality. Dysphagia is primarily diagnosed and characterized
by instrumental swallowing exams such as videofluoroscopic
swallowing studies. videofluoroscopic swallowing studies involve
the inspection of a series of radiographic images for signs
of swallowing dysfunction. Though effective, videofluoroscopic
swallowing studies are only available in certain clinical settings
and are not always desirable or feasible for certain patients.
Because of the limitations of current instrumental swallow
exams, research studies have explored the use of acceleration
signals collected from neck sensors and demonstrated their
potential in providing comparable radiation-free diagnostic value
as videofluoroscopic swallowing studies. In this study, we used
a hybrid deep convolutional recurrent neural network that can
perform multi-level feature extraction (localized and across time)
to annotate swallow segments automatically via multi-channel
swallowing acceleration signals. In total, we used signals and
videofluoroscopic swallowing study images of 3144 swallows from
248 patients with suspected dysphagia. Compared to other deep
network variants, our network was superior at detecting swallow
segments with an average area under the receiver operating
characteristic curve value of 0.82 (95% confidence interval: 0.807-
0.841), and was in agreement with up to 90% of the gold
standard-labeled segments.

Index Terms—Swallowing, Accelerometry, Vibrations, Cervical
Auscultation, Dysphagia, Segmentation, Signal Analysis, Deep
Learning, Supervised Learning, Neural Networks.

This study was supported by the Eunice Kennedy Shriver National Institute
of Child Health & Human Development of the National Institutes of Health
under award number R01HD092239, while the data was collected under
award number R01HD074819. The computational resources utilized in this
study were provided by Microsoft and its could service, Azure, through
Microsoft’s generous support to Pittsburgh CREATES. The content is solely
the responsibility of the authors and does not necessarily represent the official
views of any of the funding organizations.

Y. Khalifa is with Case Western Reserve University School of Medicine,
Cleveland, OH, USA, Harrington Heart and Vascular Institute, University Hos-
pitals, Cleveland, OH, USA and Biomedical Engineering, Cairo University,
Giza, Egypt.

C. Donohue is with Aerodigestive Research Core Laboratory, University
of Florida, Gainesville, FL, USA and Department of Speech, Language, and
Hearing Sciences, University of Florida, Gainesville, FL, USA.

J. L. Coyle is with Department of Communication Science and Disorders,
School of Health and Rehabilitation Sciences, University of Pittsburgh,
Pittsburgh, PA, USA, Department of Otolaryngology, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA.
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I. INTRODUCTION 1

Aspiration pneumonia caused by swallowing disorders (dys- 2

phagia) is the most fatal category of pneumonia in patients 65 3

and older, eclipsing mortality rates of bacterial and pre-Covid- 4

19 viral pneumonias [1]. Dysphagia is a swallowing disorder 5

that can occur due to a variety of etiologies including stroke, 6

neurodegenerative diseases, and/or head and neck cancer 7

treatment [2], [3]. Dysphagia disrupts the patient’s ability to 8

generate a normal flow of solids and liquids through the upper 9

aerodigestive tract. Dysphagia is characterized by difficulty 10

in controlling and even initiating a swallow. A gold standard 11

examination frequently used to diagnose swallowing disorders, 12

is the videofluoroscopic swallow study (VFSS) [4]. During this 13

exam, the patient is observed while swallowing materials im- 14

pregnated with barium sulfate contrast while a trained clinician 15

observes the swallow in real-time radiographic video frames. 16

Though efficient in clinical assessment of swallowing, VFSSs 17

expose patients to ionizing radiation and are not available in 18

many care settings. This leads to leaving many patients un- 19

diagnosed and vulnerable to dysphagia-related complications 20

[5], [6]. Therefore, there is a high demand for widely available 21

and non-invasive artificial intelligence-powered dysphagia as- 22

sessment tools that can deliver insights about the swallowing 23

physiology to underserved patient populations [7]. 24

High resolution cervical auscultation (HRCA) is an emerg- 25

ing sensor-based technology that utilizes a tri-axial accelerom- 26

eter and a contact microphone attached to the anterior neck, 27

to non-invasively assess several aspects of swallow function 28

[8]. HRCA combines vibratory and sound signals collected 29

from the neck-attached sensors with machine learning to 30

characterize the patterns associated with swallowing physi- 31

ology. For HRCA to work as a VFSS surrogate in swallow 32

function assessment, it has to be able to characterize the main 33

physiological events that contribute to safe swallowing. HRCA 34

has demonstrated potential as a dysphagia screening method 35

by classifying swallows into safe and unsafe based on the 36

penetration-aspiration scale [8]–[13]. It has been proven ef- 37

fective also in demarcating multiple physiological events such 38

as upper esophageal sphincter opening [14]–[16], laryngeal 39

vestibule closure [17], [18], and hyoid bone motion [19], [20]. 40

Moreover, HRCA was successfully employed for categorizing 41

swallows between healthy and other patient populations [21]– 42

[23], and clinically rating the swallow physiology in dysphagic 43

patients based on the Modified Barium Swallow Impairment 44

Profile (MBSImP) with a high degree of accuracy [15], [20], 45
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[24]. The development of intelligent HRCA-based swallow1

function assessment methods offers a more objective way2

for early detection of swallowing impairments which may be3

extremely beneficial when expert personnel are not locally4

present, VFSSs are not immediately available or feasible, or5

in case of asymptomatic patients. In addition to being used6

for dysphagia screening/diagnosis, HRCA has potential as7

a biofeedback instrument for patients undergoing dysphagia8

rehabilitation.9

To achieve the aspired outcome of HRCA as a subjective10

swallow assessment tool, it has to encompass a fully automated11

systematic analysis pipeline with the least human interference12

possible (Fig. 1). The process begins with extraction of swal-13

low segments from the continuous HRCA signals as accurately14

as performed by experts using the gold standard, followed15

by the demarcation of kinematic events and anomalies such16

as aspiration. As can be seen in Fig. 1, accurate extraction17

of swallow segments is considered a critical step for any18

subsequent analysis to be performed on HRCA signals.19

Traditional event detection methods that rely on statisti-20

cal and non-sequence-aware classification models have been21

heavily investigated for the extraction of swallow segments in22

HRCA signals [25]–[31]. However, many of these methods23

either suffered from high computational complexity or lacked24

precision to detect the complete swallow segment which might25

have led to missing essential physiological events lying within.26

Deep learning is evolving to be a powerful approach for27

event detection in biomedical time series. Traditional methods28

relied on hand-crafted features and scanning time series for29

events and anomalies while lacking the ability to model long30

time dependencies [32]. Most recently, convolutional neural31

networks (CNNs) have been combined with recurrent neural32

networks (RNNs) for the detection and modeling of events of33

arbitrary lengths in time series [32], including arrhythmia de-34

tection in electrocardiography [33], [34] and epileptic seizure35

detection in electroencephalography [35], [36]. A CNN is a36

multi-stage trainable neural network that can automatically37

learn hierarchical representations and produce high levels of38

abstraction. RNN is another kind of neural networks that is39

specialized in processing sequential data one step at a time40

while controlling information transfer across time steps. In41

hybrid CNN/RNN models, CNN automatically extracts local42

features in short time contexts while RNN models the long43

temporal relationship between these contexts.44

Here we introduce a hybrid CNN/RNN network, a deep45

learning framework that combines both CNNs and RNNs46

to automatically capture the swallowing activity in HRCA47

signals. The proposed framework overcomes many challenges48

in earlier adaptations of the swallowing segmentation in49

HRCA signals, including utilization of multi-channel input50

and automatic feature extraction. With a professional team51

of research clinicians and engineers, we established a diverse52

annotated dataset of concurrently collected HRCA signals and53

x-ray VFSS for more than 3000 swallows from 248 patients54

with suspected dysphagia. We focused on populations of55

patients who are most vulnerable to dysphagia such as patients56

post stroke, patients with neurodegenerative diseases and those57

suffering from iatrogenic dysphagia due to cardiothoracic58

surgeries. The dataset was used to validate the precision of 59

swallowing segmentation using the proposed deep learning 60

framework and compare its accuracy to other frameworks 61

that have the potential of producing competing results in 62

similar event detection problems. The alternative networks 63

compared in this study, were chosen based on similar work 64

in the literature to resemble the general types of models 65

used for event detection in biomedical signals. The models 66

included a sliding-window non-sequence-based feed-forward 67

neural network and a hybrid sequence-based CNN/RNN that 68

works directly on raw data. We tested also other variants 69

of these models to explore the effect of network depth and 70

residual learning on the performance. 71

II. METHODS 72

A. Data collection protocol 73

This study was approved by the institutional review board 74

of the University of Pittsburgh. All participating subjects pro- 75

vided informed written consents. All subjects were admitted 76

to the University of Pittsburgh Medical Center Presbyterian 77

Hospital where the experiment was conducted. The experiment 78

included the collection of VFSS in addition to swallowing 79

vibrations from an accelerometer attached to the anterior neck 80

of the subject. Subjects were comfortably seated and imaged 81

in the lateral plane. The detailed experimental setup has been 82

described elsewhere [14]. Standard material consistencies were 83

administered to the subjects over the course of a swallowing 84

clinical evaluation that was altered to each subject based on 85

their clinical manifestation of dysphagia. The administered 86

materials included thin liquid (Varibar thin, Bracco Diagnos- 87

tics, Inc., < 5 cPs viscosity), mildly thick liquid (Varibar 88

nectar, 300 cPs viscosity), puree (Varibar pudding, 5000 89

cPs viscosity), and Keebler Sandies Mini Simply Shortbread 90

Cookies (Kellogg Sales Company). 91

VFSS was conducted using a Precision 500D system (GE 92

Healthcare, LLC, Waukesha, WI) at a pulse rate of 30 93

pulses per second (PPS) [37]. The stream was digitized using 94

an AccuStream Express HD video card (Foresight Imaging, 95

Chelmsford, MA) at a resolution of 720×1080 and a sampling 96

rate of 60 frame per second (FPS). Swallowing vibrations 97

were collected through a tri-axial accelerometer (ADXL 327, 98

Analog Devices, Norwood, Massachusetts) fixed on a small 99

plastic case with a shape that rests well onto the neck curva- 100

ture. The acclerometer case was attached to the skin overlying 101

the cricoid cartilage with an adhesive tape; the reliability 102

of this specific location in picking high quality swallowing 103

vibrations was verified elsewhere [8], [38]. The accelerometer 104

was placed such that it picks the swallowing vibrations in the 105

anterior-posterior (A-P), superior-inferior (S-I), and medial- 106

lateral (M-L) directions. The signals from the accelerometer 107

were digitized at sampling rate of 20 kHz and temporally 108

aligned with the VFSS stream through LabView (National 109

Instruments, Austin, Texas). The accelerometer signals were 110

properly down-sampled to 4 kHz to reduce the measurement 111

errors and smooth the transient noise such as sudden head 112

movements [14], [31], [39]. 113
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Fig. 1: HRCA signal analysis pipeline. The first step of swallow function evaluation using HRCA signals is the extraction of
swallow segments, which is usually done by having expert judges examine VFSS images. Following this, the HRCA signal
segments can be used for swallow kinematic analysis to identify the important physiological aspects that contribute to airway
protection. VFSS is concurrently collected only in the development phase for the purpose of data labeling for HRCA-based
supervised algorithms that perform the kinematic analysis.

B. Expert manual swallow segmentation (ground truth)1

VFSS streams were inspected by two expert raters trained2

to perform swallow kinematic judgments, in order to identify3

the onset and offset of individual swallows (with random4

assignments). The onset of a swallow is defined as the frame5

at which the leading head of the bolus passes the shadow6

of the posterior border of the ramus of the mandible [31],7

[40], [41]. The offset is defined as the frame in which the8

hyoid bone returns to its resting location after completing9

the swallowing associated motion [31], [40]. The raters were10

blinded to participants’ demographics and diagnoses. Inter-11

and intra-rater reliability were assessed with intra-class cor-12

relation coefficients (ICCs) [42]. Inter-rater reliability was13

performed on 10% of the swallows for both raters and the14

ICC values were computed. Ongoing intra-rater reliability was15

computed to assess the drift in each rater’s measurements by16

randomly selecting one out of each 10 swallows to re-segment17

and calculate ICC values. Both raters maintained an inter-rater18

and intra-rater reliability with ICCs of 0.99 or higher during19

rating the swallows of the dataset. These ratings were used to 20

label the concurrently collected swallowing vibratory signals. 21

C. Study data characteristics 22

This study relied on data from 248 adult patients with 23

suspected dysphagia who underwent VFSSs as a part of their 24

in-hospital clinical care. The mean age was 63.8 (standard 25

deviation, s.d.= 13.7) years. The participants were admitted 26

for evaluation with multiple conditions including but not 27

limited to stroke, neurodegenerative diseases, lung transplant, 28

lung lobectomy, heart disease, and head/neck surgeries (Table 29

I). The data consisted of VFSSs simultaneously collected along 30

with HRCA signals during a standard clinical swallowing 31

evaluation procedure that was a part of patients’ standard 32

clinical care. The participants were examined under various 33

bolus conditions (volume, consistency, mode of administration, 34

etc.) and compensatory maneuvers (e.g. neutral head position 35

and chin tuck) depending on the presentation of dysphagia 36

during the examination. From the 248 patients, 3144 swallows 37
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were collected with a mean swallow segment duration of 8621

msec (s.d.: 277). The duration of all swallows was around2

6− 10% of the entire dataset duration. The characteristics of3

the collected swallows are detailed in Table III. Approximately4

5% (N = 165) of swallows exhibited aspiration by patients5

(portions of the bolus entered the trachea) and only 3%6

(N = 99) of the aspiration events were asymptomatic/silent7

(no coughing).8

D. Preparation of swallowing vibratory signals9

Swallowing vibratory signals collected for this study, in-10

cluded three channels (C = 3). For models that utilized11

components of the power spectral estimate as input, the12

spectrogram is calculated for each of the channels of the13

vibratory signals using an M -point discrete Fourier trans-14

form (M = 1024) over a Hanning window of length N115

and 50% overlap. The window length used in this study is16

N1 = 800 ≡ 0.2 sec which was proved elsewhere to be17

effective in swallow extraction for the same dataset [31].18

This window length configuration produced 24145 windows19

belonging to swallowing segments and 376427 windows be-20

longing to non-swallowing/unidentified segments. Only the21

positive frequencies (M/2 bins) of the Fourier transform22

were used. Both phase and magnitude are extracted from the23

complex-value spectrogram and used as separate features with24

an overall dimension of T × M/2 × 2C (C magnitude and25

C phase components, Fig. 2 A), where T is the sequence26

length (number of windows). For models that utilized the27

raw signals as input, the signals are split into windows of28

N2 = 66 ≡ 16 msec ≡ 1 V FSS frame in length with an29

overall dimension of T ×N2 × C.30

E. Data partitioning31

The dataset was partitioned for the training and testing of32

the proposed algorithms in two main schemes depending on33

the type of the model; however, both schemes are 10-fold34

cross validation-based schemes. In brief, we used the dataset35

to test two types of segmentation models, sliding window-36

based models and sequence-based models. The two types are37

similar except that the sequence-based models take sequence38

of windows as input to model recurrence instead of separate39

windows. Partitioning for the sliding window-based models40

relied on the total number of windows in the dataset while41

sequence-based models used partitioning performed on the42

total number of sequences. Sequence length (T ) was chosen43

to be 2 sec (10 windows) with 50% sequence overlap (544

windows) for spectrogram-input and 1 sec (60 windows)45

with 50% sequence overlap for raw signal-input. For the46

first sequence configuration, a total of 21306 sequences were47

produced from the dataset.48

F. Sequence agnostic-based approach of segmentation49

Deep neural networks have been used before for the ex-50

traction of swallows in swallowing vibrations. In this study,51

we utilize a fully connected deep network that was used in a52

previous study [31] to process the spectrogram of swallowing53

vibrations in a window-by-window manner. The spectrogram 54

described previously is fed into a 3-layer (size = 512) 55

fully connected network with a 4th sigmoid-activated layer 56

for classification output. This model was implemented using 57

Keras with a Tensorflow backend and evaluated using the 58

window-based 10-fold cross validation. An Adam optimizer 59

was used for the training process with a learning rate of 0.0001 60

and a binary cross entropy loss function [43]. Fig. 3 shows 61

the architecture of the aforementioned model and its variants 62

described later in text. 63

Another sequence-agnostic method that was considered for 64

performance comparison in this study, included time-series 65

feature extraction from the signal windows instead of spec- 66

trogram. The features of each window were then passed into 67

traditional classifiers to determine whether the window belongs 68

to a swallow or not. The analysis procedure in this method 69

started with a multi-level denoising of the swallowing signals. 70

The denoising procedure included modified covariance auto- 71

regressive modeling to generate finite impulse response (FIR) 72

filters that remove the baseline noise or what’s known as 73

device noise [44], [45]. Fourth-order least square splines were 74

then used to remove the low-frequency noise components 75

and motion artifacts [46], [47] followed by tenth-order Meyer 76

wavelet denoising to eliminate any additive noise (white 77

Gaussian noise in particular) [48]. Following the denoising of 78

the signals, several features were extracted from each signal 79

window in different domains (time, frequency, time-frequency 80

and information theoretic). The features are summarized in 81

Table II. Multiple classifiers were used including support 82

vector machines (SVM) and K-means to classify each window 83

as a part of a swallow segment or not, based on the features 84

calculated. 85

G. Sequence to sequence-based approach of segmentation 86

In this study, one of the approaches that we used to ad- 87

dress the segmentation task of swallowing vibrations, included 88

models that perform sequence to sequence mappings. Such 89

models are capable of modeling the temporal dependencies 90

across sequences due to the use of recurrent neural networks 91

(RNN) [32]. The first part of the architecture in these models 92

is a convolutional neural network (CNN) that extracts local 93

features from input’s time steps before passing them into the 94

RNN to process the temporal dependencies. CNN is composed 95

of repeated layers that feature successive convolutional filters 96

with weights that are optimized during the training process. 97

A typical CNN architecture uses sequential convolutional 98

and pooling layers. CNNs can also perform 1D, 2D, or 3D 99

convolution based on the specific problem addressed. The 100

second part is a recurrent neural network (RNN) that takes 101

the output of CNN for each time step and models the time 102

dependencies a long the sequence. RNNs are known to be 103

an effective architecture for learning time dependencies of 104

arbitrary lengths which can be valuable for differentiating 105

between swallowing events and other spontaneous or transient 106

events such as coughing and head movement [32]. The last 107

part of the model is a fully connected neural network that 108

combines the temporal features generated by the RNN in order 109
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Fig. 2: The architecture of the main proposed deep network. A. shows a typical unfolded example of the network input of
acceleration signals with two swallow segments as indicated by the purple shadows in the figures. The first column represents
raw acceleration signals, and the second and third columns represent the spectrogram and phase for each of the acceleration
axes. The drop in bandwidth can be clearly seen in the spectrogram during the swallow segments. B. represents the evolution
of training and validation losses over 100 epochs of training and the variations across the 10-folds. C. represents the evolution
of training and validation accuracy over 100 epochs of training and the variations across the 10-folds. D. shows accuracy,
sensitivity and specificity and the variations across the 10-folds.

to generate a final segmentation sequence that represent the1

orientation of each window in the sequence. Fig. 2 shows the2

main proposed sequence-to-sequence architecture which takes3

spectrogram as input and is composed of a 2D CNN.4

The 2D CRNN model shown in Fig. 2 features a 3-layer5

CNN. Each layer is composed of 64 filters with a kernel size6

of 3× 3. Each layer is ReLU activated and followed by batch 7

normalization and dropout rate of 20%. Max pooling is used as 8

well after each CNN layer with the following sizes, (8, 8, 4), 9

and it is performed in this model only along the frequency axis 10

of the spectrogram in order to preserve the all time steps. The 11

final CNN output is fed into a 2-layer GRU-based bidirectional 12
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Fig. 3: Layer stacking in each of the network variants. A.
shows the network that uses only fully connected layers to
process the spectrogram. B. shows how the VGG16 CNN
layers were stacked ahead of the fully connected layers. C.
shows how the skip connection that perform the residual
learning were introduced to the VGG16 design of the network.

RNN with 128 units per cell and a length that is equal to the1

input sequence length T . The output of the second RNN layer2

is fed into a 3-layer time-distributed fully connected network3

TABLE II: Summary of features extracted from swallowing
signals [44], [49]–[52].

Time Domain Features
Standard deviation Describes the variance of a signal around its mean

Skewness Describes the asymmetry of amplitude distribution
about its mean

Kurtosis Describes the tailedness/peakness of amplitude
distribution relative to normal distribution

Frequency Domain Features
Peak frequency (Hz) Describes the frequency of maximum power

Spectral centroid (Hz) Describes the center of mass of the frequency
spectrum of a signal

Bandwidth (Hz) Describes the frequency range of a signal
Time-Frequency Domain Features

Wavelet entropy Describes the disorderly behavior for
non-stationary signal

Information-Theoretic Domain Features
Lempel-Ziv Complexity Describes the randomness of a signal

Normalized Entropy rate Describes the degree of regularity of
a signal distribution

with the first two layers having the size of 128 and the third 4

layer (output) having the size of T with Sigmoid activation to 5

represent the network classification output per each time step 6

in the input sequence. 7

Another 1D CRNN model was implemented which used raw 8

signals as input instead of spectrograms. The model features 9

a 3-layer ReLU-activated CNN with 64 filters per layer and 10

a kernel size of 5. 20% dropout and batch normalization 11

are adopted for this network following each CNN layer. The 12

CNN is followed by a 2-layer GRU-based bidirectional RNN 13

with 128 units per cell and a length that is equal to the 14

input sequence length T . Similar to the previously described 15

2D CRNN model, a 3-layer time-distributed fully connected 16

network is used to combine the recurrent output of the RNN 17

and generate the final classification output per each time step. 18

The size of the first two fully connected layers is 128 and 19

the final layer is Sigmoid-activated with a size of T . Majority 20

of the layers used in all models are ReLU-activated unless 21

mentioned otherwise. Sequence-to-sequence models were all 22

implemented using Keras with a Tensorflow backend and 23

trained through an Adam optimizer with a learning rate of 24

0.0001 and a binary cross entropy loss function [43]. The 25

sequence-based 10-fold cross validation scheme is used to 26

evaluate all sequence-to-sequence-based models. 27

TABLE I: Characteristics of the participating patients with suspected dysphagia

Admitting diagnosis Included conditions Subject-level
(N , %)

Age, year
(mean ± s.d.)

Female (N ,
%)

Neurodegenerative
disease Amyotrophic lateral sclerosis (ALS) - Multiple sclerosis (MS) - Muscular dystrophy -

Parkinson’s disease - Myasthenia gravis - Motor neuron disease - Progressive muscle
weakness - Progressive neurological deficits - Progressive supranuclear palsy - lingual
atrophy - Myotonic dystrophy - Alzheimer’s - Dementia

24, 9.7% 60.75 ± 13.5 9, 37.5%

Stroke Right hemisphere - Left hemisphere - Brainstem - Bilateral frontal - Medulla 48, 19.4% 65.4 ± 11.4 10, 20.8%
Lung condition COPD - Chronic bronchiectasis - Lung adenocarcinoma - Lung Cancer - Pulmonary fibrosis

- Cystic fibrosis - Respiratory failure - Pulmonary embolism - Pneumonia - Lobectomy
51, 20.6% 64.9 ± 14.6 22, 43.1%

Cardiac condition Cardiogenic shock - Heart failure - Cardiac arrest - Aortic valve replacement - Acute
myocardial infection - Myocardial infarction - Heart transplant - Aortic abscess

16, 6.4% 58.2 ± 12.7 4, 25.0%

Organ Transplant Multi-organ transplant - Liver transplant - Renal transplant - Lung/Double lung transplant 37, 14.9% 57.3 ± 11.9 12, 32.4%
Gastrointestinal
condition Paraesophageal hernia - Esophageal cancer - Esophagectomy - Esophagitis - Esophageal

reflux
13, 5.2% 63.6 ± 13.1 7, 53.4%

Head & Neck
condition Spinal surgery - Anterior cervical fusion - Tonsil cancer radiation - Palatal hypoplasia 7, 2.8% 62.6 ± 9.4 5, 71.4%

Other conditions Mental illness - Sleep Apnea - Cerebral palsy - Cerebellar ataxia - Sepsis - Cirrhosis -
Diabetes - scleroderma

52, 21.0% 63.4 ± 17.3 37,
71.2.0%
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TABLE III: Characteristics of the dataset

Bolus consistency Utensil Dataset-level (N , %) Swallow type (consistency group-level) Duration, msec (mean ± s.d.)Single (N , %) Multiple (N , %) Sequential (N , %)

Thin

Spoon 448, 14.2% 164, 36.6% 281, 62.7% 3, 0.7% 878±303
Cup 909, 28.9% 280, 30.8% 530, 58.3% 99, 10.9% 898±256
Cup with straw 417, 13.3% 91, 21.8% 235, 56.4% 91, 21.8% 856±238
NA 7, 0.2% – 5, 71.4% 2, 28.6% 888±731

Thick

Spoon 401, 12.8% 98, 24.5% 300, 74.8% 3, 0.7% 874±320
Cup 311, 9.9% 93, 29.9% 208, 66.9% 10, 3.2% 907±260
Cup with straw 129, 4.1% 30, 23.3% 99, 76.7% – 831±264
NA 5, 0.2% 1, 20% 4, 80% – 736±64

Pudding
Spoon 241, 7.7% 99, 41.1% 138, 57.3% 4, 1.6% 944±311
Cup 3, 0.1% 1, 33.3% 2, 66.7% – 794±164
Cup with straw 1, 0.04% – – 1, 100% 683

Solids (Cookie or
Peanuts butter sandwich

Spoon 108, 3.4% 48, 44.4% 60, 55.6% – 898±271
Cup 11, 0.35% 3, 27.3% 8, 72.7% – 792±225
NA 3, 0.1% – 3, 100% – 906±135

Saliva NA 28, 0.9% 13, 46.4% 15, 53.6% – 839±259
Tablet + Water NA 6, 0.2% – 6, 100% – 739±255
Unreported consistency NA 116, 3.7% NA NA NA 731±162

Total 3144 921, 29.3% 1894, 60.2% 213, 6.8% 862±277

H. Deeper models and residual learning1

Network depth has been proved, with substantial evidence,2

to be of crucial importance and led to some of the leading3

results in popular challenges especially with CNNs [53]–[55].4

However, as the depth increases, the accuracy gets saturated5

and degrades rapidly [53]. Deep residual learning has been6

introduced to solve the degradation problem that evolves as the7

networks go deeper. In residual learning, instead of stacking8

layers directly to fit a certain mapping, these layers are stacked9

to fit a residual mapping through using skip (identity shortcut)10

connections which are easier to optimize than the unreferenced11

mapping [53]. In this study, we tried to employ both unrefer-12

enced layer stacking and residual mapping to create networks13

that have the potential to surpass the performance of the afore-14

mentioned models. Fig. 3 demonstrates how layers are stacked15

to modify the simple deep fully connected network model to be16

more deeper (Fig. 3 B) and to use residual learning represented17

by the introduced skip connections (Fig. 3 C) in order to learn18

a better network that achieves higher classification accuracy.19

The same stacking concept was used for building variants20

of sequence-to-sequence models presented earlier where the21

stacking happened only in the convolutional layers while the22

rest of the model’s architecture (RNN and fully connected23

layers) remained the same.24

For the unreferrenced layer stacking (can be called plain25

network), we used a VGG16 CNN architecture through stack-26

ing 16 weight convolutional layers as described for image27

recognition problems in [54]. For the residual network, we28

inserted skip connections into the VGG16 model which can29

be directly used when the dimensions of input and output are30

the same; however, in our case the identity shortcuts go across31

feature maps of different sizes which necessitates using pro-32

jection or transformation to match dimensions. We used extra33

convolutional layers prior each identity shortcut to perform34

the matching (Fig. 3 C). For both deep plain and residual35

variants of the models, we adopted batch normalization after36

each network layer and before activation following the practice37

in [56]. All networks were trained from scratch with uniform38

initialization and a learning rate of 0.01. No dropout was39

used in the training of the deep plain and residual networks40

following [56]. 41

I. Performance metrics 42

The main segmentation problem in this study is a binary 43

classification task, for which the area under the curve (AUC) of 44

receiver operating characteristic curves (ROC) was calculated 45

as the primary performance metric for all the developed 46

models. In addition, we used the average accuracy, sensitivity, 47

and specificity values as secondary performance metrics. For 48

models that worked directly over windows, the metrics were 49

calculated on the window level which means that we aggregate 50

all the windows in each fold and calculate a single value for 51

accuracy, sensitivity and specificity in addition to a single ROC 52

curve. The average and standard deviation for these metrics 53

were also calculated across the folds of cross validation. 54

For sequence-based models, the performance metrics were 55

calculated per sequence and averaged across sequences of the 56

fold. Although AUCs and other binary classification metrics 57

visualize the overall performance of the algorithms in terms 58

of true and false positive rates, they don’t show the temporal 59

prediction quality of the detected swallow segments which are 60

composed of multiple consecutive binary-classified windows. 61

For that, we calculated the overlapping ratio between the pre- 62

dicted swallow segments (after discontinuity post-processing) 63

and their ground truth counterparts [31]. 64

III. RESULTS 65

A. Identification of swallow segments solely using HRCA 66

signals 67

We tested multiple deep networks to detect the swallow seg- 68

ments solely from the 3D acceleration component of HRCA 69

signals. The signals were prepared according to the model used 70

for the experiment. We adopted a single structure of a deep 71

network as the main contribution of this work and compared 72

its performance with other base models that were all inspired 73

by the literature of event detection in time series. In total 74

we tested three base models to extract the swallow segments 75

from the HRCA signals. Two more variants were created for 76

each of the base models to make the total number of tested 77
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Receiver operating characteristic curves of the window-wise predictions of swallow segments. The nine models are
(1) a 4-layer fully connected neural network with the spectral estimate as input (2) a 2D shallow CRNN with the spectral
estimate as input (3) a 1D shallow CRNN with the raw signals as input (4) a VGG16 adjustment of model 1 (5) a VGG16
adjustment of model 2 (6) a VGG16 adjustment of model 3 (7) residual learning-based variant of the VGG16 adjustment of
model 1 (8) residual learning-based variant of the VGG16 adjustment of model 2 (9) residual learning-based variant of the
VGG16 adjustment of model 3. Panels a-i correspond to ROC curves and AUC for the models 1-9 respectively.

models, nine. The first base model was inspired by the work1

developed on the same dataset, which used the power spectral2

estimate as an input of a deep fully connected network that3

demarcates the parts of the signal that belong to a swallow4

segment in a window-by-window fashion [31]. The second5

base model, which represents the main contribution of this6

work, employs the power of RNNs in modeling sequences and7

long-range dependencies to convert the problem into sequence- 8

to-sequence decoding. The model is comprised of a shallow 9

2D CNN that extracts the local features from input and then 10

feeds the features from multiple successive time steps into a 11

bi-directional GRU-based RNN that models the dependencies 12

between features in time. The outputs are then combined to 13

form predictions through fully connected layers. Such model 14
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takes a sequence of windows (power spectral estimate) as an1

input and produces a sequence of predictions that correspond2

to the sequence of windows. The third base model is similar to3

the second base model in concept; however, it uses raw signals4

as input and 1D convolution instead of 2D convolution [14].5

This model uses sequence of raw signal windows as input and6

produces the corresponding sequence of predictions.7

For each of the three base models, two modifications were8

deployed in order to enhance the detection performance of9

the models. The first variant was a deeper model created10

by stacking 16 weight convolutional layers (called VGG1611

network [54]) before the base model layers (Fig. 3 B). 2D12

convolutional layers were stacked in the case of power spectral13

estimate inputs while 1D convolutional layers were used for14

the models using raw signals as input. The second variant of15

the base models was based on the aforementioned VGG16-16

based models; however, residual learning was emphasized17

through adding skip connections (Fig. 3 B) which was de-18

scribed elsewhere [53] in order to reduce the training error in19

the case of very deep models.20

The power spectral estimate of HRCA signals from the21

dataset, was calculated based on the window size that was22

proven effective for the same dataset in previous studies [31].23

For the models utilizing raw data, the window size used to24

split signals was also calculated based on a similar study25

developed on the same dataset [14]. The nine proposed deep26

learning models were all evaluated through a 10-fold cross27

validation procedure by partitioning the data into 10 equal28

splits (folds) based on the number of windows/sequences29

extracted from the dataset. The performance of the proposed30

CNN-based architectures surpassed the ordinary feed-forward-31

based network’s performance with an average AUC of 0.8232

over the 10-folds compared to an average AUC of 0.62 for33

the feed-forward network (Fig. 4 and Table IV). Adding more34

layers to the CNN parts of the network did not improve the35

performance as can be seen in Fig. 4d, 4e, and 4f. On the36

other hand, residual learning achieved a performance that was37

between the base models and the VGG16 variant models (Fig.38

4g-4h) except for the model that used raw signals as input (Fig.39

4i).40

The traditional machine learning classifiers tested with41

features extracted from the signals showed poor performance42

in comparison with all the deep learning models tested in this43

study. This part of the study was implemented just to compare44

the performance of the proposed deep learning models and45

traditional classifiers that work on handcrafted features. The46

maximum classification accuracy achieved, did not exceed47

73% in addition to extremely low sensitivity values.48

B. Interpretation of detection accuracy: Which model per-49

forms better temporally?50

Achieving high performance on the window level doesn’t51

necessarily mean that the model fully detects swallow seg-52

ments as defined by the gold standard as it may have detected53

only a part of the swallow segments. The portion of the54

swallow segment detected by the proposed models compared55

to the full swallow segment defined by the gold standard must56

TABLE IV: Performance for window-level prediction for each
of the nine tested models.

Model Accuracy Sensitivity Specificity
4-layer fully
connected network
+ spectrogram input

0.793 ± 0.0.056 0.128 ± 0.100 0.937 ± 0.089

2D shallow CRNN
+ spectrogram input 0.832 ± 0.117 0.633 ± 0.242 0.901 ± 0.125

1D shallow CRNN
+ raw signals input 0.849 ± 0.097 0.336 ± 0.277 0.954 ± 0.072

2D VGG16 CNN
+ spectrogram input 0.808 ± 0.053 0.137 ± 0.178 0.945 ± 0.093

2D VGG16 CRNN
+ spectrogram input 0.801 ± 0.132 0.220 ± 0.360 0.943 ± 0.133

1D VGG16 CRNN
+ raw signals input 0.832 ± 0.114 0.045 ± 0.159 0.991 ± 0.039

2D Residual CNN
+ spectrogram input 0.799 ± 0.030 0.192 ± 0.145 0.928 ± 0.061

2D Residual CRNN
+ spectrogram input 0.817 ± 0.121 0.307 ± 0.342 0.943 ± 0.101

1D Residual CRNN
+ raw signals input 0.837 ± 0.105 0.0 1.0

be as close as possible to 100% in order to guarantee that 57

the detected portion includes the major pharyngeal swallow 58

events such as the upper esophageal sphincter opening and 59

the laryngeal vestibule closure. Generally, the proposed mod- 60

els label each window of the signals as being a part of a 61

swallow segment or not. Then a post processing algorithm 62

that combines these labels to get the start and end of each 63

swallow segment is applied. 64

We compared the detected swallow segments by each of 65

the proposed models to the corresponding defined swallow 66

segments by the gold standard in order to measure the average 67

overlap ratio and determine which model performs better 68

temporally when considering the length of swallow segments. 69

The 2D shallow CRNN model that used spectrogram of the 70

signals as input was the best model considering the detected 71

portion of the swallow segments (Fig. 5). The indicated model 72

consistently detected around 79% (s.d.: 11% and 95% CI: 73

77.8-79.6%) of the swallow segment across all folds. The 74

number of false positive swallow segments produced by the 2D 75

shallow CRNN model was 299 segments across all validation 76

folds (less than 10% of the total number of swallows in the 77

dataset). On the other hand, the rest of the models performed 78

poorly and/or with strong variations in the quality of detection 79

in the same fold and across folds as indicated in Fig. 5. The 80

closest performance was achieved by the 1D shallow CRNN 81

that uses raw signals as input. It detected approximately 49% 82

(s.d.: 32% and 95% CI: 46.5-50.6%) of the swallow segment 83

when considering all folds. A sample of swallow segments 84

as detected by the best model, the 2D shallow CRNN, is 85

presented in Fig. 6 with an overlap with the gold standard 86

labels of 91.6% and 76.9% (left to right). 87

IV. DISCUSSION 88

Here we outlined the development of a swallow segment 89

extraction framework for HRCA signals as an initial step 90

in the pipeline of HRCA-based dysphagia characterization. 91

The proposed framework overcomes the limitations of older 92

segmentation models including high false positive rates and 93

the low temporal detection accuracy. In contrast to ordinary 94
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Fig. 5: Average overlap ratio between detected swallow segments by the three best performing models and the reference
swallow segments labeled by the gold standard across the 10 folds of the cross-validation process.

machine learning signal segmentation models, the proposed1

deep learning framework relies on CNNs for local feature2

extraction and RNNs for modeling time dependencies which3

significantly contribute to the separation of swallow segments4

and swallow-like noise such as coughing. The work proposed5

here, is also different from previous work because it considered6

only HRCA signals with labels from VFSS for the evaluation7

process in contrast to other studies that used signals with8

blind segments [31]. Blind segments are segments of the9

signals that are recorded while the VFSS is turned off and10

sometimes include unlabeled swallow segments as blank or11

non-swallow segments due to the lack of visual evidence of12

the swallow from VFSS images. Since our study included only13

labeled signals, this guarantees the credibility and superiority14

of the presented results. Although the proposed framework was15

specifically introduced for swallow segment extraction, the16

same architecture is being broadly applied for event detection17

problems in multiple types of signals and will help further18

improve detection quality over traditional methods including19

probabilistic and non-sequence-based models. On the basis of20

our results, the proposed segmentation framework is easily21

applicable for swallowing evaluation devices to be used out of22

standard clinical care settings and provides accurate swallow23

segment extraction that is comparable to clinicians’ ratings for24

VFSS.25

Among the experimented frameworks in this study, the26

main proposed framework achieved high detection accuracy- 27

sensitivity combination (see Table IV) with an overall average 28

accuracy of 83.2% (s.d.: 11.7%) and average sensitivity of 29

63.3% (s.d.: 24.2%). It also achieved the best AUC under the 30

ROC with an average AUC of 0.82 (s.d.: 0.03 and 95% CI: 31

0.807-0.841) across the 10-folds of the entire dataset (see Fig. 32

4). In addition to the AUC values and direct window level 33

accuracy for the 10-fold cross validation, we were able to 34

calculate the average overlap between the swallow segments 35

detected by the model and the human labeled swallow seg- 36

ments. This overlap refers to the percentage of the swallow 37

segment that was detected by the model. On average, the pro- 38

posed framework was able to detect 79% (s.d.: 11% and 95% 39

CI: 77.8-79.6%) of each swallow segment in the dataset. The 40

closest performing framework was the 1D shallow CRNN that 41

used raw signals as input with an average overlap percentage 42

of 49% (s.d.: 32% and 95% CI: 46.5-50.6%). Fig.6 shows 43

that the agreement between the swallow segments detected 44

by the proposed framework and the ground truth labels from 45

the gold standard is highly achieved through including most 46

of the major components of swallow vibrations and sounds 47

within the detected segments. 48

The proposed segmentation model among the rest of the 49

tested model showed unbalanced sensitivity/specificity combi- 50

nations with relatively lower sensitivity values. This can be 51

explained by the unbalanced nature of the signal recordings 52
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Fig. 6: This figure shows two swallows from two different subjects, a male (age: 44) who developed dysphagia secondary to
stroke (left panel) and a female (age:69) who developed dysphagia secondary to subdural hematoma (right panel). The onset
and offset of the swallow segments are marked with dark blue vertical lines as labeled by the gold standard while the swallow
segments detected by the proposed framework is highlighted in light red. The agreement (overlap) between the gold standard
and the machine-based segments is 91.6% for the segment in the left panel and 76.9% for the segment in the right panel.

processed in this study. The utilized dataset, in general,1

includes less than 10% of its duration as swallow segments2

which makes an unbalanced input nearly unavoidable es-3

pecially when dealing with models that process sequences4

for real-time event detection. In testing, input will always5

include hundreds of successive sequences that don’t include6

events. It’s also worth mentioning that swallow segments are7

variable in duration, so the number of windows that represent8

swallow segments can go to as low as 4 windows per sequence9

for the extremely short swallow segments. Sensitivity and10

specificity were calculated per sequence and averaged over all11

sequences in each fold. The fluctuations in sensitivity values12

were anticipated especially with sequences including short13

swallows which pushed the overall average down to a lower14

value. While global sensitivity/specificity across sequences15

can be considered as an overall indicator in terms of false16

positive and false negative rates, they don’t show how well the17

detection is aligned with the ground truth of the entire swallow18

segment. Given the temporal accuracy of the models shown in19

Fig. 5, we can clearly see how well the proposed model can20

detect the swallow segment despite of the biased sensitivity21

values that resulted from the unbalanced input sequences.22

The clinical importance of the proposed network is three-23

fold. It promotes the use and development of HRCA-based24

devices as a surrogate for VFSS in swallowing evaluation.25

This, not only contributes to reducing the costs and unnec-26

essary radiation exposure of VFSS in many cases, but also27

increases the accessibility of swallowing evaluation methods28

in care settings and/or areas where VFSS is unavailable or29

undesirable. In addition to being important as a first step for30

any subsequent algorithms that analyze swallow function [9],31

[13], [14], [17], [19], the proposed automated segmentation32

framework mitigates the unavoidable human error in manual 33

segmentation on which most of dysphagia characterization 34

algorithms are reliant [40]. We also find it promising that the 35

proposed algorithm works directly on the spectral estimate de- 36

rived from raw signals without any preprocessing or denoising 37

despite of the presence of multi-source noise in the data which 38

makes it perfect to a non-standard clinical operation where 39

patients may be constantly moving or speaking. 40

Swallow function analysis aims to detect everything about 41

a swallow starting with its onset and offset to a full kinematic 42

analysis for each of the physiological aspects contributing to a 43

safe swallow. Among these aspects, hyoid bone displacement, 44

upper esophageal sphincter opening and laryngeal vestibule 45

closure were recently measured in HRCA signals using similar 46

deep learning architectures to the proposed framework that 47

employ CNNs and RNNs for the detection of these events 48

[14], [17], [19]. Now that the segmentation process can be 49

performed in the same way with reasonable precision, the 50

entire process can be combined in a single multi-task deep 51

learning framework which wasn’t possible when segmenta- 52

tion needed a separate statistical or classification module to 53

perform. Therefore, this work integrates well with the state- 54

of-the-art developments in swallowing signal analysis and uses 55

an architecture that is widely employed in event detection. 56

Although the work presented in this study represents a 57

necessary step for the automation of swallow function analysis, 58

it can’t work as a standalone system because swallow segment 59

extraction doesn’t provide any diagnostic value on its own. The 60

next logical step for this research is to combine it with the 61

existing research that depicts swallow safety and can be used 62

to give feedback to patients about their swallowing while they 63

are actually swallowing. Such integrated systems that rely only 64
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on non-invasive sensors can provide a complete picture about1

swallow function in terms of airway protection status, presence2

of pharyngeal residue, and whether the swallow is within3

normal limits or impaired. Furthermore, there is a growing4

evidence in the literature now that points towards the ability5

to figure out the patient condition from just HRCA signals6

[22], [23], [57]. This means that not only can these systems7

provide a diagnostic profile of the swallow but also tell the8

origin of the abnormality if exists.9

In summary, This work showed that deep learning-based10

architectures could be used to automatically extract the onset11

and offset of swallows in HRCA signals. The combined use12

of CNNs and RNNs can achieve good detection accuracy13

when it comes to modeling sequences for event extraction14

which is considered one of the setbacks in the traditional15

machine learning techniques. Deep learning continues to show16

its ability to play a vital role in clinical decision making17

and rehabilitation support of dysphagia and swallowing func-18

tion through creating widely accessible and cheap tools that19

provide the same diagnostic value as the currently utilized20

clinical exams. Such tools could help identify dysphagia in21

early stages before the development of severe complications22

like pneumonia and recommend referral for a specialist who23

can conduct more diagnostic exams thus leaving no patient24

undiagnosed or incorrectly diagnosed.25

DATA AVAILABILITY26

The entire dataset analyzed in this manuscript is avail-27

able on Zenodo: (https://doi.org/10.5281/zenodo.4539695).28

The dataset includes the raw swallowing acceleration signals29

as well as the onset and offset labels for each swallow.30

CODE AVAILABILITY31

Both the implementation of all deep models described in32

this manuscript and direct instructions to replicate the findings33

can be found in the GitHub repository at (https://github.com/34

yassinkhalifa/pHRCA_AutoSeg).35

REFERENCES36

[1] W. B. Baine, W. Yu, and J. P. Summe, “Epidemiologic trends in the37

hospitalization of elderly Medicare patients for pneumonia, 1991-1998,”38

American Journal of Public Health, vol. 91, no. 7, pp. 1121–1123, Jul.39

2001.40

[2] M. R. Spieker, “Evaluating dysphagia,” American Family Physician,41

vol. 61, no. 12, pp. 3639–3648, Jun. 2000.42

[3] J. A. Logemann, “The evaluation and treatment of swallowing disor-43

ders,” Current Opinion in Otolaryngology & Head and Neck Surgery,44

vol. 6, no. 6, p. 395, Dec. 1998.45

[4] J. L. Coyle and J. Robbins, “Assessment and behavioral management of46

oropharyngeal dysphagia,” Current Opinion in Otolaryngology & Head47

and Neck Surgery, vol. 5, no. 3, p. 147, Jun. 1997.48

[5] I. Zammit-Maempel, C.-L. Chapple, and P. Leslie, “Radiation Dose in49

Videofluoroscopic Swallow Studies,” Dysphagia, vol. 22, no. 1, pp. 13–50

15, Jan. 2007.51

[6] H. S. Bonilha, K. Humphries, J. Blair, E. G. Hill, K. McGrattan,52

B. Carnes, W. Huda, and B. Martin-Harris, “Radiation Exposure Time53

during MBSS: Influence of Swallowing Impairment Severity, Medical54

Diagnosis, Clinician Experience, and Standardized Protocol Use,” Dys-55

phagia, vol. 28, no. 1, pp. 77–85, Mar. 2013.56

[7] H. Zhao, Y. Jiang, S. Wang, F. He, F. Ren, Z. Zhang, X. Yang, C. Zhu,57

J. Yue, Y. Li, and Y. Liu, “Dysphagia diagnosis system with integrated58

speech analysis from throat vibration,” Expert Systems with Applications,59

vol. 204, p. 117496, 2022.60

[8] J. M. Dudik, J. L. Coyle, and E. Sejdić, “Dysphagia screening: Con-61
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