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Abstract 

Purpose: Safe swallowing requires adequate protection of the airway to prevent 8 

swallowed materials from entering the trachea or lungs (i.e., aspiration). Laryngeal 9 

vestibular closure (LVC) is the first line of defense against swallowed material 10 

entering the airway. Absent LVC or mistimed/shortened closure duration can lead 11 

to aspiration, adverse medical consequences, and even death. Laryngeal vestibular 12 

closure mechanisms can be judged commonly through the videofluoroscopic 13 

swallowing (VFS) study, however, this type of instrumentation exposes patients to 14 

radiation and is not available or acceptable to all patients. There is growing interest 15 

in noninvasive methods to assess/monitor swallow physiology. In this study, we 16 

hypothesized that our non-invasive sensor-based system, which has been shown to 17 

accurately track hyoid displacement and upper esophageal sphincter opening 18 

duration during swallowing, could predict laryngeal vestibular status, including the 19 

onset of LVC and laryngeal vestibular re-opening (LVO) in real time and estimate 20 

the closure duration with a comparable degree of accuracy as trained human raters. 21 

Methods: The sensor-based system used in this study is high-resolution cervical 22 

auscultation (HRCA). Advanced machine learning techniques enable HRCA signal 23 

analysis through feature extraction and complex algorithms. A deep learning model 24 

was developed with a dataset of 588 swallows from 120 patients with suspected 25 

dysphagia and further tested on 45 swallows from 16 healthy participants. Results: 26 
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The new technique achieved an overall mean accuracy of 74.90% and 75.48%, for 27 

the two data sets respectively, in distinguishing LVC status. Closure duration ratios 28 

between automated and gold-standard human judgment of LVC duration were 1.13 29 

for the patient data set and 0.93 for the healthy participant data set. Conclusion: 30 

This study found that HRCA signal analysis using advanced machine learning 31 

techniques can effectively predict LV status (closure or opening) and further 32 

estimate LVC duration. HRCA is potentially a non-invasive tool to estimate LVC 33 

duration for diagnostic and biofeedback purposes without x-ray imaging. 34 

Introduction   35 

Swallowing is a complex neuromuscular process involving the integration of 36 

two distinct but related functions: airway protection and bolus transport. This 37 

complex process involves volitional and reflexive neural activities paired with 38 

coordinated contraction of many paired muscle groups. The result of this process is 39 

specific biomechanical events, which are executed in a sequential temporal order to 40 

ensure safe and efficient swallowing. Although there is variability within and among 41 

humans, any disturbance of these biomechanical events caused by disease can lead 42 

to swallowing disorders, known as dysphagia. 43 

Entrance of food or liquid into the airway during the pharyngeal stage of 44 

swallowing is known as aspiration. Aspiration is generally considered the most 45 

concerning component of swallowing dysfunction and may lead to possibly fatal 46 
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pulmonary consequences, especially for individuals with neurologic and 47 

neurodegenerative diseases (Cabib et al., 2016) or already-compromised 48 

respiratory systems. Laryngeal vestibular closure (LVC) is usually considered the 49 

primary and most critical aspect of laryngeal function during swallowing, 50 

providing protection for the airway against the entrance of swallowed materials. 51 

LVC is defined as the collapse of the laryngeal inlet via arytenoid adduction, and 52 

arytenoid approximation to the epiglottis during epiglottic inversion (Logemann et 53 

al., 1992). The closure of the laryngeal airway occurs in a peristaltic-like motion, 54 

by a caudal to rostral compression while the larynx shortens facilitating 55 

approximation of the epiglottis to the laryngeal inlet. This pattern of closure, which 56 

is observable through videofluoroscopic studies (VFS) of swallowing function, 57 

prevents airway invasion by closing off the airway while squeezing aberrant 58 

swallowed material out of the laryngeal vestibule (LV) (Ekberg, 1982; Ekberg & 59 

Nylander, 1982).  60 

Timely and complete LVC is vital to safe and successful swallowing. 61 

Incomplete closure, or shortened LVC duration may cause laryngeal penetration, 62 

in which swallowed material enters the LV remains above the level of the vocal 63 

folds, and/or tracheal aspiration of swallowed materials (Mann et al., 1999; 64 

Robbins et al., 1993,). Shortened LVC duration is significantly associated with an 65 

increased incidence of aspiration (Cabib et al., 2016). In fact, shortened LVC 66 
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duration is the primary impairment for predicting aspiration in patients following 67 

stroke (Power et al., 2007).  68 

The published literature reports a wide range of LVC durations, with mean 69 

values from 0.31 to 1.07, depending on the presence or absence of certain factors 70 

(Humbert et al., 2018; Logemann et al., 1992; Logemann et al., 2000; Logemann 71 

et al., 2002; Molfenter & Steele, 2012; Ohmae et al., 1995; Ohmae et al., 1996; 72 

Park et al., 2010). Prolonged LVC duration has been observed with increasing 73 

bolus volumes, longer pharyngeal transit durations (Kang et al., 2010; Kendall et 74 

al., 2003; Kim et al., 2005; Kim et al., 2010; Martin-Harris et al., 2003; Rofes et 75 

al., 2010; Rosenbek et al., 1996), and during the performance of swallow 76 

maneuvers such as the effortful swallow and the chin down posture (Hind et al., 77 

2001; Macrae et al., 2014; Young et al., 2015). Intentionally increasing LVC 78 

duration during swallowing in patients with shortened LVC duration has been 79 

investigated as a method of improving airway protection for decades. The 80 

supraglottic swallow maneuver, described in 1993, was designed to volitionally 81 

close the upper airway before swallowing in patients with a supraglottic 82 

laryngectomy whose epiglottis had been resected (Mendelsohn & Martin, 1993). 83 

This maneuver, and its sibling the super-supraglottic swallow, which exaggerates 84 

contact between the arytenoids and epiglottic base in non-resected patients, has 85 

been adapted for use in patients with dysphagia whose laryngeal anatomy remains 86 
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intact, and are mainstays of dysphagia compensatory management for many 87 

patients (Lazarus et al., 1993). Many literatures demonstrated that healthy 88 

individuals and individuals with dysphagia due to stroke could volitionally prolong 89 

LVC after training (Azola et al., 2015; Lazarus et al., 1993; Macrae et al., 2014; 90 

Mendelsohn & Martin, 1993; Young et al., 2015). Direct volitional control of the 91 

timing and duration of LVC has enormous rehabilitation potential for individuals 92 

with dysphagia. 93 

VFS, a real-time dynamic x-ray technique, is the only standard instrumental 94 

assessment to visualize LVC and to determine LVC duration during swallowing 95 

(Martin-Harris & Jones, 2008). The duration of LVC is the measure of how long 96 

the LV remains completely closed. In VFS images, complete LVC is defined as no 97 

visible air space or barium contrast in the LV given complete contact of the 98 

arytenoids to the base of the epiglottis and full epiglottic inversion over the base of 99 

the arytenoids (Logemann et al., 1992). VFS can be used to train volitional 100 

prolongation of LVC by providing patients with kinematic visual biofeedback. 101 

However, VFS has inherent challenges such as patients’ exposure to radiation. 102 

Radiation safety standards limit exposure time during VFS, thus data collection 103 

opportunities are time sensitive and despite its superior visualization of the entire 104 

aerodigestive mechanism during swallowing, the use of VFS for visual 105 

biofeedback during treatment to acquire compensatory volitional augmentation of 106 
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LVC is impossible. VFS may not be feasible in facilities without x-ray departments 107 

and facilities may not have qualified clinicians to perform and interpret the VFS 108 

images. Additionally, some patients may refuse x-ray testing or have other 109 

conditions limiting its accessibility or feasibility (Bonilha et al., 2013; 110 

Nierengarten, 2009; Steele et al., 2007; Zammit-Maempel et al., 2007). 111 

Although acquiring temporal measurements of LVC duration would be 112 

invaluable when managing many patients with dysphagia, it is rarely quantified 113 

during imaging studies of swallowing function. During VFS studies, LVC is 114 

typically judged as present, absent, or incomplete but temporal measurements are 115 

not assessed.  116 

There are limitations in a typical clinical setting that prevent frequent 117 

temporal measurement of LVC, which result in these broad categorical 118 

judgements. Swallow kinematic analysis using frame-by-frame review of VFS 119 

images is not typically performed by clinicians because very few have the required 120 

training or confirmation of their judgment reliability. Some clinicians may not have 121 

the ability to record VFS images for secondary review due to lack of equipment or 122 

limited access to archived materials. Additionally, a minimum temporal resolution 123 

of 30 frames per second is required to properly assess LVC duration. Recording at 124 

reduced frame rates (i.e., 7.5 or 15 frames per second), a common practice, is 125 
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inadequate for accurately capturing LVC timing due to its short duration (Bonilha 126 

et al., 2013).  127 

Adding temporal measures to the evaluation of LVC could provide clinicians 128 

with objective swallowing kinematic data, which could be compared to published, 129 

normative data, and provide clinical evidence of increased risk of airway 130 

compromise (Humbert et al., 2018; Molfenter & Steele, 2012). Successfully 131 

achieving this goal would help initiate appropriate compensatory interventions to 132 

reduce dysphagia complications through timely diagnosis. The benefits of having 133 

objective LVC data and the limitations of using VFS indicates that clinicians would 134 

benefit from a non-invasive, alternative method to estimate LVC duration.  135 

Naturally the ability to obtain LVC information noninvasively would revolutionize 136 

efforts to stabilize or improve LVC timing and duration in people with dysphagia. 137 

One potential non-invasive alternative for quantifying LV temporal 138 

measures is high-resolution cervical auscultation (HRCA). Traditional cervical 139 

auscultation (CA) is a method by which a clinician uses a stethoscope on a patient’s 140 

throat to assess swallowing and airway sounds. The cardiac analogy hypothesis 141 

suggests that cervical auscultation acoustic signals are generated via vibrations 142 

caused by valve and pump systems within the upper aerodigestive tract. As with 143 

heart valves that open and close during the cardiac cycle, valves in the upper 144 

aerodigestive tract produce characteristic acoustic signals during different stages 145 
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of swallowing (Cichero & Murdoch, 1998). However, the transmission of swallow 146 

information may be incomplete due to the limited receiving bandwidth of a 147 

stethoscope, and the interpretation of these sounds by judges listening through a 148 

stethoscope can be bounded by the limits of the hearing frequency range of humans. 149 

Likewise, numerous well-designed studies have confirmed the very low inter-judge 150 

agreement for CA sounds rendering it a relatively weak diagnostic method (Leslie 151 

et al., 2004). Therefore, CA cannot be considered a valid and reliable screening or 152 

assessment tool for swallowing function due to imprecise and incomplete 153 

interpretation of these signals (Sejdic et al., 2018).  154 

HRCA exhibits unbiased and reliable interpretations as compared to 155 

conventional CA assessment. HRCA uses high resolution accelerometers and 156 

microphones, attached to patients' necks, to record vibratory and acoustic signals 157 

during swallowing (Dudik et al., 2015; Movahedi et al., 2016). In line with the 158 

cardiac analogy hypothesis, the striking of the epiglottis and arytenoids may be the 159 

valve activity that generates swallowing sounds and vibrations during LVC, which 160 

can be recorded with HRCA.  161 

HRCA is an easily mobile, non-invasive tool, which is suitable for daily 162 

monitoring of swallow function. Advanced technology using artificial intelligence 163 

through machine learning techniques enables HRCA signal analysis by using 164 

feature extraction and complex algorithms. HRCA has recently shown promise in 165 
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the autonomous detection of many swallow kinematic events. HRCA signals have 166 

been found to be associated with hyoid bone displacement (He et al., 2019), LVC, 167 

and the contact of the base of the tongue with the posterior pharyngeal wall (Kurosu 168 

et al., 2019). Furthermore, HRCA successfully detected vertical and horizontal 169 

displacements of the hyoid bone (Rebrion et al., 2018) and the diameter of upper 170 

esophageal sphincter maximal opening (Shu, 2019). Given recent advances in 171 

signal processing algorithms, HRCA could provide a fundamental contribution to 172 

dysphagia management.  173 

In this study we investigated the ability of advanced machine learning 174 

techniques to predict LVC and LVO through HRCA signal analysis, thus allowing 175 

a predicted estimation of LVC duration. We hypothesized that by analyzing HRCA 176 

signals using machine learning techniques, we could predict LVC and LVO status 177 

in real time and estimate the duration of LVC with a comparable degree of accuracy 178 

as trained human raters. Successfully achieving this aim would significantly 179 

improve LVC duration estimation by making it more automatic and objective. 180 

Methods 181 

Data collection and equipment 182 

Two sets of data were collected; the first dataset was composed of 588 183 

swallows from 120 enrolled patients with various diagnoses and etiologies of 184 
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dysphagia, the second was composed of 45 swallows from 16 healthy community 185 

dwellers. Patient and healthy participant characteristics can be found in Table 1.  186 

All patients and healthy participants underwent VFS at University of 187 

Pittsburgh Medical Center Presbyterian Hospital. Since the aim of this study was 188 

to investigate the feasibility of our system’s ability to predict LVC regardless of 189 

other variables, we intentionally did not control for patient variables including the 190 

patient’s diagnosis or characteristics of swallowed materials. Data for patients was 191 

collected during routine clinical VFS studies, which resulted in various volumes 192 

and consistencies of swallowed material. Healthy participants swallowed only thin 193 

liquids of various volumes. All patient and healthy participants in this study signed 194 

informed consents and the data collection protocol was approved by the 195 

Institutional Review Board of the University of Pittsburgh.  196 

Please insert Table 1 here. 197 

VFSs for patients were conducted in the lateral plane using an x-ray machine 198 

(Ultimax system, Toshiba, Tustin, CA) with a pulse rate of 30 fps. Healthy 199 

participant data was collected in the lateral plane with a Precision 500D x-ray 200 

system (GE Healthcare, LLC, Waukesha, WI) with a pulse rate of 30 fps. To ensure 201 

that different resolutions did not affect judgment of kinematic events, we resampled 202 

a subset of the original VFS data to match the sample rate of the new machine.  203 

Five judges labeled nine swallowing kinematic events, including LVC and LVO, 204 
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using native and resampled resolutions. The level of agreement between human 205 

labels at the different resolutions was excellent for all measures, with inter-judge 206 

ICCs at or above .99. VFS videos were captured on an AccuStream Express HD 207 

video card (Foresight Imaging, Chelmsford, MA) and digitized with a sampling 208 

rate of 60 frames per second then saved to a hard disk using LabView’s Signal 209 

Express (National Instruments, Austin, Texas).  210 

The sensor signals were collected concurrent to VFS examinations using a 211 

tri-axial accelerometer neck sensor and contact microphone. The accelerometer 212 

(ADXL 327, Analog Devices, Norwood, Massachusetts) was attached to the 213 

midline of participant’s anterior neck at the level of the cricoid cartilage with 214 

surgical tape to obtain the best contact (Takahashi et al., 1994). The sensors’ axes 215 

were aligned to the anatomical directions of anterior-posterior [AP], superior-216 

inferior [SI], and medial-lateral [ML] respectively. The sensor was powered by a 217 

power supply (model 1504, BK Precision, Yorba Linda, California) with a 3V 218 

output, and the resulting signals were bandpass filtered from 0.1 to 3000 Hz and 219 

amplified ten folds (model P55, Grass Technologies, Warwick, Rhode Island). The 220 

microphone (model C411L, AKG, Vienna, Austria), which was powered by a 221 

power supply (model B29l, AKG, Vienna, Austria), was placed below the 222 

accelerometer and slightly towards the right lateral side of the trachea. This 223 

location has previously been described to be appropriate for collecting swallowing 224 
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sound signals without interfering with visualization of the proximal trachea or 225 

larynx (Cichero & Murdoch, 2002; Takahashi et al., 1994). All signals acquired by 226 

the accelerometer and microphone were fed into a National Instruments 6210 DAQ 227 

and recorded at 20 kHz by the LabView program (Signal Express, National 228 

Instruments, Austin, Texas). This setup has been shown to be effective at detecting 229 

swallowing activity in previous studies (Dudik et al., 2016; Lee et al., 2010). 230 

Data labeling 231 

All videos were segmented into individual swallows. Swallow durations were 232 

defined as the frame in which the head of the bolus reached the ramus of the 233 

mandible (onset) to the frame in which the hyoid returned to its lowest position 234 

following clearance of the bolus from the pharynx (offset). The corresponding 235 

HRCA signals were also segmented according to the frames of onset and offset. 236 

Reliability of segmentation was established on 10% of the videos with ICCs of over 237 

.99 and intra-rater reliability and was maintained throughout testing to avoid 238 

judgment drift. 239 

Two trained raters labeled the first closure and first re-opening of the LV 240 

from VFS x-ray videos for each swallow sample (Fig.3). Reliability was 241 

established on 10% of the videos with ICCs of over .99 and intra-rater reliability 242 

was maintained throughout testing to avoid judgment drift. The criteria in judging 243 

the LV status are listed in Table 2. 244 
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Please insert Table 2 here. 245 

Once the onset values for LVC and LVO were recorded by judges, the data 246 

was entered into machine learning routines to enable training and testing of the 247 

accuracy of the algorithms. 248 

Deep neural network architecture, training, and testing 249 

An advanced hybrid deep neural network combining a Convolutional Neural 250 

Network and Recurrent Neural Network, called a Convolutional Recurrent Neural 251 

Network (CRNN), was used to build the relationship between the HRCA signals 252 

and the LVC duration by predicting the LVC and LVO statuses. Artificial Neural 253 

Networks are loosely based on the neuronal networks in humans. They are typically 254 

organized in “layers” and contain “learning rules”, which allow the network to 255 

recognize underlying patterns between input and output. The network is repeatedly 256 

trained based on observed datasets until it recognizes the patterns, and then the 257 

model is tested on a novel or “unseen” dataset to evaluate the model fit, or how 258 

well the network has “learned”.  259 

In this study, the two LV statuses (opened and closed) were coded as ’0’ and 260 

’1’ respectively. The human-labeled LV statuses were translated to the computer 261 

program through this binary sequence (Fig. 1). The CRNN model was given the 262 

binary sequence for each swallow frame series (i.e. the first frame through the last 263 

frame of the swallow), with the corresponding HRCA signal segments. The CRNN 264 
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was trained to mathematically model the relationship between the HRCA signals 265 

and the LV statuses. 266 

Please insert Figure 1 here. 267 

A 10-fold cross validation technique was used to develop the CRNN model. 268 

In 10-fold cross validation, all samples are divided into 10 non-overlapping training 269 

groups. During training, nine of the ten groups are used to “train” the model by 270 

providing feedback to help the model predict the human labels using signals only. 271 

The remaining sample is used as a validation set to evaluate, or essentially help the 272 

model find parameters (i.e. other factors), which may not have been identified 273 

during training with the initial nine groups. This process is repeated a total of 10 274 

times with each sample used as a validation set once.  275 

For this study, the 588 patient swallowing samples were randomly divided 276 

into 10 patient-specific training groups. In other words, an individual patient’s 277 

swallows were contained within one group and not spread across any of the 278 

remaining nine groups. The groups were used for training and validating the CRNN 279 

to predict LVC and LVO based on HRCA signals alone. Once the 10-fold 280 

validation was completed, the “unseen” dataset of 45 healthy participant swallows 281 

was used as a testing set to evaluate the final model fit (i.e. to determine how well 282 

the model could predict LVC and LVO using HRCA signals without having ever 283 

“seen” the data) to evaluate how well the model generalized to new information.  284 
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Results 285 

The following results reveal the accuracy of the CRNN model. We use the 286 

term “accuracy” to characterize the percentage of the frames that were correctly 287 

predicted, as compared to the human labels. First, the accuracy of the model to 288 

predict the frame number of the onset of the LVC (within +/- 3 frames of the human 289 

label (Lof & Robbins, 1990)) for the patient dataset was 62.07% (mean error value 290 

= 0.19 +/- 4.5 frames) and the frame number for the onset of LVO was 60.03% (mean 291 

error value = 0.08 +/- 4.9 frames). For the healthy participant dataset, whose data 292 

were not included in the training process, the accuracy of model prediction for the 293 

frame number for the onset of LVC (within +/- 3 frames of the human label) was 294 

66.22% (mean error value = 0.73 +/- 5.2 frames) and the frame number for the onset 295 

of LVO was 64.44% (mean error value = 0.73 +/- 5.2 frames). Figure 2 illustrates 296 

the frame error distribution for the validation sets and the testing set. 297 

Please insert Figure 2 here. 298 

Mean overall accuracy is the ratio of the number of frames that were 299 

correctly predicted by the algorithm (whether the LV was opened or closed) over 300 

the total number of frames for all swallows. The model’s mean overall accuracy 301 

for predicting LV status (whether the LV was opened or closed) across the 10 302 

groups from the training set of patient swallows was 74.90%. The accuracy levels 303 

of the 10 validation groups for the LV status prediction are shown in Fig. 3. The 304 
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mean overall accuracy for distinguishing LV status (opening and closure) from the 305 

testing dataset of 45 healthy participant swallows was 75.48%.  306 

Finally, to evaluate the model’s predictive ability for LVC duration, we used 307 

a duration ratio. The duration ratio was calculated as the predicted number of frames 308 

for which the LV is closed over the human labeled LVC frames for which the LV is 309 

closed. The closer the ratio is to 1, the closer the model’s prediction was to the human 310 

calculated duration. The duration ratio for the 10 patient validation groups is listed 311 

in Table 3. The overall mean value for the duration ratio from the patient dataset was 312 

1.13, indicating that the model slightly overestimated the number of frames in which 313 

the LV was closed. The overall mean value for the duration ratio from the healthy 314 

participant dataset was 0.93, indicating that the model slightly underestimated the 315 

number of frames in which the LV was closed. 316 

 317 

Please insert Figure 3 here. 318 

Please insert Table 3 here. 319 

Discussion 320 

The primary aim of this study was to determine the feasibility of HRCA 321 

signals to predict LV status (open, closed) during swallowing with an advanced 322 

computer-aided approach, and thus non-invasively estimate the duration of LVC. 323 

We demonstrated that a highly complex and non-linear relationship between the LV 324 
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status and HRCA signals can be established via advanced deep learning algorithms, 325 

such as the proposed hybrid neural network in this study.  326 

The CRNN model autonomously predicted LV status based on HRCA signal 327 

input alone, independent from the manual analysis of the VFS videos by human 328 

judges, which were used to assess the model’s performance. Our experimental 329 

results revealed that the overall accuracy of the model to distinguish the LV status 330 

(open, closed) was around 75% for both validation and testing datasets, suggesting 331 

that the CRNN algorithm is capable of distinguishing LV status (open, closed) based 332 

only on HRCA signals and, therefore, LVC duration.  333 

The mean accuracies for machine predicted LVC and LVO frames for the 334 

testing group of healthy participants’ “unseen data” were higher than the accuracies 335 

for the training and validation sets of patient “seen data”, which underscores the 336 

robustness of the CRNN model. It is unclear why the participant testing data had 337 

larger mean error values than the patient data, but a possible explanation could be 338 

differences between patient vs. healthy swallow kinematics. The algorithm was 339 

trained and validated only on disordered swallows but was tested on healthy 340 

swallows. Regardless, the higher accuracies seen in the tested set support the utility 341 

of the algorithm; however, the system is not yet ready for clinical implementation.  342 

This study established feasibility and illustrated the model’s relatively impressive 343 

performance in accurately identifying very short-duration events. These events were 344 
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detected from among all events occurring during a swallow sequence. We intend to 345 

hone the system’s precision in future investigations.  346 

  HRCA also has the potential to be used as a non-invasive biofeedback tool 347 

during swallowing rehabilitation. Dysphagia management is designed to target the 348 

underlining biomechanical impairment during swallowing, which can be achieved 349 

through behavioral modifications such as swallowing maneuvers. However, when 350 

training swallowing maneuvers, patients are expected to exert volitional control over 351 

laryngeal structures. This presents treatment challenges when imaging-based visual 352 

biofeedback is unavailable because individuals with dysphagia may not be familiar 353 

with laryngeal function. Providing the patients with extrinsic feedback could 354 

improve patient compliance, accurate performance, and overall outcomes, as has 355 

been demonstrated with other signal-based biofeedback methods (Martin-Harris et 356 

al., 2017; Steele et al., 2012). 357 

In clinical settings, the combination of clinician’s verbal feedback with visual 358 

biofeedback (i.e. kinematic feedback such as videofluoroscopy or FEES, or non-359 

kinematic such as signal waveforms, numerical data, or graphs) corresponding to the 360 

patient’s target movement can intensify the impact of extrinsic feedback (Crary & 361 

Groher, 2000; Humbert & Joel, 2012). Unlike limbs, the volitional control of the 362 

larynx is a relatively obscure act without externally observable activity upon which 363 

to base motor learning. The amplified effect of combined extrinsic feedback may 364 
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augment the patient’s intrinsic feedback system, which monitors the movement of 365 

muscles, joints, and general body position, thus allowing the patient to make more 366 

accurate approximations of targeted gross and fine movements (Abbruzzese et al., 367 

2014; Gandevia et al., 2002) and, ultimately, support learning the target task (Dayan 368 

& Cohen, 2011; Taubert et al., 2011).  369 

HRCA can provide biofeedback by estimating LVC and LVO, thereby 370 

providing LVC duration to patients. Using HRCA in this way would limit radiation 371 

exposure and could improve patient accuracy for targets related to LVC and LVO 372 

onset and volitional LC prolongation, thus promoting better airway protection. 373 

Methods of improving skill acquisition, along with schedules for dosage and 374 

intensity, and reinforcement and feedback, are important components of 375 

rehabilitation treatment taxonomies (Hart et al., 2019). Imagine, for example, there 376 

is an HRCA visual biofeedback device, which provides the patient with a simple 377 

visual representation of laryngeal closure and opening (e.g., red (open) or green 378 

(closed) lights) as biofeedback. This type of system could provide the clinician and 379 

patient with LVC duration information as well as provide the patient with visual 380 

feedback during skill acquisition to help support them achieve their therapy goal. 381 

HRCA provides an objective tool to noninvasively analyze laryngeal behavior 382 

during swallowing, which can provide trackable outcome measures and help 383 

demonstrate and document the efficacy of interventions to reduce aspiration risk. 384 
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The newly proposed machine learning technique using a CRNN model enabled us 385 

to analyze HRCA signals associated with specific swallowing kinematic events 386 

(LVC, LVO), and aligns with other research in our lab demonstrating the association 387 

between HRCA signals and hyoid bone displacement (He et al., 2019), LVC, the 388 

contact of the base of the tongue with the posterior pharyngeal wall (Kurosu et al., 389 

2019), and the diameter of upper esophageal sphincter maximal opening (Shu, 390 

2019). 391 

This new technique has potential for further non-invasive swallowing function 392 

examination for other kinematic events such as tongue base retraction or epiglottic 393 

inversion, which could not be completely perceived or precisely analysed 394 

previously.  395 

The aim of this study was to determine the ability of the sensors and the 396 

CRNN to independently predict the LV status regardless of age, gender, or 397 

diagnosis; however, these considerations provide interesting directions for future 398 

research. Researchers could investigate systematic changes in model predictions of 399 

LVC and LVO. Considerations for changes include varying bolus volumes and 400 

consistencies, various patient characteristics (e.g. age, gender, diagnosis), and 401 

disease characteristics (e.g. disease/dysphagia severity, infarct location from stroke, 402 

and degenerative disease progression).  403 
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Further considerations for future research include exploring factors for 404 

machine learning, such as model structure, learning algorithms, and hyperparameter 405 

tuning. These factors may improve the accuracy of the CRNN model, thus ensuring 406 

the identification of “safe” swallows and avoiding the over or under estimation of 407 

LV closure. Ideally, clinical trials should investigate the efficacy of HRCA as a non-408 

invasive biofeedback tool to augment training in volitional laryngeal closure and to 409 

establish its use as a swallowing intervention to reduce aspiration. 410 

Limitations 411 

One limitation of the current study is that the model was trained on patient 412 

swallows and did not incorporate healthy swallows, which may have improved its 413 

performance. These machine learning algorithms perform more robustly when they 414 

are trained on heterogeneous exemplars (i.e., swallows) from the population under 415 

investigation. We also conducted training and testing of the model with relatively 416 

small sample sizes. Generally, larger training sample sizes are preferred in the 417 

machine learning process. A larger sample of swallows would have increased the 418 

opportunity for the model to characterize less common perturbations in swallow 419 

physiology; the accuracy in modelling the novel test data subset would most likely 420 

be improved. Our results are considered preliminary and will likely improve as we 421 

increase the sample size and train the model with healthy swallows; however, this 422 
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study demonstrates the feasibility of using HRCA to predict LV status and LVC 423 

duration.  424 

Conclusion 425 

This study found that HRCA signal analysis using an advanced machine 426 

learning technique can effectively predict LV status (opening or closure) and 427 

accurately estimate LVC duration. This provides a potential non-invasive tool to 428 

estimate LVC duration for diagnostic and biofeedback purposes in managing 429 

patients with dysphagia as an adjunct to x ray imaging. 430 
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Figure captions 611 

Figure 1. Illustrates using the temporal binary classification method to train the 612 

CRNN architecture. The events of LVC and LVO were labeled by an experienced 613 

rater in kinematic analysis of VFS videos. The numbers ’0’ and ’1’ represent the 614 

opening and closure of LV respectively. 615 

Figure 2. The frame error distribution for the validation results. The red bars 616 

represent an error no larger than 3 frames. (a) & (b) show the distribution of onset 617 

of LVC and onset of LVO respectively for the 10-fold validation dataset, which 618 

contained 588 swallowing samples. (c) & (d) show the distribution of onset of LVC 619 

and onset of LVO respectively for the testing dataset, which contained 45 unseen 620 

swallowing samples. 621 

Figure 3. The accuracy levels for the LV status prediction across the 10 validation 622 

groups. 623 

 

 

 

 

 

 

 


