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Quantitative Performance Analysis of Scalogram
as Instantaneous Frequency Estimator
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Abstract—Instantaneous frequency (IF) estimation through
the estimation of peak locations in the time-frequency plane is
an important approach for signals contaminated with additive
white Gaussian noise. In this paper, the forementioned analysis is
carried out for continuous wavelet transform. The analysis of the
scalogram as the instantaneous frequency estimator is performed
for any FM signal regardless of the mother wavelet. Accurate ex-
pressions for the bias and the variance of the estimator are derived,
and reveal that the bias and the variance are signal dependent.
Results are statistically confirmed through the numerical analysis
for several mother wavelets, and among considered wavelets, the
Morlet wavelet produces the smallest estimation error. Further-
more, the performance of the IF estimator based on the scalogram
and the spectrogram were compared through analysis of mean
square error. These results showed that the scalogram with the
Morlet wavelet exhibited good performance for the sample linear
FM signal and the sample hyperbolic FM signal in comparison to
the spectrogram.

Index Terms—Instantaneous frequency (IF) estimation, scalo-
gram, wavelet transformation.

1. INTRODUCTION

NSTANTANEOUS FREQUENCY (IF), usually defined as
I the derivative of the phase of a signal, is a fundamental con-
cept present not only in communications (e.g., frequency mod-
ulation), but is also present in nature (e.g., changing color of
light) [1], [2]. There are several approaches for the instantaneous
frequency estimation, and extensive review of the topics is pre-
sented in [2] and [3]. Some of these methods are parametric and
some are nonparametric. In general, parametric methods use a
signal model, and the goal is to estimate some parameters in
order to obtain an estimate of the instantaneous frequency. Non-
parametric methods on the other hand, do not require full knowl-
edge of the signal and the time-frequency based approach is one
of them. Originally, the basis for using the time-frequency distri-
butions for the instantaneous frequency estimation is their first
moment property [2], [4], [5]. However, the presence of noise
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leads to serious degradation of the first moment estimate [6].
As a consequence, the peak detection of time-frequency distri-
bution is used instead and it is based on the detection of distri-
bution peak positions.

Wavelet transform is a mathematical technique which decom-
poses a signal into both time and scale [7]. The transform uses
specific analyzing functions, called wavelets, for the signal’s
decomposition, and the main property of these analyzing func-
tions is that they are localized in time [8]. The scale decomposi-
tion is obtained by dilating or contracting the chosen analyzing
wavelet before convolving it with the signal [9]. The parameter
scale in the wavelet analysis is similar to the scale used in maps.
As in the case of maps, high scales correspond to a nondetailed
global view (of the signal), and low scales correspond to a de-
tailed view. Similarly, in terms of frequency, low frequencies
(high scales) correspond to global information of a signal (that
usually spans the entire signal), whereas high frequencies (low
scales) correspond to detailed information of the hidden pat-
tern in a signal (that usually lasts a relatively short time). The
limited time support of wavelets is important because then the
behavior of the signal at infinity does not have a role. There-
fore the wavelet analysis or synthesis can be performed locally
on the signal, as opposed to the Fourier transform which is in-
herently nonlocal due to the space-filling nature of the trigono-
metric functions [10]. In addition, the wavelet transform has
been applied in many different fields, such as biomedical ap-
plications [11], pattern recognition [12], power quality analysis
[13], and computer graphics [14], to name a few.

The instantaneous frequency estimation based on the wavelet
analysis was previously considered in several publications
[15]-[20]. These works rely on the idea presented in [15],
where an asymptotic approximation of the continuous wavelet
transform using stationary phase approximation is considered.
The authors showed that this asymptotic approximation can be
used for the extraction of some characteristics of the analyzed
signal, such as frequency and amplitude modulation laws.
In order to estimate the instantaneous frequency of a signal,
a so-called ridge is used, which is essentially a peak in the
time-frequency domain [16], [17]. For such an asymptotic ap-
proximation of the continuous wavelet transform, Cramer-Rao
bounds (CRB) for the instantaneous frequency variance at each
time instant for the Morlet mother wavelet are investigated
in [20]. The results depicted that in a specific case of the
continuous wavelet transform with the Morlet mother wavelet,
the transform achieved a performance close to the CRB espe-
cially at a low signal-to-noise ratio (SNR). The instantaneous
frequency estimation from the phase of the continuous wavelet
transform is also considered [18]. However, the results showed
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to be very unstable in practical situations when a signal is con-
taminated with noise. However, in all these works no attempts
have been made to provide a general framework for the analysis
of the scalogram as an instantaneous frequency estimator.
Furthermore, the existing works usually only considered the
behaviour of the Morlet wavelet.

The main contribution in this paper is a general analysis of the
scalogram as the instantaneous frequency estimator for any FM
signal. Expressions for bias and variance of such an estimator
are derived regardless of the mother wavelet used in the analysis.
These theoretical results are compared with the statistical data,
i.e., the results of numerical analysis and high agreement be-
tween them is noticed. In addition, performances of the instan-
taneous frequency estimator based on the scalogram and spec-
trogram are compared through the magnitude of mean square
errors. It is important to point out that the analysis of the scalo-
gram based estimator is carried out based on determining the di-
rect relationship between the scale and (Fourier) frequency for
the mother wavelet. This is an important difference in compar-
ison to the previous works, which assumed that the ridge actu-
ally corresponded to the IF of the signal, which is not necessarily
the case.

This paper is organized as follows: In the next section a brief
review of the wavelet transform is provided. Section III illus-
trates the performance of the instantaneous frequency estimator
based on the wavelet transform, with in depth analysis of the
bias and the variance of the estimation. In Section III-B bias
and variance of the estimation error are derived for several com-
monly used mother wavelets. The obtained results are checked
numerically and statistically in Section IV. Finally, conclusions
are drawn in Section V.

II. BACKGROUND THEORY

A. Wavelet Transform

The continuous wavelet transform (CWT) correlates the
signal with families of waveforms that are well concentrated
in time and frequency, and these families of waveforms are
obtained by the dilations and translations of an analyzing
wavelet, 1)(t). Therefore, the CWT of a continuous signal z()
is defined as [7], [8], [10]

+oo

CWT.(t, 5) = /x(u)%w* <“S_t> du 1)

—00

with ¢(¢) being the mother wavelet function, 1) € L?(R), where
the mother wavelet satisfies the following condition:

+oo
/ P(t)dt = 0. %)

Ifu—t=7and

(t,5) = (3) 3)
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are substituted in (1), then the CWT can be rewritten as
oo
CWT. (1, 5) = / 2t + 7)U* (1, 8)dr- @)

— 00

In order to accurately relate the scale to the frequency, more
precise relationships between the scale and the frequency were
derived [21]-[23]. In particular, it has been shown that for a
simple complex sinusoid, a relationship between the scale and
the (Fourier) frequency can be found, so that the scale is a func-
tion of the frequency [21], [22], that is

s = f(w) )

and derivations for a general case are shown in Appendix A. In-
herently, this relationship produces a time-frequency represen-
tation which is an unbiased estimator of the frequency for the
simple sinusoids for nonnoisy signals. Using the mentioned re-
lationship the CWT can be rewritten as

oo

/ z(t + 7)V* (1, w)dr. (6)

— 00

CWT.(t,w) =

The continuous wavelet transform of the discrete sequence
x(nT"), sampled with a period 7" in 7, is defined as a convo-
lution of the discrete sequence with a scaled and translated
version of ¢)(nT')

CWTu(t,w) =T a(t+nT)T*(nT,w). (7

In the analysis using the short time Fourier transform, a spec-
trogram is defined as the square of amplitude of the time-fre-
quency transformation of the signal, i.e., it is a time-frequency
energy density function [4]. Similarly, in the wavelet analysis,
the time-frequency energy density representation obtained by
the wavelet transform is called scalogram, and it is defined as
the square of amplitude of the wavelet transform

W (t,w) =CWTy(t,w)CWT(t,w)
=77 Z Z z(t+n1T)x™(t + naT)

ny no

X U (1T, w)¥(neT,w). )

B. Scalogram and IF Estimation

Consider noisy discrete-time observations
x(nT) = f(nT) + e(nT) )

where f(nT) is a sampled version of the continuous signal
f(t) = Ae?*® with T being a sampling interval, and e(nT') is a
complex-valued white Gaussian noise with i.i.d. real and imag-
inary parts. Thus, Re(e(nT)) and Im(e(nT')) are N'(0,02/2),
and the total variance of the noise is equal to 0. By defini-
tion, the instantaneous frequency of the considered signal is
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w(t) = dp(t)/dt. It should be assumed that w(t) is an arbitrary
smooth differentiable function of time with bounded derivatives
WO O] = [60O)] < Mo ()7 > 1.

The value of w(t) can be estimated in the time-frequency
plane as following [2], [6], [24]:

w(t) = arg [max W(t,w) (10)

g W)

with @, = {w : 0 < w < 7/T} being a basic interval
along the frequency axis. Before proceeding further, W (¢, w)
for the signal f(¢) should be considered. Using the fact that
the signal has a slow-varying amplitude and Taylor series ex-
pansion of the phase differences f(¢ + n1T)f*(t + n2T) =
AZeid(tmiT)=jé(t+n2T) (¢ ) can be expressed as

W(t,w) = T2 Z Z A2ei @i T naoT ) +jA(n1 Tna Tt)

ny mn2

XU*(ny T, w)W(noT,w) (1)

where ®(n1T,nyT,t) represents the Taylor series approxima-
tion of the phase with first M terms, thatis, k = 0,..., M

M TV (T
b(n1T,nsT,t) sz:()¢(k)(t) (n1T) - (noT)

12)

and

A(niT,noT, )

Z om (mT)* !(naT) (13)

k=M+1

where A¢(n1T,noT,t) represents a residue of the phase.
Usually A¢p(n1T, noT,t) represents the third and higher order
terms. The estimation error, that is, the difference between w(t)
and estimated peak frequencies, at a time-instant, ¢, is defined
as

Ao(t) = w(t) — w(t) (14)
and due to the presence of the white Gaussian noise, the estima-

tion error A& (t), can be considered to be a random variable as
well, characterized by its bias and variance.

III. PERFORMANCE ANALYSIS OF THE IF ESTIMATOR

The estimate of the IF &(t) is defined by the stationary
point of W (¢,w) [25]. It can be found by setting the derivative
OW (t,w) /0w to zero, that is, OW (t,w)/dw = 0, where

TZZZ (t+n1T)z

ny n2

8W t,w) *(t + noT)

ov* T,
y [%wg, w)

0¥ (noT,w)

—I—\I/*(TI,1T,(4)) o

15)
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In order to perform the estimation error analysis, we linearize
OW (t,w) /0w around the stationary point with respect to small
estimation error A& (t), phase residue A¢ and noise € [25]-[32]

oW (t,w) OPW (t,w) .
Ao(t
ow |, + aw? |, w(t)+
oW (t,w) oW (t,w) —0 (16
ow 0644 ow 06.

where |o indicates that the derivatives are calculated at
the point w = ¢ (t), Ap = 0, and e = 0. The terms
oW (t,w)/0w|os,, and OW(t,w)/Owlos. represent vari-
ations of the derivative OW(t,w)/0w caused by small
A¢p(n1T,noT, 1) and noise e(nT'), respectively [27].

The terms from (16) are defined as [26]

W) | o72 42Re {P(t,w)E(t, )} (an
8(4) 0

0’W (t,w) 2 42 2

PV 1010 [ b P

(18)

WD) o2 s2Re (Q(1) F(1)} (19
ow 064

whereas OW (t,w)/dw|os. will be given separately. The func-
tions E(t,w), F(t,w), P(t,w), Q(t,w), and R(t,w) are also
calculated at the point w = ¢(!)(£) and are defined by

E(t,w) =) e T (nT,w) (20)
F(t,w) = Z eI T—IAGTO g (T, o) Q1)
P(t,w) = Zewnﬂm(”(w‘"“ OV (nT', w) g;T w) (22)
— junT+j6 3 (t w-l— jAP(nT,t 8‘11*(nT w)

Q(tvw)—zn:ej J¢ (1) =5 +iAG(nTot) 7 0

(23)

comg 020 (0T, w

R(t,w) =) e % (24)

n

where for M = 2, the approximation

. 2 k nT)* . 1 T 2

2
(25)

is used to simplify the above expression.

A. IF Estimation Bias and Variance

Using derived equations (17)—(19), the (16) is rewritten in a
general form as (26) at the bottom of the next page.
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Theorem 3.1: Let w(t) be a solution of (10) and T' — 0, then
the bias of the IF estimation error Ad(t) is given by (27), shown
at the bottom of the page, where

By = Z %W(nﬂ@ (28)
By=Y_ m*(nT,w)%. (29)

Proof: The general expression of the estimation error is
given by (26), and the only random term is OW (¢,w)/0w|os. .
Therefore, the expected value of the estimation error, that is, the
bias is given by (30) at the bottom of the page. The expected
value of OW (t,w)/0w|ps. is given by

- { OW (t,w) }

ow
=F {T2 Z Z x(m T + t)z™ (noT + t)

ny no

AV (n, T,
x$@<nﬂ:w>}

+FE {T2 Z Z x(m T + t)z* (noT + t)
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oV* (T, w) . OV (noT,w)
x[ Ew U(noT,w)+¥* (01T, w) B
+ T%02 Xn: {78\11 g;T,w) U (nT,w)

oY (nT,w)
U*(nT. w) — %)
#o (o7, 0) 2
_IWW)| | a2 4 py) G1)
Ow 0

which results in (32), shown at the bottom of the page. The
above equation is equal to (27), which proves the second part
of the theorem. O

Special Case: A linear FM signal f(t) = Aed(@/2% cor-
rupted by a stationary, complex, additive, white Gaussian noise
yields the IF bias:

_ 6A%Re {P(t,w)E(t,w)} + 0*(B1 + By)
242 [R(t,w)E(t,w) - |P(t,w)|2}

bias (A&(t))

(33)
since A¢(niT,noT,t) = 0 resulting in variations of the
derivative OW (t,w)/0w caused by small A¢(niT,noT,t)
being equal to (17).

Theorem 3.2: Let &(t) be a solution of (10) and 7" — 0, then
the variance of the IF estimation error Aw(t) is given by

ni n2 var (A@(t))
x‘l/*(anM)W} ~ Qt,w)+T*0*Bf+4T*0* By By +2T"0* B3 B4+ T 0" B3
w - 2
—7? ZZAQBjé(an,nQT,t) 4T A% [R(tw)E(tw)—|P(tw)|2}
n1 o (34)
2T? A*Re { P(t,w) E(t,w)} + 2T? ARe {Q(t,w) F (t,w)} + 2V L)
A(t) = 08 | (26)
272 A2 [R(W)E(W) - |P(t7w)|2]
2 42 2 42 22
bias (A& (1)) = AT° A’Re{P(t,w)E(t,w)} + 217 A’Re{Q(t,w)F(t,w)} + c°1T*(B1 + Ba) o7
9T2 A2 [R(W)E(W) - |P(t,w)|2]
2T2A?Re { P(t,w)E(t,w)} + 2T2 A%Re {Q(t,w) F(t,w)} + E { AW (t,) 065}
E{A&(t)} = - =5 (30)
272 A2 [R(t,w)E(t,w) —|P(t,w)] ]
2 42 2 A2 22
E (A6(D)} = AT A’Re {P(t,w) E(t,w)} +2T° A’Re {Q(t,w) F(t,w)} + 0*T*(B1 + By) 2

T2 A2 [R(Lw)E(Lw) — |P(t,w)|2}
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where By simple algebraic manipulation of the above equations, the
variance can be written as

OU*(nT,w) OV (nT var (Aw(t))
By= Y L) OV T ) (35) ) :
~ Ow ow E{ < OW (t,w) ) }—E{ AW (t,w) ‘ }
ow ow
By=Y  W(nT,w)V*(nT,w) (36) _ 0% 00
2
“ (=)
Qt,w)=T*0*(4B, +2B,) P(t,w) E(t,w) oo o
2
+1%0%(2By +4By) E*(t) P*(t) E <% > — (%‘ +02T2(Bl+32))2
+2T*62 By |P(t,w) > +2T*0*Bs |E(t,w)|? “ los. “ o
—402T* A’Re{ P(t,w)E(t,w)} (By + Ba). (37) (azwu,w) )2
Ow? 0

(41)
Proof: By definition, the variance is given by It can be shown that

2
P> oW (t,w)
. ANy 2 ~ 12 9w os
var (A&(t)) = E {(Aw(t)) } — E{AG(1) (38) .
W (t, ?
- <% ) +T*02 (4B + 2B,) P(t,w)E(t, w)
. 0
where the first term is equal to +T%2(2By + 4B5)E*(t,w)P*(t,w)
, > +2T%0% By |P(t,w)|* +2T%0* B} 42T 6% Bs | E(t, w)|*
B{(a0()*} = <M ) L[V w) 2740 By By + 2704 B3 B, + 210" B2. 42)
ow |, ow 0604
) By substituting the above equation in the previous equation, we
5 ( OW (t,w) ) will obtain the expression for variance given by (34). O
+ -~ 7
Ow 05 B. IF Estimation With Specific Wavelets
oW (t,w)| OW(t,w) The expressions for the bias and the variance in the case
+2 Ow o Ow 05 of any wavelet may be obtained as special cases of (27) and
ae (34). Let us write these expressions for several important mother
492 oW (t,w) I oW (t,w) wavelets given by the following:
ow 0 ow 06 e a Mexican hat [7]
OW (t,w) OW (t,w) W(t) 2 <t2 1) e (43)
9 ) E ) (t)=—=|=5—-1)exp| —=—
+ ow 06n0 Ow 06. 7T1/4V3<: ¢? 2¢2
9 2 where ( = 1,
= < ani(Zw) ) 39) * a modified Morlet wavelet [10]
w 0
1 2
t) = exp(jnt —t=/2 44
and the second term is equal to vi) V2T xplin /2) 9

9 2 where n = 74/2/1n(2);
E{AG(N2 = OW (t,w) oW (t,w) » a Cauchy wavelet [9]
(po) = | =22 ) + | 2
W o W 0say 1 1
YO e “
> oW (t,w)
+ Ow 0 Using the procedure outlined in Appendix A, the scale to fre-
° quency relations for the three considered wavelets are summa-
19 oW (t,w)| OW(t,w) rized in Table L.
ow g 0w  gs, . Before proceeding further on, it is worthwhile to closely ex-
OW (1, w) OW (£, w) amine terms B and By. As T — 0, we have
+2 | B oo
dw | w  os. OV* (7, w)
TBy — / —— V(1 w)dr (46)
OW (t,w) oW (t,w) ow
+2 —— E{ ——— —oo
9w osa, w o, +00 .
L (PW(w)| o) TBy — / U (7, m%m (47)
’ 8w2 0 ’ —o00 “
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TABLE I
SCALE TO FREQUENCY RELATIONSHIPS FOR THE CONSIDERED W AVELETS
Wavelet Relation
Mexican hat | s = ‘2/4—13
/1242
Morlet s= %
_ 3
Cauchy §= 355
TABLE 11
VALUES OF B3 AND B4 FOR THE CONSIDERED W AVELETS
Mexican hat Morlet Cauchy
5 241 3
Bs | 2ot 4&;'71\/7? 327 Tw2
Bs | L _1_ 1
41T oT/m 8nT

and for the three considered wavelets, it can be shown that

By =By =0. (48)
Since the considered wavelets are Hermitian functions, it is also
straightforward to show that B; is a complex conjugate of Bs,
that is, B; = Bj. Hence, for any wavelets that are Hermitian
functions, it is sufficient to find one of the values.

Therefore, the bias and variance of estimation error are equal

to
bias (A&(t))
_ We{P0)EE )} +Re{QELWFE W)} 0
|R(t.w)E(tw) = |P(t,w)]]
var (Aw(t))
_o*By |P(t,w)|*+02Bs |E(t,w)|2+a4B3B4' 50)

244 [R(t.0)B(t,0)~ |P(t. )]

Similarly, as for B; and Bs, we can find values for B; and B,
as T" — 0 and these are summarized in Table II. It is clear
that B3 ~ 1/Tw?, while By ~ 1/T for the three considered
wavelets.

IV. NUMERICAL ANALYSIS

In this section, the performance of the scalogram based IF es-
timator is checked numerically. The goal of the numerical anal-
ysis is to examine whether the theoretical expressions derived
in the previous section correspond to the actual results of simu-
lations. Also, the mean square error (MSE) of the IF estimation
for the scalogram using the considered wavelets will be com-
pared to the MSE obtained by the spectrogram [26], [28]. The
purpose of this part of the study is to examine how the results
obtained by the scalogram compare to the results obtained by
other classical method.

A. Comparison Among Different Wavelets

In this section, the performance of the IF estimator is exam-
ined using two classes of signals. A linear FM signal fi(t) =
exp(j1287t + j(a/2)t?) is considered for 0 < a < 167 and
a hyperbolic FM signal fo(t) = exp(jfsign(t) In(|t| + 1)) is
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Fig. 1. IF bias and variance obtained theoretically (solid) and statistically
(dashed) as a function of «. (a) Bias and variance for the Mexican hat wavelet.
(b) Bias and variance for the Cauchy wavelet. (c) Bias and variance for the
Morlet wavelet.
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Fig. 2. IF bias and variance obtained theoretically (solid) and statistically
(dashed) as a function of 3. (a) Bias and variance for the Mexican hat wavelet.
(b) Bias and variance for the Cauchy wavelet. (c) Bias and variance for the
Morlet wavelet.

considered for 0 < B < 256w. The sampling period used is
T = 1/256 with 512 data points, and the variance of the noise
used in the analysis is set to o2 = 0.1. The results of the nu-
merical analysis along with the theoretical values are depicted
in Figs. 1 and 2, and they represent the bias and the variance for
the lag at ¢ = 0.5, that is, W (0.5, w).

Theoretical values are produced by applying the derived ex-
pressions (27) and (34) for the particular signals, while the sta-
tistical data are obtained by 10 000 realizations. The vertical
axis represents the magnitude of the estimation bias and vari-
ance, while the horizontal axis represents the values of variables
(o and ).

A very high agreement between the theoretical and statistical
results for the linear FM signal can easily be observed in Fig. 1
for all cases except for the bias obtained by the scalogram with
the Morlet wavelet. The reason for disagreement in the case of
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Fig. 3. MSE of the IF estimation (variance plus squared bias) for the Mex-
ican hat wavelet (dashed), the Cauchy wavelet (dashdot) and the Morlet wavelet
(solid lane) as a function of: (a) «; (b) 3.

this particular wavelet is the amplitude of the bias. The biggest
bias is obtained for & = 167 and is of order of 10~%, which
is 1000 times smaller than the variance of the noise used in the
numerical analysis.

For the hyperbolic class of signals, the theoretical values of
the bias and the variance also have high agreement with the re-
sults of the numerical analysis. While for all mother wavelets
the values of the bias and the variance are increasing for the
linear FM signal, here it can be noticed that the Morlet wavelet
produces decreasing values of the bias.

We have examined how the estimation bias and variance be-
have for two classes of signals and several wavelets. In order to
further gain understanding of the differences among wavelets,
the MSE of the estimation is examined as well for the given
scenarios. The MSE is obtained as a sum of the variance and
squared bias, and the results are depicted in Fig. 3(a) and (b).

From these figures, it is clear that the Morlet wavelet produces
significantly lower MSE in comparison to other wavelets for
both classes of signals. For the linear FM signals and hyperbolic
class of signals, the Cauchy wavelet produces the biggest error.

B. Comparison of Scalogram With Spectrogram

In this section, the MSE of the IF estimator obtained by the
scalogram, W (¢, w), and a spectrogram is examined using two
signals. A linear FM signal f3(t) = exp(j60nt + j(a/2)t?)
is considered for « = 307 and a hyperbolic FM signal
fa(t) = exp(jBsign(t)In(J¢] + 1)) is considered for
B = 64x. The sampling period used is 7' = 1/256 with
512 data points. The signals are contaminated with a white
Gaussian noise, and the signal to noise ratio (SNR) is given
by SNR = 10log;(A?/o?) with A = 1 being a signal’s
amplitude and o2 being the variance of the noise. The SNR is
varied from O to 15 dB by a 1-dB step. For each SNR value,
1000 realizations are used. The estimation is performed using
position of maxima of the scalograms and spectrogram [28]. In
calculation of the spectrogram, a Gaussian window is used for
several values of o given by o = {0.005,0.01,0.015}.

Figs. 4 and 5 represent the results of such an analysis. The
horizontal axis represents the SNR (in decibels), and the vertical
axis represents the MSE for the instantaneous frequency esti-
mation. For the linear FM signal, the results depict an expected
situation. The spectrogram generally provides lower MSE in
comparison to the scalogram due to the fact that with a proper
choice of a window function it can provide a more concentrated

3843

@ Mexican hat
~-® Morlet
Cauchy

Mean Square Error

SNR (dB)

Fig. 4. Comparison of the MSE for linear FM signal for several different
mother wavelets and STFT with three different window widths.
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Fig.5. Comparison of the MSE for several different mother wavelets and STFT
with several different window widths.

time-frequency representation than the scalogram. It is worth-
while noting that the scalogram with the Morlet mother wavelet
also provides good performance in comparison to the spectro-
gram for the chosen linear FM signal.

For the hyperbolic signal, the best performance is exhibited
by the scalogram with the Morlet mother wavelet. This perfor-
mance is expected, since the scalograms are usually capable
of achieving higher concentration of hyperbolic signals in the
time-frequency domain than the spectrograms due to their vari-
able resolution property.

Even though the presented numerical analysis provided
hints about the performance of both the spectrogram and the
scalogram, further generalizations should be avoided unless
a rigorous comparative analysis is completed. As aforemen-
tioned, Figs. 4 and 5 depict expected results for the sample
signals. These results are expected based on the properties
of the implemented time-frequency representations, i.e., an
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ability to provide good localization of energy concentration for
specific classes of signals.

V. CONCLUSION

In this paper, a general analysis of the scalogram as the in-
stantaneous frequency estimator for FM signals contaminated
with the additive white Gaussian noise was performed. Expres-
sion for the bias and the variance of such an estimator were
derived regardless of the mother wavelet used in the analysis.
The analysis of the estimator was performed without using the
asymptotic approximation of the continuous wavelet transform
and is based on determining the direct relationship between
the scale and (Fourier) frequency for the mother wavelet. Sev-
eral mother wavelets were considered including Morlet wavelet,
Cauchy wavelet and Mexican hat wavelet. The theoretical re-
sults were compared with the results of numerical analysis and
high agreement between them was noticed. By comparing the
results of the analysis, it was noticed that the scalogram with
the Morlet wavelet exhibited the best performance for linear FM
signals and hyperbolic FM signals. In addition, the performance
of the instantaneous frequency estimator based on the scalo-
gram and the spectrogram were compared through the magni-
tude of MSE. These results also depicted that the scalogram with
the Morlet wavelet exhibited good performance for the sample
linear FM signal and the sample hyperbolic FM signal in com-
parison to the spectrogram.

APPENDIX A

In order to understand how to find the relationship given by
(5), consider the signal z(t) = A exp(jw,t). Then the CWT of
the signal for the wavelet 1)(¢) is given by (1). In order to find
an analytical expression of the CWT, we express the CWT in
terms of the Fourier transforms of the signal X (w) and mother
wavelet ®(w) as

CWT. (1, 5) +/ B (sw) exp(juwt ) dw
T
_ iﬂ / 2 A8 (w — w,)B* (sw) exp(jwt)duw
— AV (s0,) expljat). )
Then
[CWT, (£, 5)]* = A%s®(sw,) D" (sw,). (52)

To find the scale of maximum correlation, we set the derivative
of (52) with respect to s equal to zero

d|CWT,(t, )|

95 =0. (53)

The solution of (53) which provides s > 0 is the solution we
use. This type of scale to frequency relation provides us, as men-
tioned before, with an unbiased instantaneous frequency esti-
mator for pure sinusoid without noise.
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