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Abstract—Objective: Dysphagia management relies on the evaluation of the temporospatial kinematic events of swallowing performed in
videofluoroscopy (VF) by trained clinicians. The upper esophageal sphincter (UES) opening distension represents one of the important
kinematic events that contribute to healthy swallowing. Insufficient distension of UES opening can lead to an accumulation of pharyngeal
residue and subsequent aspiration which in turn can lead to adverse outcomes such as pneumonia. VF is usually used for the temporal and
spatial evaluation of the UES opening; however, VF is not available in all clinical settings and may be inappropriate or undesirable for some
patients. High resolution cervical auscultation (HRCA) is a noninvasive technology that uses neck-attached sensors and machine learning
to characterize swallowing physiology by analyzing the swallow-induced vibrations/sounds in the anterior neck region. We investigated the
ability of HRCA to noninvasively estimate the maximal distension of anterior-posterior (A-P) UES opening as accurately as the measurements
performed by human judges from VF images. Methods and procedures: Trained judges performed the kinematic measurement of UES
opening duration and A-P UES opening maximal distension on 434 swallows collected from 133 patients. We used a hybrid convolutional
recurrent neural network supported by attention mechanisms which takes HRCA raw signals as input and estimates the value of the A-P
UES opening maximal distension as output. Results: The proposed network estimated the A-P UES opening maximal distension with an
absolute percentage error of 30% or less for more than 64.14% of the swallows in the dataset. Conclusion: This study provides substantial
evidence for the feasibility of using HRCA to estimate one of the key spatial kinematic measurements used for dysphagia characterization
and management.
Clinical and Translational Impact Statement: The findings in this study have a direct impact on dysphagia diagnosis and management
through providing a non-invasive and cheap way to estimate one of the most important swallowing kinematics, the UES opening distension,
that contributes to safe swallowing. This study, along with other studies that utilize HRCA for swallowing kinematic analysis, pave the way
for developing a widely available and easy-to-use tool for dysphagia diagnosis and management.

Keywords—Swallowing, Accelerometry, Vibrations, Cervical Auscultation, Dysphagia, Aspiration, Upper Esophageal Sphincter,
Attention Mechanisms, Signal Analysis, Deep Learning, Supervised Learning, Recurrent Neural Networks, GRU

I. INTRODUCTION1

Dysphagia, or swallowing dysfunction, occurs secondary2

to a variety of illnesses, disorders and traumatic injuries3

that disrupt the well coordinated mechanism of swallowing.4

Dysphagia is a primary cause of aspiration pneumonia which5

is associated with higher mortality rates than non-aspiration6

pneumonia [1, 2]. Swallowing impairments that lead to dys-7

phagia are usually identified by the temporospatial kinematic8

analysis of videofluoroscopy (VF) images to determine the9

severity of the underlying condition and the best course of10

intervention [3, 4]. Temporospatial kinematic analyses of VF11

studies performed within clinical and research settings, include12
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measurements of swallow biomechanical events that directly 13

contribute directly to the safe execution of swallowing, includ- 14

ing the upper esophageal sphincter (UES) opening [5, 6, 7]. 15

The UES is a muscular valve which permits the transfer 16

of food and/or liquid (i.e., the bolus) from the pharynx to 17

the esophagus during swallowing. The UES opening process 18

involves multiple stages including relaxation, opening, disten- 19

sion, collapse and closure, and relies on precise timing to 20

guarantee complete passage of the bolus into the esophagus 21

without the accumulation of pharyngeal residue. UES opening 22

is facilitated by traction forces produced by the combina- 23

tion of suprahyoid muscular contraction and anterior-superior 24

hyolaryngeal excursion [5, 7]. These traction forces, bolus 25

propulsion and the traction forces applied to the anterior wall 26

of UES by relaxation of the pharyngeal elevator muscles 27

contribute to UES distension [3]. Delayed UES opening and/or 28

reduced UES distension may result in pharyngeal residue and 29

increased risk of airway invasion, via laryngeal penetration 30

and/or aspiration into the trachea and lungs [3, 8, 9, 10, 11]; 31

however, there is limited evidence in the literature regarding 32

the direct/independent association between UES dysfunction 33

and aspiration [12, 3]. 34

Clinical assessment of UES function is performed via 35

multiple modalities including the videofluoroscopy swallowing 36

study (VFSS), fast pharyngeal CT/MRI, fiberoptic endoscopic 37

evaluation of swallowing (FEES), and non-imaging instrumen- 38
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tal tools such as electromyography (EMG) and high resolution1

pharyngeal manometry (HRM) [13, 14]. VFSS and HRM are2

the most frequently used modalities for the assessment of3

UES function during swallowing [3]. Previous studies showed4

multiple limitations and challenges for using the previously5

listed modalities to evaluate the UES function such as radi-6

ation exposure and low resolution of VFSS, invasiveness in7

HRM and FEES, and the need for clinical expertise for both8

conducting and interpreting the exams. Moreover, these exams9

are vulnerable to subjectivity in judgment and human error and10

are not available in all clinics which can delay the diagnosis of11

many patients, putting them at risk for complications related12

to dysphagia [13].13

There is high demand for a low cost, noninvasive, objective14

tool to provide an equivalent diagnostic value for dysphagia15

as the image-based swallow assessment modalities. Such a16

tool could provide real-time insights about the biomechan-17

ical properties of the swallow to help guide the diagno-18

sis and rehabilitation of dysphagia. High resolution cervical19

auscultation (HRCA) is a sensor-based technology recently20

proven helpful to perform real-time temporospatial kinematic21

measurements of swallowing as accurately as expert human22

judges in VFSS [13, 15]. HRCA combines signal processing,23

machine learning and time series analysis techniques to tem-24

porally localize swallow kinematic events such as laryngeal25

vestibule closure and reopening, and UES opening and closure26

[15, 13, 16, 17, 18]. HRCA has not only been effective in the27

temporal localization of swallow kinematic events, but also28

in performing spatial swallow measurements such as tracking29

hyoid bone displacement with high accuracy as compared to30

measurements by expert judges on VFSS [19, 20]. Further,31

strong associations exist between HRCA signals and other32

swallow spatial measurements such as the anterior-posterior33

(A-P) UES opening maximal distension [21]. Using HRCA34

to quantitatively measure the A-P UES opening maximal35

distension has not yet been addressed or implemented.36

As previously mentioned, HRCA was used to temporally37

identify UES opening timing by implementing a hybrid con-38

volutional recurrent neural network (CRNN), which takes39

the raw HRCA signals as input [13]. This CRNN employed40

convolutional networks (CNNs) in the first layers for local41

feature extraction from the raw signals and reduction of the42

number of time steps through which the error signals propagate43

in the network. The CNN was followed by a recurrent neural44

network (RNN), which has the ability to model temporal de-45

pendencies along the localized features extracted by the CNN46

[13, 22]. This network achieved high accuracy in detection of47

UES opening time when compared to manual measurements48

performed by expert judges in VFSS. The UES opening49

detection study and previous studies that associated HRCA50

signals with the A-P UES opening maximal distension have51

guided the endeavor of this study to build a deep learning52

platform that uses HRCA signals, hybrid CRNNs and attention53

mechanisms to accurately measure the A-P UES opening54

maximal distension during swallowing.55

We investigated the possibility of using HRCA signals to56

non-invasively estimate the A-P UES opening maximal dis-57

tension during swallowing. The multi-channel HRCA signals58

were fed into a hybrid CRNN that employs attention to focus 59

only on the signals during which the UES was open. This 60

algorithm, along with the UES opening detection algorithm, 61

offers a complete picture of the efficiency and duration of 62

the UES opening during swallowing, which clinicians can use 63

to determine factors contributing possible adverse swallowing 64

conditions such as the possibility of residue formation and/or 65

penetration and aspiration. 66

II. METHODS 67

Study Design and Clinical Protocol 68

This study was approved by the institutional review board 69

of the University of Pittsburgh. All participating subjects pro- 70

vided informed written consent prior to enrollment, including 71

consent to publish. We collected data from 133 patients (93 72

males, 40 females, age: 64.3 ± 13.2) with a variety of diag- 73

noses, with suspected dysphagia. Thirty-seven subjects were 74

diagnosed stroke while the other 96 patients were admitted 75

due to other medical conditions unrelated to stroke such as 76

neurodegenerative diseases and lung transplant. The patients 77

underwent an oropharyngeal swallowing function evaluation 78

using VF at the University of Pittsburgh Medical Center 79

Presbyterian Hospital (Pittsburgh, PA, USA). 80

This study was conducted as a part of a standard clinical 81

procedure rather than a controlled research protocol. As a 82

result, the swallowing assessment was modified according to 83

the patient’s status and condition, which may have altered the 84

volume and consistency of the boluses, the mood of adminis- 85

tration (e.g., cup or spoon), and the patient’s head position 86

during swallowing. The administered boluses included the 87

following consistencies: thin liquid (Varibar thin, Bracco Di- 88

agnostics, Inc., < 5 cPs viscosity), mildly thick liquid (Varibar 89

nectar, 300 cPs viscosity), puree (Varibar pudding, 5000 cPs 90

viscosity), and Keebler Sandies Mini Simply Shortbread Cook- 91

ies (Kellogg Sales Company). The boluses were administered 92

by the speech language pathologist conducting the exam or 93

were self-administered by the patient. Four hundred and thirty- 94

four swallows (203 from stroke-diagnosed patients and 230 95

from patients with other non-stroke conditions) were collected 96

and analyzed in this study. 97

Data Acquisition 98

The experimental setup of this study is like that of our previ- 99

ous research on UES opening [13]. Subjects were comfortably 100

seated and VFSS was conducted in the lateral plane using 101

a Precision 500D system (GE Healthcare, LLC, Waukesha, 102

WI) at a pulse rate of 30 pulses per second [23]. The VFSS 103

feed from the x-ray machine was connected to the data 104

acquisition workstation through an AccuStream Express HD 105

video card (Foresight Imaging, Chelmsford, MA) that digitized 106

the video feed at a resolution of 720 × 1080 and a sampling 107

rate of 60 frames per second (FPS). Swallowing vibrations 108

were collected simultaneously with VFSS through a tri-axial 109

accelerometer (ADXL 327, Analog Devices, Norwood, Mas- 110

sachusetts) that was attached to the skin overlying the cricoid 111

cartilage using an adhesive tape [15]. The accelerometer’s axes 112
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were aligned to gather vibrations in the anterior-posterior (A-1

P), superior-inferior (S-I), and medial-lateral (M-L) directions.2

The signals were fed into the same acquisition workstation as3

the VFSS feed through a 6120 DAQ (National Instruments,4

Austin, Texas) and digitized in a rate of 20 kHz. The col-5

lection of streams from the VFSS and the accelerometer was6

synchronized using LabView (National Instruments, Austin,7

Texas). The accelerometer signals were later downsampled to8

4 kHz to smooth out transient noise and measurement errors9

[13].10

VFSS Image Analysis and UES Distension Expert Measure-11

ment12

VFSS videos were segmented into individual swallow seg-13

ments by tracking the bolus to determine the onset and offset14

of pharyngeal swallowing. The onset of the swallow was15

defined as the frame in which the bolus head passed the16

ramus of the mandible, and the offset of the swallow was17

defined as the frame in which the hyoid bone returned to its18

lowest resting position after clearance of the bolus tail through19

the UES [24, 15, 25]. The time of UES opening and closure20

were determined for each swallow in the segmented videos.21

All judges who performed swallow segmentation and UES22

opening and closure ratings were trained to perform swallow23

kinematic measurements in VFSS and established a priori24

intra- and interrater reliability with ICC’s over 0.99. Judges25

maintained similar reliability ICC’s throughout measurements26

on 10% of the swallows. Raters were blinded to all swallow27

information and the subject’s diagnosis to avoid bias.28

To measure the A-P UES opening maximal distension,29

judges selected the frame of maximal anterior-superior hyoid30

bone displacement in the pharyngeal phase of swallowing.31

The UES maximal distension usually happens at, shortly32

before or shortly after the frame of the maximal hyoid bone33

displacement, so judges measured the UES distension at the34

frame of the maximal hyoid bone displacement, 2-3 frames35

before and 2-3 frames after (5-7 frames in total). The A-P36

maximal distension was calculated using all measured frames37

[21, 7, 26]. Judges measured selected frames using a protocol38

and a software developed in our lab [21]. The protocol was as39

follows:40

1) The height of the third vertebral unit (C3) was used41

to standardize the location of the superior and inferior42

limits of the UES. The UES, defined as the region of the43

proximal esophagus, was quantified in previous studies44

as coursing 1.3 cm inferiorly from the base of the true45

vocal folds [26]. The height of the third vertebral unit46

ranges from 1.11-1.37 cm in adults based on midsagittal47

x-ray measurements [27]. Therefore, the height of the48

C3 was marked by a yellow line that extended from the49

anterior-superior corner to the anterior-inferior corner of50

the C3 Fig. 1 (a).51

2) The length of the C2-C4 segment was used as a pseudo52

vertical axis to compensate for head and neck rotation.53

The length of the C2-C4 segment was marked by a red54

line that extended from the anterior-inferior corner of55

the second vertebral unit (C2) and the anterior-inferior56

(a) (b)

(c) (d)

(e)

Fig. 1: Graphical representation of measuring the A-P UES
opening maximal distension using the aforementioned soft-
ware: (a) C3 height is marked with a yellow line; (b) C2-C4
height is marked with a red line to be used as the pseudo
vertical axis for measurements and as an anatomical scalar for
the subject’s height; (c) The repositioned C3 segment with its
top point anchored to the superior-posterior border of tracheal
air column; (d) The pseudo horizontal axis of measurements
is generated as the long blue line perpendicular to C2-C4 line.
The anterior end of the pseudo horizontal axis slides between
the end points of the anchored C3 segment; (e) The pseudo
horizontal axis is vertically adjusted to the location of the
UES maximal distension along C2-C4, and the anterior and
posterior walls of the UES are marked with two short blue
lines perpendicular to the pseudo horizontal axis. The A-P
UES opening maximal distension is measured as the distance
between the two short blue lines.

corner of the fourth vertebral unit (C4) (Fig. 1 (b)) [28]. 57

The length of the C2-C4 segment was also used as a 58

representative scalar for the subject’s height [28]. 59

3) The yellow line representing the C3 height from step 1 60

was repositioned and anchored to the notch formed by 61

the superior border and posterior wall of the tracheal air 62

column, as shown in Fig. 1 (c). 63

4) The software automatically generated a long blue line 64

perpendicular to the C2-C4 segment. This line was 65
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Fig. 2: The architecture and data flow in the UES opening maximal distension prediction system. The lower left corner illustrates
the first step in the experimental process in which HRCA signals and VFSS were collected simultaneously from the subject.
Then, the 3-channel HRCA acceleration signals from each swallow were denoised and split into equal chunks of 66 samples
(equivalent to 1 VF frame). The architecture of the 1D CNN was comprised of two layers, the first applied 16 filters on each
channel and produced 48 channels. The attention generator networks are depicted in the center of the figure. The attention
networks (two fully connected layers) took the UES opening mask as input, which generated the attention masks for the CNN
and the RNN output. x1:T is the output train from the CNN for chunks (1 : T ) after being masked by the generated attention
and fed into the RNN units. Each unit in the RNN was built based on the gated recurrent unit design (GRU). The architecture
of the 3-layer RNN used for time sequence modeling is shown in the upper right corner of the figure. The output sequence
from the last layer of the RNN (ŷ1:T ) was flattened and masked by the attention and fed into the first fully connected layer.
(h) A diagram of the 3 fully connected layers (each of 128 units) used to combine the features coming out of the RNN is
depicted in the right middle section of the figure, under which is the output layer, composed of 1 unit (y) that resembles the
UES opening maximal A-P distension prediction as a ratio of the C2C4 segment length.

used as the A-P axis for UES distension measurement1

rather than using an arbitrary horizontal axis that could2

result in inaccurate measurements caused by head and3

neck rotation. The blue line could be repositioned by4

judges between the superior and inferior ends of the5

newly placed C3 segment from step 3 to the location of6

maximal A-P distance of the UES opening (Fig. 1 (d)).7

5) The judges marked the anterior and posterior points of8

the open UES on the blue A-P axis generated in step 4.9

Upon marking these two points, the software generated10

two short blue lines to indicate the anterior and posterior11

walls of the UES opening (Fig. 1 (e)).12

6) The software returned the coordinates of the anterior13

and posterior wall points marked in step 5 as an output 14

to be used for the calculation of the A-P UES opening 15

maximal distension. 16

The measured A-P UES opening maximal distension value 17

was divided by the length of the C2C4 segment to standardize 18

and compensate for the height of each patient. The C2C4 19

segment length represents a part of the vertebral column which 20

corresponds with the patient’s height, so we used this as a 21

standardization procedure for the A-P UES opening maximal 22

distension value as followed in multiple studies [29, 30, 31]. 23
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Signal Preprocessing1

The pharyngeal swallow event is usually temporally ac-2

companied by various other physiological events such as3

breathing and coughing, which also contribute to the collected4

vibratory and acoustic signals by the used sensors [32]. As5

a first preprocessing step performed on the collected signals6

to reduce such confounding noise sources, the signals which7

were accrued originally at 20 kHz, were downsampled to8

4kHz. The 4 kHz frequency was chosen based on multiple9

factors including the fact that maximum swallowing frequency10

components reported in the literature (max energy frequency11

below 100 Hz and central frequency below 300 Hz) and that12

the top frequency component passed by the accelerometer on-13

chip low-pass filter is with 1600 Hz [13, 33, 34, 35, 36].14

The downsampling step was performed through anti-aliasing15

low pass filtration to limit the frequency response followed by16

reduction of number of samples to match the new sampling17

frequency.18

Zero-input response of the of the microphone and ac-19

celerometer, known as device noise, were recorded and mod-20

eled via a 10th order modified covariance auto-regressive21

model [34, 37]. The order of the model was estimated using22

the Bayesian information criterion [34]. Four finite impulse23

response (FIR) filters were constructed based on the coeffi-24

cients of the auto-regressive models to eliminate the device25

noise from each of the sensors [34]. Afterwards, fourth-order26

least-square splines were utilized to remove motion artifacts27

and low-frequency noise [38, 39]. The splines used a number28

of knots equivalent to N×fl
fs

, where N is the data length and fs29

is the sampling frequency. fl is known as the lower sampling30

frequency and it is proportional to the frequency associated31

with motion artifacts. The values of fl were estimated and32

optimized in previous studies [38]. Finally, wavelet denoising33

with tenth-order Meyer wavelets and soft thresholding were34

used to reduce the effect of other noise sources of higher35

frequencies [40]. Threshold was estimated using σ
√
2 logN ,36

where N is the number of samples and σ is the estimated37

standard deviation of the noise (calculated through down-38

sampling the wavelet coefficients) [40, 41].39

Design of The Deep Prediction Model40

The design of the network implemented in this study, was41

fine-tuned based on an experimental approach and following42

the best practices that achieved high performance in similar43

problems [13, 42, 43]. Our network design was similar to44

one that detected UES opening duration in HRCA signals,45

which adopted a hybrid CRNN that works directly on the raw46

HRCA vibrational signals [13]. In this study, we changed the47

original network implemented in [13] based on the knowledge48

that HRCA signals are strongly correlated with the values49

of the A-P UES opening maximal distension rather than the50

duration of the swallow [21]. Therefore, we added an attention51

mechanism that was built and trained using a zeros/ones mask52

that resembles the UES opening duration labeled by expert53

judges as shown in the lower middle section of Fig. 2.54

The general network architecture was comprised of a 1D55

convolutional neural network, which included two convolu-56

tional layers with a max pooling layer in between. Both 57

convolutional layers were followed by a rectified linear unit 58

(ReLU). The first convolutional layer applied 16 ”1×5” filters 59

per channel. The max pooling layer consisted of a window of 60

size 2 with 2 strides. The last convolutional layer was identical 61

to the first layer except except for using only one filter per 62

channel. The longest swallow segment in the collected data 63

lasted around 1500 msec (90 frames of VFSS @60FPS), so 64

the signals of each swallow were divided into smaller chunks 65

16.67 msec in length (≡ 1 frame in VFSS or 66 samples in 66

signals). Each chunk from the signals consisted of 3 channels 67

of HRCA acceleration signals which made the dimensions 66 68

samples × 3 channels. 69

The attention mechanism was composed of two identical 70

networks as shown in the center of Fig. 2. The networks 71

were composed of two layers, the first had a size of 2048 72

units and the second contained several units that matched 73

the output of the layer to which the output attention mask 74

was to be applied. The layer that generated a mask for the 75

CNN output sequence included 90×1296 units, and the layer 76

that generated a mask for the RNN output sequence included 77

90 × 64 units. The attention-highlighted output of the CNN, 78

x1:T , was fed into the RNN which was composed of 90 GRUs, 79

each of 64 units. The output sequence from the RNN was 80

highlighted using the attention mask and fed into the next part 81

that included the fully connected network (the middle right 82

section of Fig. 2). The attention-highlighted output sequence 83

of the RNN (y1:T ) was fed into 4 fully connected layers in 84

order to fuse the temporal features from RNN into the A- 85

P UES opening maximal distension prediction. The first 3 86

layers were ReLU activated with 128 units and the output layer 87

resembled only one unit with Sigmoid activation that generated 88

the distension prediction value. The two fully connected layers 89

were separated by a dropout layer with a drop rate of 20%. 90

In this study, we employed the final cost function as the 91

mean squared error between the ground truth values of the A- 92

P UES opening maximal distension ratio to the C2C4 segment 93

length and the predictions generated by the aforementioned 94

network. We used Adam optimizer to train the network due to 95

its superiority in convergence without fine tuning for hyper- 96

parameters [44]. 97

Evaluation 98

The swallows were randomly divided into 10 equal subsets. 99

A holdout method was used to train the network with swallows 100

10 times and to test the network with a subset of swallows 101

(also known as 10-fold cross validation). The output from 102

the system was a ratio that represented the normalized A-P 103

UES opening maximal distension with respect to the C2C4 104

segment length. A previous study with this cohort did not 105

report the ratio to be more than one [21]. The predicted 106

C2C4-normalized UES opening A-P maximal distension was 107

compared to the ground truth using the absolute percentage 108

error (APE) which is defined as follows: 109

APE =
|Prediction−Ground Truth|×100

Ground Truth
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III. RESULTS1

(a)

(b)

Fig. 3: The plots illustrate the progress of the MSE loss
function and the APE over the epochs of training the proposed
UES opening distension prediction network. (a) represents the
MSE loss function over the 100 training epochs across the
10 folds. (b) represents the APE over the 100 training epochs
across the 10 folds.

A series of chunks of denoised multi-channel HRCA signals2

( sizes: 3× 66) that represented a complete swallow, were3

fed into the convolutional neural network as shown in Fig. 2.4

Simultaneously, a zeros/ones mask that represented the UES5

opening duration, was fed into the fully connected network of6

the attention generation. The network focused features of the7

UES opening duration proven to be most associated with UES8

maximal distension as compared to the features calculated9

from the entire swallow. Attention was applied in two levels,10

the first after the last layer of CNN and the second after11

the last layer of the RNN. The attention-highlighted output12

was fed into a fully connected network that translated the13

temporally attention-highlighted features into a normalized A-14

P UES opening maximal distension prediction. The network15

was trained over 100 epochs and the evolution of the loss16

function (MSE) and the absolute percentage error (APE) 17

during training is shown in Fig. 3. The graphs illustrate the 18

MSE and APE during training, which indicate that the network 19

trained well and learned the patterns within the dataset. The 20

results is confirmed by the achieved APE over the validation 21

sets, for which the network produced the normalized UES 22

distension predictions with a mean APE of 27.24± 21.1. 23

Fig. 4: The APE for swallows in the dataset when used in the
validation samples. The blue bars represent swallows in which
UES opening maximal distension was predicted with an APE
of 1 standard deviation, or less, of the entire dataset’s APE
as compared to the ground truth labeled by human experts.
The purple bars represent swallows in which UES opening
maximal distension was predicted with an APE within 1-2
standard deviations of the entire dataset’s APE as compared
to the ground truth labeled by expert judges. The red bars
represent swallows in which UES opening maximal distension
was predicted with an APE of 2 standard deviations or more
of the entire dataset’s APE as compared to the ground truth
labeled by human experts. The yellow dotted line represents
the 30% APE mark; 64.14% of the dataset had swallows with
predictions of APE 30% or less.

Fig. 4 shows the performance of the proposed UES dis- 24

tension prediction network when using swallows as a test- 25

ing sample in the validation set. The results show that the 26

prediction network predicted the C2C4 normalized A-P UES 27

opening maximal distension with an absolute error of 30% 28

or less for around 64.14% of the swallows in the dataset, and 29

with an absolute error of 50% or less for around 86.84% of the 30

swallows in the dataset. Fig. 5 shows a sample swallow pre- 31

sented to our proposed system for UES distension prediction. 32

The image depicts a prediction with 22% error (reduction) 33

when compared to the ground truth measured distension. The 34

ground truth for this swallow measured approximately 0.45 of 35

the C2C4 segment length and the predicted segment measured 36

approximately 0.35 of the C2-C4 segment length. 37

IV. DISCUSSION 38

The primary goal of this study was to determine the 39

feasibility of using HRCA vibratory signals as input for 40
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Fig. 5: A sample prediction of the C2C4 normalized UES
opening maximal A-P distension for a swallow by the pro-
posed system.The green segment represents the ground truth,
which measured 0.45 of the C2-C4 length. The light blue
segment represents the predicted distension by the network
which measured 0.35 of the C2C4 length. The absolute error
between the ground truth and the predicted segments is 22%
of the ground truth value.

a deep learning architecture to non-invasively predict UES1

opening maximal anterior- posterior distension. We presented2

a hybrid deep neural network model that used CNNs RNNS,3

and attention mechanisms to extract local features from raw4

HRCA vibratory signals. The model temporally correlated and5

adjusted the features to accurately predict the value of the A-6

P UES maximal distension. The results showed that HRCA7

combined with deep learning can fairly accurately predict8

the C2-C4 normalized A-P UES opening maximal distension9

when compared to the ground truth distension labeled by10

expert human judges.11

The deep learning architecture employed in this study was12

motivated by previous studies that investigated the correlation13

between HRCA signals and UES opening duration and A-P14

UES maximal distension [13, 3, 21]. These studies presented15

multiple findings that inspired the design for the architecture16

used in this study. The first significant finding was that HRCA17

signals are highly correlated with UES opening duration and18

can be used with deep learning to predict the exact time of19

UES opening and closing [13, 3]. The second finding was20

that the correlation between the HRCA signal features and A-P21

UES maximal distension is the strongest during UES opening.22

This finding guided us to use attention mechanisms to focus23

on key features during the swallow [21].24

Our proposed network predicted the C2-C4 normalized25

UES distension with an error percentage of 30% or less for 26

more than half of the swallows (64.14%) and less than 50% 27

for 86.84% of the swallows in the dataset. The error rates 28

achieved in this study are comparable to common error rates 29

between humans for similar measurements such as hyoid bone 30

labeling to track hyoid bone displacement [19]. In the study 31

of tracking hyoid bone displacement, raters placed anchors on 32

the anterior-inferior and posterior-superior corners of the hyoid 33

bone. These points were used to construct a bounding box 34

around body of the hyoid. The overlap between the bounding 35

boxes marked by different raters for the same swallows never 36

exceeded 79.09% of the hyoid bone body [19]. 37

The results of our proposed prediction system are note- 38

worthy because the system performed well despite a lack of 39

exact agreement between human raters. Human judgments are 40

inherently subjective and the quality and resolution of x-ray 41

images from VFSS, and differences in machines used for 42

judgments increase variability. It is difficult for humans to 43

distinguish precise pixels, and even a few pixels difference 44

could lead to a large change in the orientation and length 45

of a measured segment. Given the variability and errors in 46

human measurements, the performance of our network can 47

be considered acceptable; however, we also expect that the 48

performance and generalizability could be enhanced by using a 49

larger dataset of swallows which is one of the future directions 50

of the study. 51

The future directions of this study also include enhancing 52

the prediction performance of the network using multi-task 53

learning to train a prediction framework to simultaneously 54

predict UES opening and closure (i.e., opening duration) and 55

the maximal A-P distension. Such a model would use shared 56

representations to quickly learn the common features between 57

the downstream prediction tasks, could reduce overfitting, and 58

would increase data efficiency because of shared information 59

between the prediction tasks. 60

Clinically, non-invasive estimation of UES distension could 61

support efficient diagnosis and rehabilitation of swallowing 62

disorders. For example, this type of system could be used 63

as a biofeedback tool. Patients could use the system during 64

treatment to determine whether they are performing rehabil- 65

itative swallow ”maneuvers” correctly. The more effectively 66

they can prolong UES duration or enhance distention, the 67

less likely they are to have post-swallow residue, which can 68

lead to aspiration. Including non-invasive estimations of UES 69

distention in swallowing assessments could reduce the cost 70

of dysphagia management by limiting the need for advanced 71

diagnostic imaging studies such as VFSS. Non-invasive esti- 72

mation of UES distension could also reveal acceptable ranges 73

of normal/healthy UES distention, thus helping to identify 74

patterns that deviate from the norm. Furthermore, it can be 75

used to track the deterioration of this aspect of swallowing 76

function in relevant patient populations such as patients with 77

neurodegenerative diseases. 78

V. CONCLUSION 79

In conclusion, this study proposed a new method to use 80

HRCA signals to non-invasively estimate the anterior-posterior 81
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UES opening maximal distension during swallowing. First,1

we simultaneously collected VFSS images and HRCA signals.2

Then, we developed a protocol for human raters to judge the3

UES maximal A-P distension in VFSS images. The resulting4

measurements were used as the ground truth. We employed5

a hybrid deep neural network that used CNNs, RNNs, and6

attention mechanisms to perform predictions of UES opening7

maximal distention from the raw HRCA signals. The results8

revealed that HRCA combined with deep learning models can9

provide a fairly accurate estimate of the A-P UES maximal10

distension during swallowing when compared to the ground11

truth. This study, along with other studies investigating the cor-12

relations between HRCA signals and swallowing kinematics,13

provides evidence that HRCA combined with advanced signals14

processing techniques has the power to provide non-invasive,15

time-efficient, and low cost diagnostic value for dysphagia16

assessment and management.17
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analysis of DBSCAN, K-means, and quadratic variation algorithms for14

automatic identification of swallows from swallowing accelerometry15

signals,” Computers in Biology and Medicine, vol. 59, pp. 10–18, Apr.16

2015.17

[36] J. M. Dudik, I. Jestrovic, B. Luan, J. L. Coyle, and E. Sejdić, “Char-18
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