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Study objective: Ischemic electrocardiogram (ECG) changes are subtle and transient in patients with suspected non-ST-segment
elevation (NSTE)-acute coronary syndrome. However, the out-of-hospital ECG is not routinely used during subsequent evaluation at
the emergency department. Therefore, we sought to compare the diagnostic performance of out-of-hospital and ED ECG and
evaluate the incremental gain of artificial intelligence-augmented ECG analysis.

Methods: This prospective observational cohort study recruited patients with out-of-hospital chest pain. We retrieved out-of-
hospital-ECG obtained by paramedics in the field and the first ED ECG obtained by nurses during inhospital evaluation. Two
independent and blinded reviewers interpreted ECG dyads in mixed order per practice recommendations. Using 179
morphological ECG features, we trained, cross-validated, and tested a random forest classifier to augment non ST-elevation acute
coronary syndrome (NSTE-ACS) diagnosis.

Results: Our sample included 2,122 patients (age 59 [16]; 53% women; 44% Black, 13.5% confirmed acute coronary syndrome).
The rate of diagnostic ST elevation and ST depression were 5.9% and 16.2% on out-of-hospital-ECG and 6.1% and 12.4% on ED
ECG, with w40% of changes seen on out-of-hospital-ECG persisting and w60% resolving. Using expert interpretation of out-of-
hospital-ECG alone gave poor baseline performance with area under the receiver operating characteristic (AUC), sensitivity, and
negative predictive values of 0.69, 0.50, and 0.92. Using expert interpretation of serial ECG changes enhanced this performance
(AUC 0.80, sensitivity 0.61, and specificity 0.93). Interestingly, augmenting the out-of-hospital-ECG alone with artificial intelligence
algorithms boosted its performance (AUC 0.83, sensitivity 0.75, and specificity 0.95), yielding a net reclassification improvement
of 29.5% against expert ECG interpretation.

Conclusion: In this study, 60% of diagnostic ST changes resolved prior to hospital arrival, making the ED ECG suboptimal for the
inhospital evaluation of NSTE-ACS. Using serial ECG changes or incorporating artificial intelligence-augmented analyses would
allow correctly reclassifying one in 4 patients with suspected NSTE-ACS. [Ann Emerg Med. 2023;81:57-69.]
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INTRODUCTION
The 12-lead electrocardiogram (ECG) remains the

initial diagnostic test for evaluating the 7 million Americans
presenting annually to an emergency department for a chief
complaint of nontraumatic chest pain.1 To expeditiously
identify acute coronary syndrome, guidelines now
recommend the acquisition of a 12-lead ECG in the out-of-
hospital setting (ie, during transport by emergency medical
services) and transmitting it to the receiving hospital.2 The
practice of acquiring and transmitting an out-of-hospital-
1 : January 2023
ECG in patients with a high pretest probability of disease
has been shown to dramatically improve outcomes in
patients with ST elevation (STE)-acute coronary
syndrome.3-5 However, the clinical impact of this practice
is mostly confined to reducing first medical contact-to-
intervention time through early catheterization laboratory
activation for those with STE-acute coronary syndrome.6,7

In the absence of ST-segment elevation, out-of-hospital
personnel frequently do not transmit the out-of-hospital-
ECG, and ED clinicians primarily rely on initial findings
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Editor’s Capsule Summary

What is already known on this topic
Out-of-hospital ECGs may contain valuable
information that may be lost in the transition to the
hospital.

What question this study addressed
Does the incorporation of the out-of-hospital EKG
into the initial emergency department (ED)
evaluation of those with chest pain enhance diagnosis
of NSTEMI?
Does adding an artificial intelligence analysis of the
ECG improve diagnosis of NSTEMI?

What this study adds to our knowledge
Artificial intelligence techniques improved the
appreciation of subtle ST depression and elevation in
the out-of-hospital and first ED ECGs.

How this is relevant to clinical practice
Attention to the out-of-hospital ECG and use of
artificial intelligence aided analysis may improve
diagnosis of acute myocardial ischemia.
seen on ED ECG in conjunction with guideline-
recommended biomarker-driven evaluations. Thus, the
out-of-hospital-ECG is not routinely used as an
informative data point in the comprehensive inhospital
evaluation of all patients with the suspected acute coronary
syndrome. Although the practice of out-of-hospital-ECG
implementation and integration into systems originated
over a decade ago, a lack of systematic inclusion of out-of-
hospital-ECG into the diagnostic workup beyond STE-
acute coronary syndrome remains.8 This lack of inclusion is
further aggravated by the variability of out-of-hospital ECG
acquisition practices and the poor integration of out-of-
hospital and inhospital electronic health records, which
often leaves the out-of-hospital-ECG unavailable to ED
clinicians during the initial patient evaluation.9,10

Nearly two-thirds of acute coronary syndrome cases are
considered non-STE acute coronary syndrome (NSTE-
acute coronary syndrome).11 Due to the heterogeneity of
findings when compared to STE-acute coronary
syndrome,12 the diagnostic workup of NSTE-acute
coronary syndrome often involves a lengthy monitoring
and assessment process, including frequent examinations,
serial cardiac biomarker assays, and repeated ECG
evaluation during their ED and hospital stay.2 This is
further complicated by the fact that the ST elevation
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myocardial infarction (STEMI) versus not-a-STEMI
diagnostic paradigm has its limitations when deciding
the optimal treatment strategy.13 Nearly 40% of
STEMI-ECGs have no total coronary occlusions, and
25% of those with not-a-STEMI-ECG have a total
coronary occlusion requiring intervention.14 Integrating
the out-of-hospital-ECG into this paradigm of inhospital
evaluation of NSTE-acute coronary syndrome is not yet
established due to the dearth of data regarding its potential
incremental value in identifying NSTE-acute coronary
syndrome. However, it is known that around 20% of
diagnostic ST-segment elevations seen on out-of-hospital-
ECG resolve by the time the first ED ECG is acquired,
which has important implications in STE-acute coronary
syndrome detection.15-17 Furthermore, the pathogenesis of
NSTE-acute coronary syndrome suggests that coronary
occlusions are more likely to be transient and/or unstable,
especially when first-line antiischemic therapies (eg, aspirin
and nitroglycerin) are administered by out-of-hospital
personnel; hence it is plausible that the out-of-hospital-
ECG might play an even bigger role in NSTE-acute
coronary syndrome detection.18 Unfortunately, data on
such a diagnostic potential are scarce.

Another challenge posed by ECG detection of NSTE-
acute coronary syndrome is that 12-lead ECG changes are
subtle and multidimensional, requiring advanced
algorithms to identify changes that cannot be detected
otherwise.19 Subtle ECG changes are also dynamic over
time, and their evolution prior to hospital arrival might
provide further diagnostic value for detecting NSTE-acute
coronary syndrome. Harvesting subtle and significant
ischemia ECG patterns other than ST amplitude has
significantly improved the diagnosis of occlusion MI,
especially when initial ECG findings do not meet STEMI
criteria.20 Thus, the recent incorporation of explainable
artificial intelligence algorithms for cardiac ischemia
detection from 12-lead ECG data can provide a powerful
tool to help identify cases of NSTE-acute coronary
syndrome that clinicians can otherwise miss.21 The role of
artificial intelligence-augmented ECG diagnosis of NSTE-
acute coronary syndrome is yet to be explored.

Herein, we report findings from a large out-of-hospital-
ECG database of patients calling 9-1-1 for chest pain in the
United States. The specific aims of this analysis were to (1)
examine whether incorporating the out-of-hospital-ECG in
serial ECG analysis (ie, classical interpretation of ST
amplitude) results in an increase in diagnostic gain of
NSTE- acute coronary syndrome; and (2) given the out-of-
hospital-ECG is more likely to capture transient subtle
ischemic patterns, does the use of artificial intelligence-
ECG (ie, mining for important ischemic patterns other
Volume 81, no. 1 : January 2023
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than ST amplitude) improve the diagnostic gain of NSTE-
acute coronary syndrome.

MATERIALS AND METHODS
Study Design and Setting

Subjects for this subanalysis were obtained from the
EMPIRE study (ECG Methods for the Prompt
Identification of Coronary Events).19 Study methods are
described in detail elsewhere and are published on
ClinicalTrials.gov (NCT04237688). Briefly, the study was
a prospective, observational study of nontraumatic chest
pain patients who called 9-1-1 for a chief complaint of
chest pain or other atypical, suspicious symptoms (eg,
shortness of breath, epigastric pain, and syncope) requiring
ECG evaluation. Between 2013 to 2018, we prospectively
enrolled consecutive patients who called 9-1-1 in the City
of Pittsburgh and were transported by Pittsburgh
Emergency Medical Services to 3 separate University of
Pittsburgh Medical Center (UPMC) hospitals: UPMC
Shadyside, UPMC Presbyterian, and UPMC Mercy. As
part of routine care for patients with symptoms suspicious
of the acute coronary syndrome, all enrolled patients had
their 12-lead ECG transmitted to the UPMC Medical
Command Center for further evaluation by a physician.
For this subanalysis, we included patients who had both an
out-of-hospital ECG and an ED ECG. We excluded
patients with out-of-hospital catheterization laboratory
activation for suspected STE-acute coronary syndrome
identified in the field by paramedics, ventricular
fibrillation/tachycardia, or with secondary repolarization
changes confounding ischemia evaluation (eg, ventricular
pacing, bundle branch block, or left ventricular
hypertrophy with strain pattern). The patients were
recruited for the study under a waiver of informed consent,
and the University of Pittsburgh institutional review board
approved this study.

Clinical Data and Outcome Adjudication
Independent reviewers manually abstracted the key

inhospital data elements from the electronic health records
as recommended by the American College of Cardiology
for measuring the management and outcomes of patients
with acute coronary syndrome, including22: demographics,
past medical history, home medications, clinical
presentation, and course of hospitalization, laboratory tests,
imaging studies, cardiac catheterization, treatments, and
inhospital complications.

The primary outcome of the study was the diagnosis of
acute coronary syndrome any time during the indexed
admission, which included unstable angina, NSTE-acute
coronary syndrome, and STE-acute coronary syndrome. Two
Volume 81, no. 1 : January 2023
independent physician reviewers adjudicated the primary
outcome of acute coronary syndrome as per the following
universal definition of MI criteria12: (1) rise and fall in cardiac
troponin I (�99th percentile according to location criteria);
(2) diagnostic STE or ST depression (STD) in 2 contiguous
ECG leads12; (3) echocardiographic evidence of new loss of
viable myocardium or new regional wall motion
abnormalities; or (4) coronary angiographic or nuclear
imaging demonstrating greater than 70% stenosis of a major
coronary artery with or without treatment.23 Patients were
considered to have a confirmed acute coronary syndrome
diagnosis if they displayed any or all of these criteria.

ECG Signal Processing
All ECGs were obtained as part of routine medical care.

The out-of-hospital ECG was obtained by paramedics in
the field using HeartStart MRX monitors (Philips
Healthcare, Cambridge, MA). We obtained the digital raw
XML files transmitted to our medical command center and
stored them for offline analysis. The ED ECG was obtained
by ED staff using MAC VUE360 Resting ECG devices
(GE Healthcare, Milwaukee, WI). We obtained the digital
vectorized PDF files stored in the inhospital electronic
health record system and stored them for offline analysis.
For the purpose of serial ECG analyses, we selected the
patients’ first out-of-hospital ECG and first ED ECG as the
corresponding study ECGs.

Out-of-hospital ECGs were processed by manufacturer-
specific software (Advanced Algorithm Research Center,
Philips Healthcare, Andover, MA), whereas ED ECGs were
processed by CALECG software (AMPS LLC, New York,
NY). First, noise, artifact, and ectopic beats were removed,
and time-synchronized median beats were calculated per
ECG lead. Next, a total of 179 ECG features were
calculated from each ECG, including (1) multilead global
ECG intervals (k¼8); (2) frontal-plane axes (k¼3); (3)
lead-specific amplitude, duration, and/or area of P wave, Q
wave, R/R` wave, S/S` wave, QRS complex, ST80
segment, and T wave (k¼144); and (4) lead-specific PR
interval and QT interval (k¼24).

Expert ECG Interpretation
Each ECG was reviewed by 2 independent physicians

who were blinded to the study outcome. Expert
interpretation aimed to capture physicians’ performance in
reviewing ECG and adjudicating for cardiac ischemia when
patients are presenting with symptoms suggestive of acute
coronary syndrome. The performance of these independent
reviewers was given the title “reference standard.” First, the
independent physicians adjudicated the presence of
diagnostic territorial STE or ST depression (STD) as per
Annals of Emergency Medicine 59
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the Universal Definition of MI recommendation as 2
contiguous leads with12: (1) STE �2mm in V2–V3 in
men�40 years, �2.5mm in men<40 years, or �1.5mm
in women; or STE �1mm in other leads; or (2) new
horizontal or downsloping STD�0.5mm in any lead with
or without T-wave inversion>1mm in leads with
prominent R wave or R/S ratio>1. Any disagreements
between the reviewers were resolved by review by a board-
certified cardiologist. ST changes on the out-of-hospital-
ECG or ED ECG were documented per patient in the
anterior, lateral, or inferior myocardial walls as either no
changes (0), STD (1), or STE (2). This coding scheme
yielded an ordinal scale variable with a range of 0 to 6,
which was used in a logistic regression model to generate
the predicted probability of acute coronary syndrome and
for area under receiver operative curve analysis. Next,
temporal changes between out-of-hospital-ECG and ED
ECG were also documented in the anterior, lateral, and
inferior myocardial walls as either no changes (0);
resolution of changes seen on out-of-hospital-ECG (1);
evolution of new changes not seen on out-of-hospital-ECG
(2); and persistence of changes at the ED as seen on the
out-of-hospital-ECG (3). This coding scheme yielded an
ordinal scale variable with a range of 0 to 9, which was also
used in a logistic regression model to generate the predicted
probability of acute coronary syndrome and for area under
receiver operative curve analysis.
Artificial Intelligence-Augmented ECG Analysis
We divided our dataset of out-of-hospital-ECG and ED

ECG dyads into 80% training and 20% testing subsets.
The training and testing subsets were each preprocessed
using imputation of missing values with the mean or mode
of the corresponding feature for continuous or categorical
variables, respectively, and normalization with the L2
norm. We ran a 10-fold cross-validation to obtain results
for the training subset, then used the remaining unseen
data set for testing.

Next, we used a random forest classifier to build our
artificial intelligence models for predicting confirmed acute
coronary syndrome cases. Besides its robustness to outliers,
data skewness, missingness, and unbalanced outcome
distribution,24 we have previously shown that the random
forest classifier is well suited to handle the
multidimensionality observed in 12-lead ECG data. The
random forest classifier was implemented with 1,000 trees
with a fixed criterion to measure the quality of a split using
“entropy” (for information gain). The “balanced
subsample” mode was selected where weights were
computed for the output values automatically and inversely
60 Annals of Emergency Medicine
proportional to class frequencies in the bootstrap sample for
every tree. These parameters were tuned during the 10-fold
cross-validation training stage. An unseen hold-out set of
patients was then used to assess model’s generalizability
during the testing stage. For model explainability, we used
the algorithm agonist approach based on feature
importance. The traditional feature importance based on a
mean decrease in impurity shows bias toward high
cardinality features, even if they are random and unrelated
to the outcome, so it tends to overfit using these features.
Therefore, we used the permutation importance method
and plotted the importance ranking using the test set,
which would reflect the usefulness of the features in making
generalizable predictions instead of reflecting an overfitting
model.

Using the modeling approach described above, we built
4 random forest classifiers: (1) artificial intelligence-out-of-
hospital-ECG, (2) artificial intelligence-ED ECG, (3)
artificial intelligence-Serial-ECG, and (4) artificial
intelligence-ECG-Clinical. We used the 179 features from
the out-of-hospital ECG to build the first classifier and
used the 179 features from the ED ECG to build the
second classifier. For the third classifier, we used the 179
features from out-of-hospital ECG (baseline) and the delta
change in each value between the out-of-hospital ECG and
the ED ECG dyads. The final classifier included the 179
features from out-of-hospital ECG, the 179 corresponding
delta changes in features between the 2 ECG dyad, and the
clinical data available at triage. The clinical data elements
from the latter included age, sex, race, comorbidities
(hypertension, diabetes, smoking, dyslipidemia, heart
failure, known coronary artery disease (CAD), old MI,
chronic obstructive pulmonary disease, and prior
catheterization), and out-of-hospital interventions
(morphine, oxygen, nitroglycerin, and aspirin).
Statistical Analysis
Variables were reported as mean (standard deviation) or

count (%). Groups were compared using Chi-square for
categorical variables or independent samples t test for
continuous variables. Trend evolution between out-of-
hospital and ED ECG was compared between groups using
repeated-measures ANOVA. The diagnostic performance
of STE and STD were seen on out-of-hospital-ECG and
ED ECG, or their dynamic changes between the 2
timepoints were evaluated for predicting confirmed acute
coronary syndrome using multivariate logistic regression.
Predicted probabilities were used to evaluate classification
performance using the area under the receiver operating
characteristic (AUROC) curve. The presence of at least 1
Volume 81, no. 1 : January 2023



Table. Demographics and Clinical Characteristics.

Clinical Characteristics All Patients (n[2,122)

Demographic

Age (y) 58 (16)

Female sex 1001 (47%)

Race

White 1216 (58%)

Black 859 (40%)

Other 47 (2%)

Ethnicity

Hispanic or Latino 15 (0.7%)

Not Hispanic or Latino 1973 (93%)

Unspecified 134 (6.3%)

Past Medical History

Hypertension 1469 (69%)

Ever smoked 1293 (68%)

Hyperlipidemia 833 (39%)

Known CAD 715 (38%)

Previous PCI or CABG 668 (31%)

Diabetes mellitus 593 (28%)

Heart failure 337 (16%)

Diagnostics

Positive initial troponin 166 (8%)

Positive serial troponin 253 (12%)

Stress test with SPECT scan 278 (13.1%)

Focal evidence of ischemia 29 (1.4%)

Outcomes and Course of Hospitalization

Confirmed acute coronary syndrome 288 (13.6%)

Final discharge diagnosis of NSTE-ACS 179 (8%)

Subsequent inhospital evolution

of STE-ACS

109 (5%)

Treatment with PCI or CABG 197 (9%)

Bouzid et al Serial 12-Lead ECG with Machine Learning to Diagnose NSTE-ACS
wall with diagnostic STE or STD was used to build the
confusion matrix and calculate sensitivity, specificity,
positive predictive value, and negative predictive value. We
used McNemar’s test to compare the reclassification
performance between different classifiers.

For artificial intelligence algorithms, the training results
of random forest classifier on 10-fold cross-validation were
reported as mean (standard error). We generated binary
predictions using the Youden index on the receiver
operating characteristic curves. The mean of thresholds
resulting from training was used to produce the confusion
matrices for the testing sets. We then computed the
performance metrics described above along with the F1
score and net reclassification improvement index as
compared to a reference standard. In addition, the
comparison between the performance of the models was
rigorously tested using the Wilcoxon’s signed rank test on
the 2 groups of AUROC values formed, each, by the results
of the 10-folds. Each group corresponds to the model
having one of these sets of input variables: out-of-hospital-
ECG and ED ECG variables. To compare the 2 paired
groups of values, this method was chosen because it is the
nonparametric alternative to the paired t test since we are
dealing with data that does not necessarily satisfy the
assumptions of the t test. For testing, we used
bootstrapping on the test set to generate a group of 10
AUROC values for each model and compared them using
the Wilcoxon signed-rank test. Statistical analyses were
completed using SPSS statistical software (version 24.0;
SPSS Inc, Chicago, IL), and artificial intelligence models
were implemented using Python version 3.7. The
significance level was set at a¼0.05 for 2-tailed hypothesis
testing.
30-day complication or adverse events 256 (12%)

CABG, coronary artery bypass grafting; CAD, coronary artery disease; NSTE-ACS, non-
ST elevation acute coronary syndrome; PCI, percutaneous coronary intervention;
SPECT, single-photon emission computed tomography; STE-ACS, ST elevation acute
coronary syndrome.
RESULTS
The study enrolled 2,400 patients in total. For the

purposes of this study, we excluded 89 patients with out-of-
hospital catheterization laboratory activation for STE-acute
coronary syndrome identified in the field by paramedics, 22
patients with ventricular fibrillation/tachycardia, and 154
patients with secondary repolarization changes
confounding ischemia evaluation, and 13 patients with
either missing inhospital or out-of-hospital ECG. The final
population for this study included 2,122 patients with
suspected NSTE-acute coronary syndrome (age 59 [16];
53% women; 44% Black). Approximately 69% of our
population had hypertension, 38% had a known history of
coronary artery disease, and 28% had diabetes mellitus.
The demographic and clinical characteristics of the
population are summarized in Table. There were 288
Volume 81, no. 1 : January 2023
(13.6%) cases of confirmed acute coronary syndrome
during inhospital evaluation. Among those with confirmed
inhospital acute coronary syndrome, 37% had subsequent
evolution of STE-acute coronary syndrome that was not
apparent during the initial evaluation. The interrater
agreement between the reviewers ranged from Kappa 0.86
to 0.91.

Most patients (89.4%) were in normal sinus rhythm,
and 10.6% were in atrial fibrillation. Figure 1 shows the
initial ischemic findings on out-of-hospital- and ED ECGs
Annals of Emergency Medicine 61



Figure 1. The relationship between ischemic electrocardiogram (ECG) findings and acute coronary syndrome. This figure shows
how diagnostic ST changes correlated with acute coronary syndrome on the A, Out-of-hospital-ECG, B, Emergency department (ED)-
ECG, and C, Serial dynamic changes between both ECGs. ECG changes included diagnostic ST elevation (STE) or STD interpreted
retrospectively by independent reviewers as per the 4th universal definition of myocardial infarction guidelines.12 We excluded from
these analysis patients with out-of-hospital catheterization laboratory activation for suspected STE-acute coronary syndrome
identified in the field by paramedics. The area under the receiver operating characteristic (AUROC) curves are based on a logistic
regression classifier using the ST changes seen on each ECG or their dynamic patterns. AUROC, SEN, and SPE are reported as
values (95% CI). AUROC, area under the receiver operating characteristic; CI, confidence interval; SEN, sensitivity; SPE, specificity;
STD, ST depression.

Serial 12-Lead ECG with Machine Learning to Diagnose NSTE-ACS Bouzid et al
for the entire cohort (n¼2,122 patients). On out-of-
hospital-ECG, 125 patients (5.9%) had diagnostic STE
and 343 (16.2%) had diagnostic STD, with the rate of
62 Annals of Emergency Medicine
confirmed acute coronary syndrome in these subgroups of
62% and 32%, respectively (Figure 1A). Similarly, there
were 129 (6.1%) and 263 (12.4%) diagnostic STE, and
Volume 81, no. 1 : January 2023
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STD on ED ECG, with the rate of the confirmed acute
coronary syndrome of 64% and 39%, respectively
(Figure 1B). These ischemic findings on the out-of-
hospital- and ED ECG had poor classification performance
of acute coronary syndrome events with AUROC of 0.692
(0.65 to 0.73) and 0.693 (0.66 to 0.73), sensitivity of 0.50
(0.44 to 0.56) and 0.479 (0.42 to 0.54), and specificity of
0.845 (0.83 to 0.86) and 0.864 (0.84 to 0.88), respectively.
More interestingly, considering both ECGs together shows
that only 49% and 37% of diagnostic STE and STD were
seen on out-of-hospital-ECG persisted until ED ECG,
with 51% and 63% of out-of-hospital diagnostic changes
resolving prior to ED arrival. Figure 1C shows the rate of
confirmed acute coronary syndrome in those who had
resolving, new, or persistent diagnostic STE or STD. An
approach based on the presence of dynamic ECG changes
between out-of-hospital and ED timepoints achieved a very
good classification performance of confirmed acute
coronary syndrome (AUROC 0.798 [0.77 to 0.83]).

Next, we explored the value of artificial intelligence-
augmenting analysis of out-of-hospital- and ED ECG.
Figure 2 shows the results of algorithm performance on the
Figure 2. Classification performance of non-ST elevation acute co
electrocardiogram (ECG) analysis. The figure shows random forest
ECG (artificial intelligence-out-of-hospital-ECG) or the emergency de
practice based on ED evaluation (CP-ED ECG) on both training sub
diagnostic accuracy measures and the net reclassification performa
(Reference). AUROC, area under the receiver operating characteris
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training subset (n¼1,699, 14% confirmed acute coronary
syndrome) and testing subset (n¼423, 13% confirmed
acute coronary syndrome) as compared to the baseline
classification performance of diagnostic findings on ED
ECG. During algorithm testing, both artificial intelligence-
out-of-hospital-ECG and artificial intelligence-ED ECG
algorithms had significantly higher performance compared
to the reference standard (AUROC 0.83 [0.77 to 0.90]
and 0.79 [0.73 to 0.86] versus 0.62 [0.53 to 0.70],
respectively). The artificial intelligence-out-of-hospital-
ECG algorithm outperformed the reference standard with
sensitivity, specificity, positive, and negative predictive
values of 0.75 (0.62 to 0.86), 0.76 (0.71 to 0.80), 0.32
(0.29 to 0.39), and 0.95 (0.92 to 0.97) versus 0.36 (0.23
to 0.50), 0.86 (0.82 to 0.89), 0.28 (0.21 to 0.39), and
0.90 (0.87 to 0.90) for expert ECG interpretation,
respectively. This significant gain in performance translates
into net reclassification improvement index of 29.5%
(P <.001). We then investigated the incremental gain in
classification performance of artificial intelligence-out-of-
hospital-ECG when supplemented by serial temporal ECG
changes (model 3: Artificial intelligence-serial-ECG) and the
ronary syndrome using artificial intelligence-augmented
classification performance using features from out-of-hospital
partment (artificial intelligence-ED ECG) as compared to clinical
set (left) and testing subset (right). The tables show the
nce index as compared to CP-ED ECG as a reference standard
tic.
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Figure 3. Classification performance of artificial intelligence-augmented electrocardiogram (ECG) analysis supplemented by serial
ECG and clinical data. The figure shows the baseline classification performance of the random forest model using features from out-
of-hospital ECG (artificial intelligence-out-of-hospital-ECG), both out-of-hospital and emergency department ECGs (artificial
intelligence-serial-ECG), and serial ECG plus clinical data typically available during triage (artificial intelligence-ECG-clinical) on both
training subset (left) and testing subset (right). This figure demonstrates that artificial intelligence-augmented ECG analysis reaches
its classification performance plateau with out-of-hospital-ECG alone, with no additional gain in performance when adding serial
ECG or any other clinical data elements. In the training set, the lighter lines correspond to the results obtained for the individual
folds during the 10-fold cross-validation, whereas the thicker lines correspond to the mean results for each model. The shaded
areas highlight the space englobing all curves within 2 standard errors around the mean curves. AUROC, area under the receiver
operating characteristic.
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addition of clinical data elements available during triage
(model 4: Artificial intelligence-ECG-clinical). Figure 3
shows there was no significant gain in AUROC for either
of the 2 latter models during training and testing, with
peak classification performance achieved by out-of-hospital-
ECG alone, plateauing at AUROC of 0.82 (0.76 to 0.88).

Finally, we used random forest permutation importance
ranking to add explainability to the observed gain in the net
reclassification improvement index using the artificial
intelligence-out-of-hospital-ECG model. Among the 179
features used in that model, the most important classical
features were ST amplitude in leads aVL, I, III, V2, aVR,
V4, V3, and V6; T amplitude in leads aVL, V2, III, V3,
and I; and T area in leads aVL, III, V2, and I. The most
important novel features were global Tpeak to Tend interval
(rank #3), mean QRS�T angle (rank #8); spatial T axis
(rank #15), and relative T to R amplitude ratio on RMS
signal (Root Mean Square) (rank #12). Figure 4A shows
the mean group differences in global Tpeak to Tend interval
and QRS�T angle on out-of-hospital- and ED ECGs.
Patients with the confirmed acute coronary syndrome had
significantly longer global Tpeak to Tend interval and wider
QRS�T angle compared to their counterparts, with more
pronounced dispersion on out-of-hospital-ECG. To
understand the multidimensional complexity of the 12 lead
ECG, Figure 4B shows the 3-dimensional scatterplot of the
64 Annals of Emergency Medicine
3 most important features in random forest classification
delineating a nonlinear hyperplane of acute coronary
syndrome cases characterized by prolonged global Tpeak to
Tend interval, STE in the lead III, and distorted ST-
segment in lead aVL (STE or STD).

LIMITATIONS
Our study has a few limitations that should be

considered when interpreting our findings. First, patients
with secondary repolarization abnormalities (ie, pacing,
bundle branch block, left ventricular hypertrophy, or
ventricular rhythm) were excluded from the study. These
patients have a different course and are usually sicker;
therefore, our results are not generalizable to this
population. Second, the findings of our study are based on
a single health care system; therefore, it is difficult to
generalize our results to a different system. Testing our
artificial intelligence models on an independent system is
necessary before establishing clinical utility. Finally, the
out-of-hospital-ECG and the ED ECG were processed by
different manufacturer-specific software. A classical review
paper previously looked at the systematic differences among
automated ECG interval measurements by 7 widely used
computer-based ECG interpretation algorithms, including
AMPS and Philips (the 2 we used). The paper indicated the
measurements’ differences are clinically negligible (eg, the
Volume 81, no. 1 : January 2023



Figure 4. Correlation between the most important electrocardiogram (ECG) features in diagnosing acute coronary syndrome. Plot A
shows mean group differences in Tpeak to Tend interval (left) and QRS�T angle (right) on out-of-hospital-ECG and emergency
department (ED)-ECG in those with or without the acute coronary syndrome. Plot B shows the 3-dimensional scatterplot of the 3
most important features in the random forest delineating a nonlinear hyperplane of acute coronary syndrome cases characterized
by prolonged global Tpeak to Tend interval, ST elevation in the lead III, and distorted ST-segment (elevation or depression) in lead aVL.
ACS, acute coronary syndrome.
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difference in QRS duration between AMPS and Philips is 4
milliseconds on average).25 Thus, the differences captured
in the delta values are likely physiological rather than
technical in nature.
Volume 81, no. 1 : January 2023
DISCUSSION
In this study, we compared the diagnostic value of out-

of-hospital- and ED ECG for classifying patients with
suspected acute coronary syndrome and evaluated the
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diagnostic gain using artificial intelligence-augmented
analysis of 12-lead ECG data. We found that more than
one half of diagnostic STE and STD resolve prior to ED
arrival. Furthermore, we demonstrated that using these
temporal dynamic changes between out-of-hospital- and
ED ECG yields very good classification performance
(AUROCw0.80), which far exceeds the diagnostic value
of the ECG at each timepoint separately. However, using
artificial intelligence-augmented analysis of the 12-lead
ECG yields a net reclassification improvement index of
w24% to 30% compared to the current expert overread of
ECG data during ED evaluation, a gain that can be
achieved by using only the out-of-hospital-ECG without
the need for serial ECG changes or other clinical data
elements. This gain in performance is based on subtle
multidimensional changes in the STT waveform and other
novel markers of ventricular repolarization dispersion.
These findings support the notion that the out-of-hospital-
ECG should be systematically considered as an important
predictive data point in the diagnostic workup of suspected
NSTE- acute coronary syndrome, especially when
augmented by powerful artificial intelligence tools.

This study demonstrates that exclusively relying on the
ED ECG during inhospital evaluation comes with poor
classification performance (AUROC<0.70), significantly
limiting providers’ ability to rule in or out acute coronary
syndrome. It is known that ischemic ECG changes are
often transient in nature. Acquiring an ECG during acute
symptoms when patients are undergoing ischemic distress
is more likely to elicit important prognostic information.
We show that more than half the ischemic changes seen on
out-of-hospital-ECG resolve prior to ED arrival. The
reason for this possibly reflects the timing the out-of-
hospital-ECG is acquired in the continuum of care,
including the acquisition prior to initiating any
antiischemic therapies. Such interventions could transiently
improve the underlying cardiac ischemia and blunt ECG
findings by the time the ECG is acquired in the ED.26,27

It is also well established that acute coronary syndrome
has an unstable course, meaning ischemic ECG findings
could spontaneously resolve by the time patients are
evaluated in ED.16

Clinical practice guidelines emphasize the importance of
out-of-hospital-ECG use for clinical decisionmaking and
advocate for its systematic incorporation in systems of care
as a class I recommendation.4,28 Moreover, it is well
established that detecting transient ischemic ECG changes
in acute coronary syndrome, including those detected in
the out-of-hospital setting, can help identify patients with a
higher risk for adverse events.29,30 Yet, in clinical practice,
the primary emphasis remains focused on identifying STE
66 Annals of Emergency Medicine
requiring catheterization lab activation, and few studies
have previously analyzed the diagnostic value of out-of-
hospital-ECG in suspected NSTE-acute coronary
syndrome. Some studies report that subtle changes in out-
of-hospital-ECG are associated with adverse outcomes in
this population, demonstrating a positive impact on care
processes, including early disposition, timely interventions,
and improved survival rate.31-33 Our study supports the
notion that significant information gets lost by excluding
the out-of-hospital-ECG during inhospital decisionmaking
when evaluating NSTE-acute coronary syndrome. This has
important clinical implications, as often no permanent
record is kept of out-of-hospital-ECGs in the inhospital
electronic health records, hence losing a valuable diagnostic
data point in the lengthy process of patient evaluation. We
demonstrate that using temporal dynamic patterns of STE
and STD between out-of-hospital- and ED ECG yields
very good classification performance compared to using
either one separately, which aligns well with current
literature.34-36

It is well established that ECG findings in NSTE-acute
coronary syndrome are not always grossly evident and
often require novel identification methods.19 There are
numerous reasons for these shortcomings; the infarct might
be relatively small, the location of the infarct might be in a
location only weakly sensed by the lead fields of the
standard 12-lead ECG, or the infarct is slowly
developing.37 Intriguingly, myocardial ischemia affects the
configuration of the QRS complex and ST-T waveform.
Thus, an evolving infarct would translate into progressive
regional changes in ST amplitude and slope, T-wave
amplitude and morphology, and QRS duration and
configuration. These subtle and interrelated changes in
ECG features, as measured from the different 12 leads of
the ECG, open an important opportunity for artificial
intelligence-augmented analysis of ECG data to learn
multidimensional patterns in these features that humans
would otherwise miss. This explains the superior
performance of artificial intelligence-augmented analysis of
ECG when compared to expert ECG interpretation,
allowing clinicians to correctly reclassify at least 1 in 4
patients with the suspected acute coronary syndrome in
our study. Interestingly, such artificial intelligence-based
pattern recognition of subtle ECG changes achieved the
maximum gain in diagnostic performance using only the
out-of-hospital-ECG, without serial ECG changes or other
clinical data elements. This again emphasizes the value of
systematically incorporating the out-of-hospital-ECG into
care systems while evaluating patients with suspected
NSTE-acute coronary syndrome. This still does not
undermine the value of serial ECG in NSTE-acute
Volume 81, no. 1 : January 2023
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coronary syndrome, given the complexity of temporality
and the specific characteristics of these subtle changes.35,36

It is worth noting that many novel ECG features can
globally quantify the subtle changes in QRS and ST-T
waveform morphologies, greatly improving the sensitivity
of the ECG for ischemia as well as drastically reducing the
time required to diagnose NSTE-acute coronary
syndrome.37 For instance, Tpeak to Tend interval indicates
global repolarization dispersion, and the QRS-T angle is a
general toolkit for identifying abnormalities in conduction
and repolarization.38 Enriching our artificial intelligence
models with such features might have played a significant
role in the observed diagnostic gain as compared to expert
ECG interpretation based on practice recommendations.
Nevertheless, elucidating novel ECG features beyond STE
versus NSTE clinical practice paradigm can dramatically
change care at the bedside.

This study has important clinical implications. First, in
the absence of STE on presenting ECG, ED providers still
need to consider abnormalities seen on the out-of-hospital-
ECG and their dynamic changes in the overall diagnostic
workup of patients with suspected NSTE-acute coronary
syndrome. This requires hospitals and systems of care to
develop new tools or adopt existing ones to systematically
incorporate the out-of-hospital-ECG into the inhospital
electronic health record. Second, deploying artificial
intelligence-based automated ECG interpretation
algorithms on out-of-hospital-ECG can provide real-time
decision support for out-of-hospital and ED providers,
which has important implications for improving patient
safety (infarct size and adverse events), nursing surveillance
and care (frequency of monitoring, caseload mixture, and
staff allocation), and care delivery systems (ED
overcrowding, regionalization of care, resource utilization,
admission unit availability, higher cost versus lower cost
bed allocation, catheterization lab activation). Moreover,
the implementation of an artificial intelligence-based
automated ECG interpretation can offer a way to identify
acute coronary syndrome cases that do not display criteria
fulfilling STEMI criteria, such as occlusion MI.20 This can
help identify occlusion MI patients early, particularly since
they often display only subtle changes and consequently
face treatment delays.

In conclusion, in 3 hospitals with coordinated
emergency medical service care, we found that more than
one half of diagnostic STE and STD changes on an out-of-
hospital ECG resolve prior to ED arrival. Exclusively
relying on ED ECG during inhospital evaluation of
NSTE-acute coronary syndrome comes with poor
classification performance, which can be overcome by
evaluating the temporal dynamic changes between out-of-
Volume 81, no. 1 : January 2023
hospital- and ED ECG in response to out-of-hospital
interventions. These findings come with a number of clear
takeaways: (1) serial negative ECGs do not significantly
increase the negative predictive value of ECG, (2) serial
positive ECGs do increase positive predictive value, and (3)
a single positive ECG (ie, positive out-of-hospital-ECG
and negative ED ECG, or vice versa) has an intermediate
predictive value. This pattern seems to hold true for STE
and STD on the 12-lead ECG. Moreover, this study
demonstrates that artificial intelligence-based analytics on a
single ECG obtained during ongoing ischemia (ie, out-of-
hospital-ECG) can capture subtle patterns indicative of
NSTE-acute coronary syndrome without the need for
serial ECG has important and immediate clinical
implications for ED practice. This enhanced
interpretability may lead to the reclassification of 1 in 4
patients with suspected NSTE-acute coronary syndrome.
This suggests a need for hospitals to develop tools to
incorporate out-of-hospital-ECG into systems of care as
informative data points in the inhospital evaluation of
patients with the suspected acute coronary syndrome. In
addition, these findings require future validation in other
emergency medical services systems.
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