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Abstract ( < 250 words)   

This chapter introduces two novel hybrid brain computer interfaces (BCIs) based on 

electroencephalography (EEG) and functional transcranial Doppler ultrasound (fTCD). Non-

invasive BCIs based on EEG have become popular due to cost effectiveness, high temporal 

resolution and portability of EEG recording devices, and systems with successful laboratory 

outcomes have been designed. However, the performance of the EEG-based BCIs prevent them 

from a consistent use by the target population, which usually includes individuals with limited 

speech and physical abilities. Various neuroimaging modalities that measure different brain 

activities have been used with EEG to improve the speed and accuracy performance of the non-

invasive BCIs. The two hybrid BCIs introduced in this chapter are developed as alternatives to the 

existing systems and they were shown to balance between speed and accuracy and outperform the 

existing hybrid BCIs.  Both systems measure electrical brain activity as well as cerebral blood flow 

velocity using EEG and fTCD, respectively.  For these two systems, two different visual 

presentation paradigms are used to induce simultaneous changes in EEG and fTCD. The visual 

stimuli in the first system includes two objects flickering with different frequencies instructing 

word generation (WG) and mental rotation (MR) tasks, and the presentation in the second system 

includes two arrows instructing left and right motor imagery (MI) cognitive tasks. Experimental 

results shows that the flickering MR/WG presentation outperforms the MI presentation by 10% 

accuracy for task versus task problem. However, the MI presentation outperforms the MR/WG 

one in terms of transmission rates. 

   

7.1 Introduction  

 

Brain-computer interface (BCI) systems are commonly developed to aid individuals with limited 

speech and physical abilities, and they enable means to bypass neuromuscular activity and to 

mentally control external devices that can compensate for speech and/or motor impairments 

(Wolpaw et al. 2002), (Nicolas-Alonso and Gomez-Gil 2012).  Usage of such systems as novel 

rehabilitation and intervention techniques to restore the lost functionalities have also been 

demonstrated (Blank et al. 2014),(Fager et al. 2011). Non-invasive BCIs are usually used to avoid 

risks of surgical procedures needed for invasive BCIs (Nicolas-Alonso and Gomez-Gil 2012). 

Electroencephalography (EEG) which measures brain electrical activity is widely used to design 

non-invasive BCIs due to its high temporal resolution, portability, and low cost (Wolpaw et al. 

2002),(Farwell and Donchin 1988). However, EEG is highly non-stationary and it has low signal-

to-noise ratio (SNR) negatively affecting its performance (Akcakaya et al. 2014). In order to 

improve both the speed and accuracy performance, hybrid BCI systems have been developed  

(Amiri, Fazel-Rezai, and Asadpour 2013). One way to develop such hybrid BCI systems is to 

exploit multimodal signals, specifically supporting EEG with another modality that is measured 

simultaneously as the EEG (Pfurtscheller et al. 2010), (Muller-Putz et al. 2015).  

 



Even though there are various modalities that are used to support EEG for hybrid BCI design such 

as functional near-infrared spectroscopy (fNIRS) (Coyle et al. 2004), functional magnetic 

resonance imaging (fMRI) (Weiskopf et al. 2004), and magnetoencephalography (MEG) 

(Mellinger et al. 2007), fNIRS is the most commonly used modality for hybrid BCI design. This 

is mainly because fMRI and MEG are not portable, and hybrid BCIs built based on these modalities 

can only operate efficiently in controlled laboratory environments (Allison, Wolpaw, and Wolpaw 

2007).  For instance, EEG and fNIRS modalities were used to design asynchronous hybrid BCI in 

which the BCI user does not need any cue to initiate communication with the machine (Buccino, 

Keles, and Omurtag 2016). In this study, EEG and fNIRS data were recorded in response to motor 

execution tasks. Motor imagery (MI) tasks were employed for development of an EEG-fNIRS BCI 

in which occurrence of MI was detected using fNIRS modality while MI type was identified using 

EEG modality (Koo et al. 2015). Moreover, many researchers exploited both motor execution and 

MI tasks to design hybrid EEG-fNIRS BCIs and it was found that the data from both modalities 

due to different tasks complement each other (Fazli et al. 2012)(Blokland et al. 2014). In another 

EEG-fNIRS study, 4 commands were decoded using mental arithmetic and motor execution tasks 

(Khan, Hong, and Hong 2014).  

Despite its popularity, fNIRS has relatively slow target response and the infrared transmission is 

difficult through hair  (Min, Marzelli, and Yoo 2010). In addition, the number of fNIRS sensors to 

be used is variable and depends on the application (Naseer and Hong 2015). To overcome these 

limitations, we introduced functional transcranial Doppler ultrasound (fTCD) as an alternative to 

fNIRS. In our previous study, we have shown that compared to fNIRS, fTCD has a faster response 

time and less setup complexity since it uses only 2 ultrasound sensors to measure the cerebral 

blood velocity; and a BCI that is based on fTCD only can achieve accuracies  of approximately  

80% and 60% for binary and 3-class classification of different cognitive tasks within observation 

period of around 5 s (Aya Khalaf et al. 2018). Therefore, we argue that fTCD response time is 

comparable to EEG and it is a viable candidate to support EEG in a real-time BCI design.   

 

In this chapter, we introduce two EEG and fTCD-based hybrid BCI designs. These two designs 

rely on detecting simultaneously induced changes in EEG and fTCD through two different visual 

presentation paradigms. In the first system, a visual paradigm will induce changes in cerebral blood 

flow (measured by fTCD) through the presentations of two stimuli that instruct word generation 

(WG) and mental rotation (MR) tasks, respectively. Simultaneously, the above mentioned two 

stimuli are designed to flicker with different frequencies and they induce steady state visual evoked 

potential in EEG (Aya Khalaf, Sejdic, and Akcakaya 2018b). In the second system, the visual 

presentation paradigm includes two stimuli directing the users to perform left or right motor 

imagery (MI), and MI induces changes simultaneously in EEG and fTCD (Aya Khalaf, Sejdic, and 

Akcakaya 2018a). Both visual presentation paradigms include a fixation cross to represent the 

baseline, see Section 7.2 for the details of the visual paradigms. Healthy participants were recruited 

to test both systems experimentally.  For both systems, features derived from the power spectrum 

for both EEG and fTCD signals were calculated to identify the significant frequency bands in EEG 

and fTCD signals. Mutual information and linear support vector machines (SVM) were employed 

for feature selection and classification.  

 

 

 



 

7.2 Visual Presentation Paradigms 

 

We introduce two visual presentation paradigms to simultaneously induce changes in EEG and 

fTCD. These two visual presentation paradigms are then used to develop two different hybrid 

EEG and fTCD-based BCIs.  

 

7.2.1 Flickering MR/WG-based Paradigm 

 

The visual presentation paradigm includes two tasks and a fixation cross that represents the 

baseline. The presented tasks have to be differentiated by both EEG and fTCD modalities in order 

to obtain a successful hybrid BCI system. It was shown that word generation (WG) induces higher 

blood flow velocity in left middle cerebral arteries (MCAs) while the mental rotation (MR) induces 

bilateral activation enabling different responses fTCD (Myrden et al. 2011). However, such tasks 

cannot be distinguished using the EEG. Therefore, they cannot be directly employed in a hybrid 

EEG-fTCD system design. To build an efficient hybrid BCI in which cognitive tasks can be 

differentiated using both brain activity sensing modalities, we propose to combine the WG and 

MR tasks with steady state evoked potential (SSVEP) paradigm such that WG and MR tasks 

include a flickering checkerboard texture as shown in Fig.1.a (A. Khalaf et al. 2017).  SSVEP-

based BCIs have been extensively investigated for communication and control purposes (Bin et al. 

2009), (Lesenfants et al. 2014), (Y.-T. Wang et al. 2017). In such SSVEP systems, visual stimuli 

with different flickering frequencies are used to elicit temporally matching electrical oscillations 

in the visual cortex (M. Wang et al. 2015). To issue a command to control an external device using 

SSVEP BCI, the user has to focus his/her attention on one of the visual stimuli shown on the screen. 

Recently, several studies focused on designing techniques to enhance the recognition of stimuli 

corresponding to the elicited SSVEPs. For instance, a joint frequency-phase modulation method 

was introduced to improve the differentiation between SSVEPs due to different stimuli (Chen et 

al. 2015). Another study suggested a novel spatial filtering approach known as task-related 

component analysis (TRCA) to enhance SSVEP detection (Nakanishi et al. 2018). On the other 

hand, other researchers focused on optimizing the stimulus time to enhance the performance of 

SSVEP BCI speller using fixed and dynamic optimization approaches (E. Yin et al. 2015). 

More specifically, in the developed presentation paradigm, the icons/visual stimuli that 

instruct the users to perform WG and MR tasks were textured with a flickering checkerboard 

pattern as seen in Fig.1.a to induce SSVEPs in EEG. For SSVEPs to be elicited, the flickering 

frequency of the stimuli has to be in the range from 7 to 60 Hz (Vanegas, Blangero, and Kelly 

2013). In addition, it was found that flickering frequencies higher than 20 Hz elicit SSVEPs with 

low amplitudes (Vanegas, Blangero, and Kelly 2013). Based on this information, WG and MR 

stimuli flickered with frequencies of 7 and 17 Hz. In addition, the system included a third class 

which is a fixation cross that represents the baseline. For flickering WG, a randomly chosen letter 

flickers on the screen in order to instruct the user to silently generate words starting with that letter. 

Flickering MR task is represented on the screen by a pair of flickering 3D similar shapes rotated 

with different angles and the user is asked to mentally rotate the shapes to decide if they are 

identical or mirrored. These shapes were inspired from a database of 3D shapes constructed from 

cubes (Peters and Battista 2008). The tasks were designed using Blender computer graphics 

software. During each trial, a vertical arrow points randomly to one of the 3 tasks for duration of 

10 s and the user has to focus on performing the mental task specified by that arrow.  



In summary, using the proposed presentation scheme, flickering checkerboard-textured 

tasks will induce SSVEPs in the EEG corresponding to the flickering frequency of each task 

leading to different EEG responses while word generation and mental rotation will induce different 

cerebral blood flow in the two hemispheres of the brain, therefore, they will generate distinct fTCD 

responses. The baseline EEG and fTCD will be recorded when the participants are performing no 

mental activity (while looking at the red cross located at the center of the screen).  

 

7.2.2 Motor Imagery-based Paradigm 

 

Among the existing diverse EEG-based BCI categories, BCIs based on motor imagery have been 

intensively used in rehabilitation applications that seek assisting disabled individuals as well as 

restoring individual’s physical and cognitive functions lost due to neural disorders (van Dokkum, 

Ward, and Laffont 2015). Motor imagery (MI) is the process of movement imagination without 

any actual muscle activation. It was found that the MI process activates the same brain regions 

activated during the actual physical movement (Schlögl et al. 2005). Therefore, during the 

rehabilitation process, patients with motor impairments practice MI process to activate the injured 

brain motor regions (Kai Keng Ang et al. 2010). Several studies were performed on both healthy 

participants and participants with physical and/or speech impairments to examine the feasibility of 

motor imagery for BCI applications (Schlögl et al. 2005), (Ang and Guan 2017), (LaFleur et al. 

2013). Towards motor recovery after stroke, several motor imagery BCIs with robotic feedback 

were developed (Kai Keng Ang et al. 2010), (Blank et al. 2014). Such systems decode the motor 

imagery signals into robot assisted movements and it was shown that such systems yielded motor 

improvements.   

It was found that the cerebral blood velocity in left and right middle cerebral arteries 

(MCAs) changes depending on whether the moving arm is the left or the right one (Matteis et al. 

2006). Such findings suggest that fTCD might be promising for MI-based BCIs. Inspired by these 

findings as well as the results we achieved previously with fTCD as a candidate for real-time BCIs 

(Aya Khalaf et al. 2018), we developed MI-based hybrid BCI that uses both EEG and fTCD 

modalities (Aya Khalaf, Sejdic, and Akcakaya 2018a). Such a system acquires the electrical 

activity of the brain using the EEG and the vascular response of the brain using the fTCD. 

In the MI-based presentation scheme, a basic motor imagery task is visualized while 

acquiring EEG and fTCD simultaneously.  As seen in Fig. 1.b, the screen shows a horizontal arrow 

pointing to the right representing right arm MI and another horizontal arrow pointing to the left 

representing left arm MI as well as a fixation cross that represents the baseline. Each trial lasts for 

10 s. During each trial, a vertical small arrow, shown in Fig. 1.b, points randomly to one of the 3 

tasks for duration of 10 s and the user has to take rest if the vertical arrow points to the fixation 

cross or to imagine moving either left or right arm depending on which MI task is specified by the 

vertical arrow. 



 

 

 

7.3 Methods  

 

7.3.1 Data Acquisition  

 

Sixteen electrodes were used to collect the EEG data. The electrodes were positioned over frontal, 

central, and parietal lobes at positions Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3, 

Cp4, P5, and P6 according to the 10-20 system. Left mastoid was used as reference.  Although 

SSVEPs give the strongest response over occipital area, we anticipated getting responses similar 

to those obtained from the occipital area using the electrodes mentioned above. Especially, we 

have electrodes on locations P5, and P6 which are close to the occipital area given that EEG is 

known to have low spatial resolution.  A g.tec EEG system with a g. USBamp amplifier was used 

in this study. The amplifier included 16 24-bit simultaneously sampled channels with an internal 

digital signal filtering and processing unit and sampling rate up to 38.4 kHz. The data were 

digitized with a sampling rate of 256 samples/s and filtered by the amplifier’s 8th order bandpass 

filter with corner frequencies of 2 and 62 Hz in addition to 4th order notch filter with corner 

frequencies of 58 and 62 Hz. Processed data were transferred from the amplifiers to a laptop via 

Fig. 1. Stimulus presentation for our flickering MR/WG (a) and the motor imagery EEG-fTCD BCI (b) as well as the hybrid system 

setup captured during one of the data collection sessions (c). 

                                                 a)                                                                                                                             b) 

                                                 c)                                                                                                                             



USB 2.0.  

A SONARA TCD system that utilizes two 2 MHz transducers was used to record fTCD signals. 

These transducers were placed on the left and right sides of the transtemporal window located 

above the zygomatic arch (Alexandrov et al. 2007). Since middle cerebral arteries (MCAs) provide 

approximately 80% of the brain with blood (Stroobant and Vingerhoets 2000), the fTCD depth 

was set to 50 mm which is the depth of the mid-point of the MCAs (Monsein et al. 1995). See 

Figure 1.c for the experimental setup.  

 

7.3.2 Participants  

21 healthy individuals participated in this study including 11 individuals (3 females and 8 males) 

with ages ranging from 25 to 32 years who participated in testing flickering MR/WG paradigm 

and 10 subjects (4 males and 6 females) with ages ranging from 23 to 32 who participated in testing 

MI paradigm. None of the participants had a history of migraines, concussions, strokes, heart 

murmurs, or other brain related injuries. The experiment lasted for approximately 1 hour and 15 

min including the time required for the setup. All research procedures were approved by local 

Institutional Review Board (IRB) under the University of Pittsburgh IRB number of 

PRO16080475.  Participants signed a written informed consent before starting the experiment. 

During the experiment, subjects were seated in a comfortable chair approximately 1 m away from 

the screen. Each participant attended one session. Each session included 150 trials. Each trial lasted 

10 seconds and the trials are randomly but equally distributed across three conditions. 

 

7.3.3 Feature Extraction and Fusion  

Since each session contained 150 trials with 10 s duration per each, EEG and fTCD data 

corresponding to each observation were segmented. For each observation, the power spectrum was 

obtained for the corresponding 16 EEG segments as well as the corresponding 2 fTCD segments 

using Welch’s power spectral density estimate (Welch 1967). Instead of using all the power 

spectrum values as features, the average of power spectrum values within a sliding window of 

specific width (in Hz) was considered as one feature. For the average power to be calculated for 

the next window, the original window was shifted by a value equal to its width so that there is no 

overlap between consecutive windows and so on. For EEG signals, the average power was 

calculated using a window of 2 Hz width. Since the fTCD signal has much higher bandwidth (≈2.5 

KHz) compared to the EEG signals (≈40 Hz), and considering the need to reduce the number of 

features, a window of 50Hz width was used to reduce the fTCD power spectrum. The EEG/fTCD 

feature vector was formed by concatenating the features from all EEG/fTCD segments. The feature 

vectors of both EEG and fTCD signals were concatenated to form one single feature vector that 

represents each observation. 

 

 

7.3.4 Feature Selection 

Due to the high dimensionality of the EEG-fTCD feature vector (420 features), we applied a filter 

method for feature selection (Saeys, Inza, and Larranaga 2007). The main advantage of the filter 

methods compared to wrapper and embedded methods is the low computational complexity. 

Filtering is based on the mutual information (Hanchuan Peng, Fuhui Long, and Ding 2005). 

Specifically, in our approach, MI measures contribution of each feature towards taking a correct 

decision by assigning each feature a score based on its contribution. Higher MI score implies 

higher contribution of that feature towards correct classification. To calculate the mutual 



information score, each feature is quantized adaptively such that the number of data samples is 

almost the same in each quantization bin so that quantization levels are equiprobable (Pohjalainen, 

Räsänen, and Kadioglu 2015). Mutual information score between the discretized feature value 𝑥 

and the class label 𝑦 is given by (1).  

𝑀𝐼 = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

                                   (1) 

In (1),  𝑥 is the discretized feature value and 𝑦 is the class label. In our approach, to determine the 

number of features to be used for each binary selection problem, the cumulative distribution 

function (CDF) of the mutual information scores was computed.    We calculated CDF thresholds 

corresponding to probabilities ranging from 0.5 to 0.95 with 0.05 step in addition CDF thresholds 

corresponding to probabilities 0.98 and 0.99.  For each CDF threshold, the features obtaining 

scores greater than or equal that threshold were selected.  The performance measures including 

accuracy, sensitivity, and specificity corresponding to each CDF threshold are computed. 

 

7.3.5 Classification and Performance Measures  

Support vector machine (SVM) is used to perform the classification task (Chih-Wei Hsu and Chih-

Jen Lin 2002). Basic SVM provides a discriminative approach that uses labeled data (supervised 

learning) to find the optimal hyperplane that gives the largest distance to the nearest training 

example.  Since the BCI is intended to be used for real-time applications, the basic linear SVM is 

considered as the best choice especially if the BCI is designed to exploit an online adaptive update 

of the classifier parameters.  

Six binary selection problems are formulated and classified using SVM. For the MI-based 

system, classification problems include right MI versus baseline, left MI versus baseline, right MI 

versus left MI; and for the Flickering MR/WG-based system the classification problems are MR 

versus baseline, WG versus baseline, and MR versus WG. For each participant, a subject-specific 

classifier is trained and tested using leave-one-out cross validation. Performance measures 

including accuracy and information transfer rate given by (2) are computed to evaluate the hybrid 

system (Obermaier et al. 2001).  

    𝐵 = 𝑙𝑜𝑔2(𝑁) + 𝑃𝑙𝑜𝑔2(𝑃) + (1 − 𝑃)𝑙𝑜𝑔2 (
1 − 𝑃

𝑁 − 1
)        (2) 

where N is the number of classes, P is the classification accuracy, and B is the data transmission 

rate per trial.  

 

7.3.6 Evaluation of the Effectiveness of the Hybrid System 

 

The nonparametric Wilcoxon signed rank test is used to assess the significance of the EEG-fTCD 

combination by statistically comparing the resultant performance measures with those obtained 

using EEG data only (Blair and Higgins 1980). Specifically, EEG-fTCD accuracy vector 

containing accuracies for all the participants as well as the corresponding EEG only accuracy 

vector for the same participants represented the 2 populations to be tested using Wilcoxon signed 

rank test. The test returns the p-value for the null hypothesis that assumes that the difference 

between the two populations follows a zero-median distribution.  

 

7.3.7 Temporal Analysis to Identify Trial Length  

An incremental window of 1 s initial width is used to calculate performance measures for each 

participant. The window width is increased by 1 s increment up to 10 s which is the trial length. 



Performance measures are evaluated at each increment. The objective of this analysis to identify 

the optimum trial length that could be used to reduce the trial length and to improve the speed of 

the system. For each participant, the performance measures are computed as a function of time 

using 12 different CDF thresholds corresponding to probabilities ranging from 0.5 to 0.95 with 

0.05 step as well as 0.98 and 0.99. These CDF thresholds are computed based on the CDF of 

mutual information scores reflecting the relevance of EEG and fTCD features within each binary 

selection problem, see also Section 7.3.4.  Therefore, for every participant, 12 different profiles of 

performance measures across time are obtained.  Considering subject-specific CDF thresholds, for 

each participant, all the accuracies at all CDF thresholds are considered and the maximum accuracy 

and the corresponding performance measures as well as the corresponding CDF threshold are used 

to represent that participant. Therefore, in subject-specific analysis, each subject might have 

different CDF threshold that corresponds to his/her maximum performance accuracy. Moreover, 

average of the maximum accuracy and the corresponding sensitivity, and specificity across all 

participants were obtained. 

 

 

7.4 Results and Discussions 

Tables 1 and 2 show the maximum accuracy achieved by each participant using the EEG-fTCD 

combination for MI-based and flickering MR/WG-based paradigms, respectively. In order to 

demonstrate the advantages of the hybrid system, classification accuracies are also calculated using 

EEG only and fTCD only with the same time interval (trial length) at which the EEG-fTCD 

combination gives the maximum accuracy as seen in Tables 1 and 2. Transmission rates 

corresponding to the accuracies and times listed in Tables 1 and 2 are also calculated for each 

binary problem using EEG data, fTCD data, and EEG-fTCD combination as seen in Fig. 2 and 3. 

Figure 2 and 3 present information transfer rates for MI-based and flickering MR/WG-based 

systems, respectively. The p-values representing the significance of the EEG-fTCD hybrid system 

are calculated by statistically comparing the EEG-fTCD accuracy/bit rate vector with the EEG 

only accuracy/bit rate vector for all the binary selection problems. Moreover, Table 3 compares 

the paradigms of  the EEG and fTCD-based hybrid BCI with the state-of-the-art EEG and fNIRS-

based hybrid BCIs.  

 

As shown in Table 1, for right arm MI versus baseline problem, it was found that the EEG-fTCD 

combination achieved 88.33% average accuracy within 7.7s compared to 83.85% obtained by EEG 

only and 58.23% by fTCD only.  The average accuracy difference between the hybrid combination 

and the EEG only was 4.48%.  As seen in Fig. 2. (a), EEG-fTCD combination achieved higher bit 

rates compared to EEG only for all of the participants. On average, average transmission rate of 

3.87 bits/min was obtained. Statistically, the EEG-fTCD combination achieved higher accuracy 

compared to EEG only for all the participants with a p-value of 0.002. As for left MI versus 

baseline, an average accuracy difference of 5.36% between the combination and EEG only was 

achieved with a p-value of 0.0078. For 8 out of 10 participants, EEG-fTCD scored higher accuracy 

compared to EEG only. EEG-fTCD scored 89.48% accuracy within 6.1s while EEG only scored   

84.12% accuracy. As shown in Figure 2 (b), we obtained higher bit rates using EEG-fTCD 

combination   compared to bit rates generated using EEG only and fTCD only. In addition, we 

achieved 6.02 bits/min average bit rate. Within 3.4 s, 82.38% average accuracy was achieved for 

right MI versus left MI problem using the EEG-fTCD combination and 77.62% using EEG only 

leading to a significant average accuracy difference of 4.76 % with 0.0195 p-value.  The EEG-



fTCD combination scored higher accuracy for 8 out of 10 participants. On average, from Fig. 2. 

(c), 10.57 bits/min were achieved. 

 

 

 

TABLE 1 

Maximum accuracy (Acc) for each subject using hybrid system, EEG only, and fTCD only.   

 Right arm MI vs baseline 

Acc_fTCD 

Acc_Hybrid 

Left arm MI vs baseline 

 

Acc_fTCD 

Acc_Hybrid 

right arm MI vs left arm MI 

Acc_fTCD 

Acc_Hybrid 

Sub_ID Acc_EEG Acc_fTCD Acc_Hybrid Acc_EEG Acc_fTCD Acc_Hybrid Acc_EEG Acc_fTCD Acc_Hybrid 

1 91.67% 59.38% 94.79% 87.63% 65.98% 97.94% 82.86% 51.43% 93.33% 

2 91.67% 61.46% 92.71% 91.75% 65.98% 93.81% 75.24% 38.10% 75.24% 

3 81.25% 51.04% 86.46% 81.44% 51.55% 93.81% 71.43% 69.52% 81.90% 

4 81.25% 55.21% 87.50% 78.35% 61.86% 81.44% 81.90% 53.33% 85.71% 

5 87.50% 61.46% 90.63% 87.63% 53.61% 87.63% 78.10% 50.48% 81.90% 

6 85.42% 56.25% 86.46% 74.23% 53.61% 86.60% 85.71% 42.86% 83.81% 

7 80.21% 47.92% 86.46% 88.66% 54.64% 90.72% 71.43% 43.81% 79.05% 

8 81.25% 69.79% 91.67% 85.57% 50.52% 92.78% 96.19% 50.00% 97.14% 

9 71.88% 50.00% 76.04% 74.23% 48.45% 79.38% 70.48% 44.76% 71.43% 

10 86.46% 69.79% 90.63% 91.75% 47.42% 90.72% 62.86% 66.67% 74.29% 

Mean 83.85% 58.23% 88.33% 84.12% 55.36% 89.48% 77.62% 51.10% 82.38% 

 

TABLE 2 

Maximum accuracy (Acc) for each subject using hybrid system, EEG only, and fTCD only.   

 MR vs baseline 

Acc_fTCD 

Acc_Hybrid 

WG vs baseline 

 

Acc_fTCD 

Acc_Hybrid 

MR vs WG 

Acc_fTCD 

Acc_Hybrid 

Sub_ID Acc_EEG Acc_fTCD Acc_Hybrid Acc_EEG Acc_fTCD Acc_Hybrid Acc_EEG Acc_fTCD Acc_Hybrid 

1 91.67% 50.00% 89.58% 82.47% 55.67% 89.69% 95.24% 51.43% 99.05% 

2 84.38% 57.29% 89.58% 63.92% 43.30% 67.01% 82.86% 52.38% 85.71% 

3 90.63% 56.25% 93.75% 73.20% 53.61% 80.41% 96.19% 73.33% 97.14% 

4 83.33% 52.08% 84.38% 68.04% 42.27% 76.29% 84.76% 54.29% 89.52% 

5 82.29% 46.88% 88.54% 68.04% 57.73% 86.60% 89.52% 63.81% 86.67% 

6 90.63% 60.42% 94.79% 84.54% 53.61% 89.69% 90.48% 68.57% 93.33% 

7 93.75% 39.58% 94.79% 94.85% 55.67% 95.88% 94.29% 57.14% 96.19% 

8 88.54% 47.92% 89.58% 63.92% 50.00% 68.04% 88.57% 43.81% 93.33% 

9 83.33% 50.00% 86.46% 78.35% 54.64% 78.35% 87.62% 47.62% 88.57% 

10 58.33% 67.71% 80.21% 68.04% 62.89% 75.26% 91.43% 60.95% 91.43% 

11 88.54% 38.54% 88.54% 80.41% 52.58% 82.47% 91.43% 52.38% 95.24% 

Mean 85.04% 51.52% 89.11% 75.07% 52.91% 80.88% 90.22% 56.88% 92.38% 

 



 

EEG-fTCD combination achieved 89.11% average accuracy in approximately 7.73 s for MR 

versus baseline problem as seen in Table 2.  The combination outperformed EEG only by an 

average accuracy difference of 4.06%. The EEG-fTCD combination scored higher accuracies than 

EEG only for 9 out of 11 participants. Performance measures obtained using fTCD only were 

nonsignificant. However, fTCD boosted the overall performance when it was combined with the 

EEG. In particular, the combination was proved to be significant compared to EEG only with a p-

value of 0.0156. In terms of transmission rates, as shown in Fig.3, for most of the participants, the 

combination achieved higher bit rates compared to EEG only. Average bit rate of 4.39 bits/min 

was achieved. Considering WG versus baseline problem, as seen in Table 2, average accuracy 

difference of 5.81% between the EEG-fTCD combination and EEG only was achieved. 

Specifically, the combination achieved 80.88% average accuracy in 5.64 s while EEG only 

obtained 75.07%.  The EEG-fTCD combination scored higher accuracies for 10 out of 11 

participants using subject-specific thresholds. The hybrid system was shown to provide a 

significant accuracy improvement compared to EEG only with a p-value of 0.012. The EEG-fTCD 

combination achieved higher bit rates than EEG only for most of the participants as seen in Fig. 3. 

(b). Subject-specific thresholds achieved average bit rate of 3.92 bits/min. For MR vs WG problem, 

EEG-fTCD combination obtained 92.38% average accuracy in 7.82 s while EEG only got 90.22%.   

Fig. 2. Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and fTCD only for  right arm MI vs baseline 

(a) left arm MI vs baseline problem (b) and right MI vs left MI (c). 
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                                                 c)                                                                                                                              



The hybrid combination achieved higher accuracies for 9 out of 11 participants. Moreover, the 

hybrid combination was shown to be significant with p-value of 0.0078.  Bit rates obtained using 

the EEG-fTCD combination were higher for most of the participants compared to those obtained 

using EEG as shown in Fig.3. (c). Average bit rate of 5.07 bits/min was obtained. 

 

Considering the MI visual presentation, by Inspecting the selected significant features across all 

participants for the right arm MI versus left arm MI problem, it was found that, across all electrodes, 

the EEG average power spectrum values at frequencies up to 2 Hz (delta frequency band) are the 

most common selected features across participants. Moreover, it was found that the common 

selected features belonging to theta (5-8 Hz) and mu (8–13 Hz) bands are coming from electrodes 

Fp1, Fp2, F3, and F4 while the common features belonging to beta (16–28 Hz) band are associated 

with electrodes C1, C2, Cp3, Cp4, P5, and P6. As for the fTCD, the common significant features 

were found at frequency bands 550-600, 2000-2050 and 2150-2200 Hz for the right fTCD channel 

and at frequency band 2050-2100 Hz for the left fTCD channel. 

 

 

                                                 a)                                                                                                                             b) 

Fig. 3. Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and fTCD only for MR vs baseline (a) WG 

vs baseline problem (b) and MR vs WG (c). 
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As for the flickering MR/WG visual presentation, through investigation of the common EEG and 

fTCD significant features across all participants for the classification problem that yielded the 

highest accuracy (WG versus MR), as expected, the top common EEG power spectrum features 

were found approximately around the 1st, 2nd, and 3rd harmonics of the 7 Hz and around 1st and 

2nd harmonics of the 17 Hz. Considering the fTCD features, the most common selected 

significant power spectrum features were found at frequency bands of 0-50, 1200-1250, and 

1350-1400 for the left fTCD channel and at frequency bands of 0-100, 300-350, and 1950-2000 

Hz for the right fTCD channel.  

 

In Table 3, we compared the proposed hybrid BCI with the state of the art EEG-fNIRS hybrid 

BCIs (Fazli et al. 2012), (Blokland et al. 2014), (Khan, Hong, and Hong 2014), (Putze et al. 2014), 

(X. Yin et al. 2015), (Koo et al. 2015), (Buccino, Keles, and Omurtag 2016), (Shin et al. 2017) . 

Accuracies of the above listed 6 binary selection problems are listed in Table 3. Comparisons were 

performed in terms of trial length and accuracy. For the EEG and fTCD-based hybrid BCI, 

comparing the MI-based presentation paradigm to the flickering MR/WG paradigm, we observe 

that the latter achieved an average of 10% increase in accuracy. However, the hybrid system based 

on MR/WG paradigm was slower since it required an average time of 6.36 sec to achieve 92.38% 

accuracy while the system based on MI paradigm required only 3.5 sec on average to achieve 

82.38% accuracy.   In line with the differences in speed, flickering MR/WG presentation achieved 

maximum bit rate of 5.6 bits/min while MI visual presentation obtained 10.57 bits/min. On the 

other hand, right/left arm MI versus baseline achieved higher accuracies compared to right arm 

versus left arm MI. In contrast, it was found that MR/WG versus baseline problems achieved lower 

accuracies compared to MR versus WG problem. Since the location of the baseline cross is very 

close to the flickering MR and WG tasks as seen in Fig.1, the flickering affected the subject 

attention even during focusing at the baseline cross and thus caused reduction in accuracy for 

MR/WG versus baseline problems. 

 

TABLE 3 

Comparison between the proposed hybrid system and the state-of-the-art hybrid BCIs. 

Method BCI Type Accuracy 
Trial length (s) 

Task Baseline/rest 

(Fazli et al. 2012)  EEG+fNIRS 83.20% 15 6/0 

(Blokland et al. 2014)  EEG+fNIRS 79.00% 15 0/30±3 

(Khan, Hong, and Hong 2014)  EEG+fNIRS 83.60% 10 0/5 

(Putze et al. 2014) EEG+fNIRS 94.70% 12.5±2.5 0/20 ±5 

(X. Yin et al. 2015) EEG+fNIRS 89.00% 10 0/21±1 

(Koo et al. 2015)     EEG+NIRS 88.00% 15 0/60 

(Buccino, Keles, and Omurtag 2016)  EEG+fNIRS 72.20% 6 6/0 

(Buccino, Keles, and Omurtag 2016)  EEG+fNIRS 94.20% 6 6/0 

(Shin et al. 2017)  EEG+fNIRS 88.20% 10 0/16±1 

Proposed method (Left MI/baseline) EEG+fTCD 88.33% 10 NA 

Proposed method (Right MI/baseline) EEG+fTCD 89.48% 10 NA 

Proposed method (Right MI/left MI) EEG+fTCD 82.38% 10 NA 

Proposed method (MR/baseline) EEG+fTCD 89.11% 10 NA 

Proposed method (WG/baseline) EEG+fTCD 80.88% 10 NA 

Proposed method (MR/WG) EEG+fTCD 92.38% 10 NA 

*NA: Not applicable 

 



Compared to the other BCIs listed in Table 3, in terms of trial length, the EEG and fTCD-based 

system has the shortest trial length of maximum 10 s. In addition, the proposed system is faster 

since it requires no baseline/rest period before/after each task. In terms of accuracy, the proposed 

hybrid BCI outperforms most of the methods in comparison. However, the systems introduced by 

Putze et al. (Putze et al. 2014) and Buccino et al. (Buccino, Keles, and Omurtag 2016) achieved 

higher accuracy compared to  ours as they obtained 94.70% and 94.20% average accuracy 

respectively. Yet, these system are slower than our system since the one introduced by Putze et al. 

(Putze et al. 2014) requires at least 12.5 s as a task period and 20 s as a resting period while the 

one presented by Buccino et al. (Buccino, Keles, and Omurtag 2016) requires a baseline period of 

6 s before starting each task.  

 

Note here that despite the high accuracies obtained in a previous study with the fTCD data only 

(Aya Khalaf et al. 2018) ,  the presented hybrid system obtained lower accuracies with fTCD data 

only. It is well known that fTCD can differentiate imagery and analytical tasks since analytical 

tasks induce higher blood velocity in left MCAs while imagery tasks induce bilateral activation. 

However, for the MI-based system, both tasks are imagery tasks which makes the classification 

problem harder to solve.  On the other hand, even though flickering MR/WG-based system utilizes 

both imagery and analytical tasks, the tasks were flickering to elicit SSVEPs. Such flickering 

reduced the concentration of each subject on the mental task to be performed. Moreover, in the 

previous study, a 15-min baseline period was recorded before starting the tasks to stabilize the 

cerebral blood flow. Also a resting period of 45 s was inserted between consecutive tasks. During 

the design of the two hybrid systems presented in this chapter, in order to improve the speed of the 

systems and also to reduce the trial length no baseline/rest periods were added to stabilize the 

cerebral blood. In fact, in the EEG and fTCD-based hybrid BCI systems, the baseline was shown 

at random times since it was designed as a task that resembles the condition in which the BCI user 

does not intend to produce a command.  

 

7.6 Conclusions 

In this chapter, we introduced two novel hybrid BCI systems that use EEG as the primary 

sensing modality to measure electrical brain activity and the fTCD as the secondary sensing 

modality to measure cerebral blood flow velocity. One of the systems was based on motor 

imagery to induce changes simultaneously in EEG and fTCD, while the other system 

simultaneously utilized mental rotation and word generation as stimuli for fTCD and flickering 

checkerboards to induce SSVEP in EEG. The experimental results that are obtained through the 

participation of 21 individuals were promising to show that the presented hybrid systems are 

feasible candidates for real-time BCI applications.  Compared to the existing work on hybrid 

BCI that combines EEG with other modalities, the two hybrid systems show important progress 

towards making such systems real-world-worthy in terms of speed and accuracy. However, the 

systems still have limitations such that the temporal resolution of fTCD is lower than EEG 

resulting in longer trial lengths and decreasing the speed of the system. For example, such 

mismatch between the temporal resolution of these modalities can be minimized by introducing 

advanced analysis techniques for fTCD data to improve the obtained accuracy within the 

minimum possible task period. In particular, Wavelet analysis can be employed for fTCD 

analysis since it was used  in a recent study (Aya Khalaf et al. 2018) to prove that fTCD is as a 

viable candidate for real-time BCIs and it achieved accuracies of approximately 80% and 60% 

for binary and 3-class BCIs within 3 and 5 s respectively. Further future directions could include 



investigation of analysis techniques for both EEG and fTCD signals to increase accuracy and 

decrease trial length for the hybrid system so that the information transfer rate for the EEG-fTCD 

combination is increased. Morever, the generalization of the system across subjects could be 

explored using transfer learning techniques to decrease calibration requirements. On the other 

hand, based on the feedback from the BCI users, a bigger screen will be used to run the 

experiment to reduce the flickering effect on the subject’s attention while focusing on the 

baseline cross. Moreover, the 25-min session will be divided into 2 sessions to reduce the user 

fatigue due to the flickering. 
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