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ABSTRACT  30 

Patients with occlusion myocardial infarction (OMI) and no ST-elevation on presenting ECG are 31 

increasing in numbers. These patients have a poor prognosis and would benefit from immediate 32 

reperfusion therapy, but we currently have no accurate tools to identify them during initial triage. Herein, 33 

we report the first observational cohort study to develop machine learning models for the ECG 34 

diagnosis of OMI. Using 7,313 consecutive patients from multiple clinical sites, we derived and 35 

externally validated an intelligent model that outperformed practicing clinicians and other widely used 36 

commercial interpretation systems, significantly boosting both precision and sensitivity. Our derived 37 

OMI risk score provided enhanced rule-in and rule-out accuracy relevant to routine care, and when 38 

combined with the clinical judgment of trained emergency personnel, this score helped correctly 39 

reclassify one in three patients with chest pain. ECG features driving our models were validated by 40 

clinical experts, providing plausible mechanistic links to myocardial injury.  41 



The ECG diagnosis of acute coronary syndrome (ACS) in patients with acute chest pain is a 42 

longstanding challenge in clinical practice.1-4 Guidelines primarily focus on ST-segment elevation (STE) 43 

for discerning patients with ST-elevation myocardial infarction (STEMI) vs. other forms of ACS.5-8 A 44 

biomarker-driven approach is recommended in the absence of STE on the presenting ECG. This 45 

diagnostic paradigm has two important limitations. First, around 24%−35% of patients with non-STEMI 46 

have total coronary occlusion, referred to as occlusion myocardial infarction (OMI), and require 47 

emergent catheterization.9-13 This vulnerable group, in contrast to acute myocardial infarctionACS with 48 

an open artery (non-OMI) (Extended Data Fig. 1), suffers from unnecessary diagnostic and treatment 49 

delays that are associated with higher mortality.14-17 This excess risk can be mitigated with enhanced 50 

diagnostic criteria. Although important ECG signatures of OMI are frequently described in the 51 

literature,18-21 they are subtle, involve the entire QRST complex, and are spatial in nature (i.e., changes 52 

diluted across multiple leads).22-24 Visual inspection of ECG images by clinical experts, thus, is 53 

suboptimal and leads to a high degree of variability in ECG interpretation.25-27  54 

The second limitation is that cardiac biomarkers, including conventional or high sensitivity 55 

troponin (hs-cTn), cannot differentiate OMI until peak level is reached, which is too late to salvage 56 

myocardium.  Positive troponin results (>99th percentile limit) come with a high false positive rate, and 57 

approximately one-third of patients remain in a biomarker-indeterminate “observation zone” even after 58 

serial sampling.28,29 More importantly, ~25% of acute myocardial infarction cases have a negative initial 59 

hs-cTn, which is observed in both the STEMI and OMI subgroups.30 Consequently, 25%-30% of 60 

patients with OMI are not treated in a timely fashion, and around 63% (IQR 38%-81%) of patients 61 

evaluated for chest pain at the emergency department are admitted to the hospital because of an 62 

inconclusive initial assessment.31 These diagnostic limitations have created a costly, inefficient clinical 63 

practice paradigm where most patients with chest pain are over-monitored while some patients with 64 

OMI have delayed diagnosis and treatment, potentially contributing to the 14%−22% excess risk of 65 

mortality seen in the non-STE ACS group (NSTE-ACS).15,32,33 66 



In our prior work, we designed prototype algorithms for AI-enabled ECG analysis and 67 

demonstrated the clinical feasibility of screening for ACS in the prehospital setting.34,35 Herein, we 68 

describe the first multisite, prospective, observational cohort study to evaluate the diagnostic accuracy 69 

of machine learning for the ECG diagnosis and risk stratification of OMI at first medical contact in an 70 

observer-independent approach (Extended Data Fig. 2). Our intelligent models were derived and 71 

externally validated on 7,313 patients with chest pain from multiple clinical sites in the United States. 72 

The results demonstrate the superiority of machine learning in detecting subtle ischemic ECG changes 73 

indicative of OMI, outperforming practicing clinicians and other widely used commercial ECG 74 

interpretation software. Our derived OMI risk score provides superior enhanced rule-in and rule-out 75 

accuracy when compared to the HEART score, helping correctly reclassify one in three patients with 76 

chest pain. We identified the most important ECG features driving our model’s classifications and 77 

identified plausible mechanistic links to myocardial injury.  78 

 79 

RESULTS 80 

Sample Characteristics 81 

After excluding patients with cardiac arrest, ventricular tachyarrhythmias, confirmed prehospital 82 

STEMI, and duplicate ECGs, our derivation cohort included 4,026 consecutive patients with chest pain 83 

(age 59±16 years, 47% females, 5.2% OMI). The two external validation cohorts together included 84 

3,287 patients (age 60±15 years, 45% females, 6.4% OMI) (Fig. 1 and Table 1). Most patients in the 85 

derivation and validation cohorts were in normal sinus rhythm (>80%) and around 10% were in atrial 86 

fibrillation. Around 3% of patients had left bundle branch block (LBBB) and ~10% had ECG-evidence of 87 

left ventricular hypertrophy (LVH). The derivation and validation cohorts were comparable in terms of 88 

age, sex, baseline clinical characteristics, and 30-day cardiovascular mortality. The validation cohort, 89 

however, had more Black and Hispanic minorities and a slightly higher rate of ACS and OMI. The 90 



presence of OMI, defined as a culprit coronary artery with a TIMI flow grade of 0-1, was adjudicated 91 

from charts by independent reviewers blinded to all ECG analyses. A TIMI flow grade of 2 with 92 

significant coronary narrowing (>70%) and peak 4th generation (not high sensitivity) troponin of 5-10 93 

ng/mL was also indicative of OMI. 94 

Algorithm Derivation and Testing 95 

The positive class for model training was the presence of OMI, defined as a culprit coronary 96 

artery with a TIMI flow grade of 0-1, as adjudicated from charts by independent reviewers blinded to all 97 

ECG analyses. A TIMI flow grade of 2 with significant coronary narrowing (>70%) and peak 4th 98 

generation (not high sensitivity) troponin of 5-10 ng/mL was also indicative of OMI. The negative class 99 

for model training was the absence of OMI, which included all other non-ACS etiologies or those with 100 

non-coronary occlusive ACS subtypes.  101 

Input data for model training was based on prehospital 12-lead ECGs obtained at first medical 102 

contact. We selected 73 morphological ECG features out of 554 temporal-spatial metrics using a hybrid 103 

data-driven and domain expertise approach.18 Using these features, ten classifiers were trained to learn 104 

ischemic patterns between ACS and non-ACS groups and to estimate the probability of OMI: 105 

regularized logistic regression, linear discriminant analysis, support vector machine, Gaussian Naïve 106 

Bayes, random forest, gradient boosting machine, extreme gradient boosting, stochastic gradient 107 

descent logistic regression, k-nearest neighbors, and artificial neural networks. We chose these 108 

classifiers because they learn different mathematical representations in the data, in order to 109 

maximizeing the chance of finding the best fitting modelingapproach approach for learning the 110 

mathematical representation relating complex ECG data to underlying physiology.  111 

The random forest model achieved the best bias-variance tradeoff for training and internal 112 

testing. We compared the random forest against the ECG interpretation of practicing clinicians and 113 

against the performance of a commercial ECG interpretation system that is FDA-cleared for “Acute MI” 114 

diagnosis. On the hold-out test set, the random forest model (AUROC 0.91 [95% CI 0.87-0.96]) 115 



outperformed both practicing clinicians (AUROC 0.79 [95% CI 0.73-0.76], p<0.001) and the commercial 116 

ECG system (AUROC 0.78 [95% CI 0.70-0.85], p<0.001) (Fig. 2A).  117 

Next, we used probability density plots for OMI(+) and OMI(-) classes to denote the optimal 118 

separation margins for risk prediction. As recommended by guidelines,6 we defined a risk score to 119 

identify patients at low risk (OMI score <5), intermediate risk (OMI score 5-20), and high risk (OMI 120 

score >20), with these cutoffs yielding excellent separation between classes (Log-rank chi-square 121 

133.04, df=2, p<0.001) (Fig. 2B, left panel). Our OMI score classified 74.4% of patients as low-risk and 122 

4.6% as high-risk. Using the low-risk group in a rule-out strategy yielded a sensitivity of 0.91 and a 123 

negative predictive value (NPV) of 0.993, with an overall missed event rate of 0.5%. Using high-risk 124 

class for a rule-in strategy yielded a specificity of 0.976 and a positive predictive value (PPV) of 0.514, 125 

with an overall false discovery rate of 2%. Finally, we compared this OMI score to the HEART score, 126 

which uses patient history, ECG data, age, risk factors, and troponin values (Fig. 2B, right panel). Our 127 

OMI score, which is based on ECG data alone, classified 66% more patients as low risk than the 128 

HEART score with a comparable false negative rate <1%, and classified fewer patients as high-risk and 129 

with much higher precision (51% vs. 33%). The OMI score also triaged 50% fewer patients as 130 

intermediate risk and still got better discrimination for OMI detection (11.2% vs. 5.6%).  131 

Model Explainability 132 

We used Tree SHAP algorithms to generate an importance ranking that explains the output of the 133 

random forest model based on SHAP values estimated for the top 25 features (Fig. 3A). The features 134 

with the greatest impact on classification output included slight ST-depression in leads V1, V2, I, and 135 

aVL; slight ST-elevation in leads III and V4-V6; loss of concave pattern in anterior leads; T wave 136 

enlargement in II and aVF and T flattening or inversion in I and aVL; prolonged Tpeak-Tend interval; T axis 137 

deviation; increased repolarization dispersion; and distorted directions of activation and recovery 138 

patterns. Most of these ECG patterns can be mechanistically linked to cardiac ischemia, suggesting 139 

their clinical value as plausible features for OMI detection.  140 



 141 

To better visualize these global ECG patterns detected by our model, we created pooled 142 

population median beats for the OMI(+) class (n=414 ECGs), and superimposed these median beats 143 

on the pooled population median beats of patients with normal sinus rhythm and OMI(-) status (n=9,072 144 

ECGs) (Fig. 3B). Findings from this figure agree with the patterns derived from the SHAP values 145 

described above. Specifically, this figure illustrates that OMI is associated with ST-depression and T 146 

flattening in V1-V2, I, and aVL; slight ST-elevation in the anterior leads with loss in concave pattern; 147 

peaked T wave in inferior leads; Tpeak-Tend prolongation (seen in many leads); global repolarization 148 

dispersion (seen as peaked T in some leads and flattening in others); T axis deviation (away from the 149 

left ventricle), and distorted activation and recovery patterns (seen in the horizontal plane as loss of R 150 

wave progression in precordial leads with increased T wave discordance). Due to prevalent multivessel 151 

disease in this cohort, these OMI patterns remained relatively consistent regardless of culprit location.  152 

 Nevertheless, to examine local explainability of feature importance, we used force plots on 153 

individual cases to identify the features that met the contribution threshold of the random forest model 154 

on a given ECG. These force plots were also examined by study investigators to further corroborate on 155 

the clinical validity of model predictions. Extended Data Fig. 3 shows a selected example of a 12-lead 156 

ECG with its corresponding force plot for the local features contribution. 157 

External Validation 158 

We tested the final lock-out model on 3,287 patients from two independent external clinical 159 

sites. Machine learning engineers were blinded to outcome data from other sites, and the pre-populated 160 

model predictions were independently evaluated by the clinical investigators. Our model generalized 161 

well and maintained high classification performance (AUROC 0.873 [95% CI 0.85-0.90]), outperforming 162 

the classification performance of the commercial ECG system (AUROC 0.75 [95% CI 0.71-0.79], 163 

p<0.001) and practicing clinicians (AUROC 0.80 [95% CI 0.77-0.83], p<0.001) (Fig. 4A). Our OMI risk 164 

score was a strong predictor of OMI, independent from, age, sex, and other coronary risk factors (OR 165 
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10.6 [95% CI 6.78-16.64] for high-risk class and OR 2.85 [95% CI 1.91-4.28] for intermediate-risk class) 166 

(Fig. 4B). This risk score triaged 69% of patients in the low-risk group at a false-negative rate of 1.3% 167 

and identified 5.1% of patients as high-risk at acceptable true positive rate >50%. The overall 168 

sensitivity, specificity, PPV, and NPV for the OMI rule-in and rule-out strategy were 0.86 (95% CI 0.81-169 

0.91), 0.98 (95% CI 0.97-0.99), 0.54 (95% CI 0.46-0.62), and 0.99 (95% CI 0.98-0.99), respectively. 170 

This diagnostic accuracy remained relatively similar across subgroups based on age, sex, race, 171 

comorbidities, and baseline ECG findings, indicating the lack of aggregation bias (Fig. 4C). In 172 

comparison, the sensitivity, specificity, PPV, and NPV for ECG overread by practicing clinicians were 173 

0.58, 0.93, 0.36, and 0.97, and for the commercial ECG system 0.79, 0.80, 0.22, and 0.98, respectively. 174 

Next, we used decision analysis to evaluate the incremental gain of our derived risk score in re-175 

classifying patients at first medical contact (Fig. 5). To simulate iInitial assessment by emergency 176 

personnel , we used was based on the modified HEAR score (History, ECG, Age, and Risk factors) to 177 

triage patients into low, intermediate, and high-risk groups.36 At baseline, emergency personnel triaged 178 

48% of patients as low risk with a NPV of 99.0% and triaged 3% of patients as high risk with a PPV of 179 

54.1%. Nearly 50% of patients remained in an indeterminate observation zone. Applying our OMI risk 180 

score would help triage 45% more patients as low risk while keeping the NPV at 98.8% and would help 181 

detect 85% more cases with OMI while keeping PPV at 50.0%. The OMI score would also help reduce 182 

the number of patients in the indeterminate observation zone by more than half. These numbers 183 

translate into a net reclassification improvement (NRI) index of 41% (95% CI 33%-50%). To validate 184 

this incremental clinical utility, we manually reviewed ECGs reclassified correctly as OMI(+) (Extended 185 

data Fig. 34). Many of these ECGs showed subtle or nonspecific changes that were nondiagnostic as 186 

per guidelines,5 suggesting potential value in boosting provider’s confidence when interpreting “fuzzy” 187 

ECGs. 188 

Finally, we investigated the potential sources of false negatives in the validation data. Among 189 

those with missed OMI events (n=28, 0.9%), many patients had high-frequency noise and baseline 190 



wander on their initial ECG (n=13/28, 46%) or had low voltage ECG (n=14/28, 50%), and most patients 191 

(n=24/28, 86%) had benign ECGs without any diagnostic ST-T changes (Extended Data Fig. 45). 192 

Moreover, we found no significant differences between false negatives and true positives in terms of 193 

demographics or clinical characteristics, with the exception that most false negatives had a history of a 194 

prior myocardial infarction (93% vs. 27%). The latter finding was intriguing given that our OMI model 195 

was slightly less specific in patients with known coronary artery disease (Fig. 4C). This finding aligns 196 

with recent evidence showing diminished NPV in patients with chest pain and known CAD.37 197 

Screening for Any ACS Event 198 

We further built a model to screen for any potential ACS event at first medical contact. Using the 199 

same set of ECG features, we trained and optimized a random forest classifier that denotes the 200 

likelihood of any ACS event. The model performed well during training (AUROC 0.88 [95% CI 0.87-201 

0.90]) and generalized well during internal testing (AUROC 0.80 [95% CI 0.76-0.84]), outperforming 202 

both the commercial ECG interpretation system (AUROC 0.62 [95% CI 0.55-0.68], p<0.001) and 203 

practicing clinicians (AUROC 0.66 [95% CI 0.59-0.72], p<0.001) (Extended Data Fig. 56). On external 204 

validation, the model continued to generalize well (AUROC 0.79 [95% CI 0.76-0.81]), outperforming the 205 

commercial system (AUROC 0.68 [95% CI 0.65-0.71], p < 0.001) and practicing clinicians (AUROC 206 

0.72 [95% CI 0.69-0.74], p < 0.001). Our derived risk score provided a suboptimal rule-out classification 207 

for any ACS event (sensitivity 68.2% and NPV 92.5%) but provided superior rule-in accuracy 208 

(specificity 98.9% and PPV 82.5%).  209 

DISCUSSION 210 

In this study, we developed and validated a machine learning algorithm for the ECG diagnosis 211 

of OMI in consecutive patients with chest pain recruited from multiple clinical sites in the United States. 212 

This model outperformed practicing clinicians and other commercial interpretation systems. The derived 213 

risk score provided superior rule-in and rule-out accuracy for OMI, boosting the sensitivity by 7 to 28 214 

percentage points and the precision by 18 to 32 percentage points compared to reference standards. 215 



When combined with the judgment of experienced emergency personnel, our derived OMI risk score 216 

helped correctly reclassify one in three patients with chest pain. To our knowledge, this is the first study 217 

using machine learning methods and novel ECG features to optimize OMI detection in patients with 218 

acute chest pain and negative STEMI pattern on their baseline ECG at first medical contact. 219 

Mapping myocardial ischemia, a problem of regional metabolic derangement, to coronary 220 

occlusion, a problem of diminished blood flow due to an atherosclerotic plaque rupture, is a complex 221 

process.1 Essentially, ischemia disproportionately distorts action potentials in different myocardial 222 

segments, resulting in tissue-scale currents, often called ‘injury’ currents. Prior studies have mapped 223 

significant ST-elevation to transmural injury currents associated with total coronary occlusion. This has 224 

historically driven the current paradigm dichotomy of STEMI vs. ‘others’ (any ACS other than STEMI) in 225 

determining who might benefit from emergent reperfusion therapy. However, nearly 65% of patients 226 

with ACS present with no ST-elevation on their baseline ECG,35,38 and among the latter group, 227 

24%−35% have total coronary occlusion requiring emergent catheterization.9-13 Thus, determining who 228 

would benefit from reperfusion therapy remains an adjudicated diagnosis. 229 

Conceptually, injury currents produced by ischemic cardiac cells are summative in nature, 230 

explaining how ST amplitude changes can get attenuated on the surface ECG (Extended Data Fig. 231 

67). These injury currents, however, distort the propagation of both excitation and recovery pathways, 232 

altering the configuration of the QRS complex and the STT waveform altogether.39 Thus, a more 233 

comprehensive approach for the ECG detection of ischemia should focus on (1) evaluating temporal 234 

characteristics over entire waveform segments rather than the voltage at a given time point (e.g., J+80), 235 

and (2) evaluating lead-to-lead spatial characteristics in waveform morphology rather than absolute 236 

changes in isolated ECG leads.1 237 

This study has identified several ECG patterns indicative of acute coronary occlusion beyond 238 

the criteria recommended by clinical guidelines.5 Intriguingly, these ECG patterns overlap with those 239 

described in the literature. A consensus report in 2012 identified few ECG patterns that should be 240 



treated as STEMI equivalent during acute pain episodes: ST-depression in V1 to V3; small inverted T 241 

waves in V1 to V3; deep negative T waves in precordial leads; widespread ST-depression, and 242 

prominent positive T waves.20 Similar ECG patterns were also described more recently: ST-depression 243 

in V1 to V4 (versus V5-V6); reciprocal ST-depression with maximal ST-depression vector towards the 244 

apex (leads II and V5, with reciprocal STE in aVR); subtle ST-elevation; acute pathologic Q waves; 245 

hyperacute T waves; and loss of terminal S wave.21 Many of these expert-driven patterns rely on 246 

assessing the proportion of repolarization amplitudes or area under the QRS amplitude. They also rely 247 

heavily on the visual assessment of waveform morphology and can introduce a high degree of 248 

subjectivity and variability among ECG interpreters. We demonstrated that the machine learning 249 

models described herein not only outperform practicing clinicians in identifying OMI, but also provided 250 

an objective, observer-independent approach to quantify subtle ECG patterns associated with OMI.  251 

Many of the data-driven features identified by our machine learning model are subtle and cannot 252 

be easily appreciated by clinical experts. T feature indices were among these most important features, 253 

including Tpeak-Tend interval prolongation, T wave flattening, and T wave characteristics at the inflection 254 

point preceding Tpeak (Fig. 3A). Mechanistically, ischemic injury currents interfere with signal 255 

propagation leading to longer activation time.40 These late activation potentials lead to a loss of terminal 256 

S wave and longer recovery time, both manifesting as T wave flattening, shifted T peak, and loss of 257 

concavity at the initial T wave (Fig. 3B). These STEMI-equivalent patterns were previously described in 258 

the literature as small or negative T waves with widespread ST-depression or subtle ST- elevation.20,21 259 

Another important subtle feature identified by our model was increased ventricular repolarization 260 

dispersion, measured using the ratio between the principal components of the STT waveforms (i.e., 261 

PCA metrics), the direction of the T axis, and the angle between activation and recovery pathways 262 

(e.g., total-cosine-R-to-T). Injury currents disproportionately affect the duration and velocity of 263 

repolarization across different myocardial segments,41 resulting in lead-to-lead variability in the 264 

morphology of the STT waveform.22-24,39,42 These high-risk ECG patterns were previously described as 265 

a mixture of deep negative T waves and prominent / hyperacute T waves or reciprocal T wave 266 



changes.20,21  Despite their subtle nature, our machine learning model provided a more comprehensive, 267 

quantitative approach to evaluating this inter-lead variability in repolarization morphology.  268 

Machine learning is well-suited to address many challenges in 12-lead ECG interpretation. 269 

Myocardial ischemia distorts the duration and amplitude of the Q wave, R peak, R`, QRS complex, ST 270 

segment, and T wave, as well as the morphology and configuration of these waveforms (e.g., 271 

upsloping, down-sloping, concavity, symmetry, notching, etc.). These distortions are lead-specific yet 272 

come with dynamic inter-lead correlations. Thus, ECG interpretation involves many complex aspects 273 

and parameters, making it a highly dimensional, decision space problem.1 Few experienced clinicians 274 

excel in such pattern recognition,21 which explains why so many OMI cases are not reperfused in a 275 

timely way; this is also why simple, rule-based commercial systems that use simple regression models 276 

are suboptimal for OMI detection. Machine learning algorithms can provide powerful tools to solve such 277 

highly dimensional, non-linear mathematical representations found in 12-lead ECG data.  278 

Although the literature on machine learning for the ECG diagnosis of coronary disease is 279 

ubiquitous, it comes with many serious limitations. First, many studies focused on detecting the known 280 

STEMI group or other subtle ACS phenotypes34,35,43,44 rather than the critical group without ST-281 

elevation, which is not classified as STEMI and is therefore excluded from STEMI databases. Second, 282 

most prior work used open-source ECG datasets like PTB and PTB-XL,45 which are highly selected 283 

datasets that focus on ECG-adjudicated diagnoses. Our unique cohorts included unselected, 284 

consecutive patients with clinical profiles and disease prevalence like that seen in real-world settings. 285 

Third, many studies used a full range of input features based on both ECG data and clinical data 286 

elements (e.g., patient history, physical exam abnormalities, laboratory values, diagnostic tests),46-49 287 

which limits the applicability to real-world settings. Fourth, to our knowledge, most studies used a single 288 

derivation cohort for training and testing,50 without the use of an independent validation cohort. Finally, 289 

prior studies paid little attention to model explainability,51 shedding little light on novel markers and 290 



pathways of ischemia than what is already known. Without explanation aids of clinical meaningfulness, 291 

machine learning models for ECG interpretation would have limited clinical utility.52 292 

This study has important clinical implications. Our machine learning model can be integrated 293 

into systems of care for real-time deployment where risk score assignments can be made readily 294 

available to clinicians right at time of ECG acquisition. Such enhanced decision support can help 295 

emergency personnel identify 85% more patients with critical coronary occlusion despite the absence of 296 

a STEMI pattern on the presenting ECG and without any loss in precision. Our models can also help 297 

inform care in more than 50% of patients in whom the initial assessment is indeterminate, placing 45% 298 

more patients in the low-risk group for OMI without any loss in NPV. This incremental gain in rule-in and 299 

rule-out accuracy can help re-allocate critical emergency resources to those in utmost need while 300 

optimizing the clinical workflow. This can impact numerous decisions at first medical contact, including 301 

targeted prehospital interventions, catheterization lab activation, administration of anti-ischemic 302 

therapies, hospital destination decisions, the need for medical consults, referrals for expedited 303 

diagnostic testing (e.g., echocardiogram, imaging scans), and early discharge decisions. Furthermore, 304 

until now, clinicians never had sensitive nor highly specific tools that would allow the ultra-early 305 

identification of OMI in the absence of a STEMI pattern. Such enhanced diagnostics can allow the 306 

design and implementation of prospective interventional trials to assess the therapeutic effectiveness of 307 

targeted interventions in this vulnerable group (e.g., early upstream P2Y12 inhibitor administration,53 308 

emergent vs. delayed reperfusion therapy,54 glucose-insulin-potassium infusion,55 etc.).  309 

Several limitations merit consideration. First, the engineered features we used for building our 310 

models are based on a manufacturer-specific software. There are known discrepancies between 311 

manufacturers in ECG preprocessing and metrics computation, which means that our models would 312 

need retraining and validation when using different software for ECG signal processing. Alternatively, 313 

deep neural networks can be used to directly analyze raw ECG signal without explicit feature 314 

engineering. However, these techniques require much larger sample size for model derivation (e.g., 315 



>10,000) and might not yield a meaningful improvement over feature engineering-based machine 316 

learning approaches for traditional 12-lead ECG based diagnosis.56 Second, we found slight differences 317 

between the derivation and validation cohorts, specifically in terms of disease prevalence and practicing 318 

clinicians’ accuracy in ECG interpretation. These cohorts came from two different regions in the U.S., 319 

and EMS systems follow state-specific protocols. It is possible that discrepancies in EMS protocols and 320 

in-hospital practices resulted in slight differences in the types and proportions of patients that receive 321 

prehospital 12-lead ECGs, as well as in their outcome adjudications. Yet, it is reassuring that our 322 

models continued to generalize well between the study sites. Third, it is worth noting that our model for 323 

screening for “any ACS event” only boosted the performance of the rule-in arm of the derived risk 324 

score. This means that a low-risk determination by our model suggests that a given patient would 325 

unlikely have OMI, but they might still have a less subtle phenotype of NSTE-ACS that does not require 326 

reperfusion therapy. It is likely that serial ECG testing might improve the detection of this groupmissed 327 

events where a patients might switch to a higher risk category in the following hours,34 but this remains 328 

to be confirmed. Coronary occlusion is a dynamic process that evolves over time, so an initial low risk 329 

class by our models should not lead to a lower level of active monitoring. Finally, although this study 330 

used prospective patients, all analyses were completed asynchronously with patient care. Prospective 331 

validation where OMI probabilities and decision support is provided in real time is warranted. 332 

In conclusion, we developed and externally validated machine learning models for the ECG 333 

diagnosis of OMI in 7,313 patients with chest pain from multiple sites in the United States. The results 334 

demonstrated the superiority of machine learning in detecting subtle ischemic ECG changes indicative 335 

of OMI in an observer-independent approach. These models outperformed practicing clinicians and 336 

commercial ECG interpretation software, significantly boosting both precision and recall. Our derived 337 

OMI risk score provided superior enhanced rule-in and rule-out accuracy when compared to HEAR 338 

score, and when combined with the clinical judgment of trained emergency personnel, this score helped 339 

correctly reclassify one in three patients with chest pain. The ECG features driving our models were 340 



evaluated, providing plausible mechanistic links to myocardial injury. Future work should focus on the 341 

prospective validation where OMI probabilities and decision support is provided in real time.  342 
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ONLINE METHODS 368 

Ethics Statement 369 

The derivation cohort included prehospital data from the City of Pittsburgh Bureau of 370 

Emergency Medical Services (EMS) and in-hospital data from three tertiary care hospitals from the 371 

University of Pittsburgh Medical Center (UPMC) healthcare system: UPMC Presbyterian Hospital, 372 

UPMC Shadyside Hospital, and UPMC Mercy Hospital (Pittsburgh, Pennsylvania, USA). All 373 

consecutive eligible patients were recruited under a waiver of informed consent. This observational trial 374 

was approved by the institutional review board of the University of Pittsburgh and was registered in 375 

www.ClinicalTrials.gov (identifier # NCT04237688). The analyses described in this paper were 376 

prespecified by the trial protocol that was funded by the National Institute of Health. The first external 377 

validation cohort included data from Orange County EMS (Chapel Hill, North Carolina, USA). This study 378 

actively consented eligible patients and was approved by the institutional review board of the University 379 

of North Carolina at Chapel Hill. The second external validation cohort included data from Mecklenburg 380 

County EMS and Atrium Health (Charlotte, North Carolina, USA). Data were collected through a 381 

healthcare registry and all consecutive eligible patients were enrolled under a waiver of informed 382 

consent. This study was also approved by the institutional review board of the University of North 383 

Carolina at Chapel Hill. These two external cohorts were very comparable and were, therefore, 384 

combined into one cohort. 385 

Study Design & Data Collection 386 

This was a prospective, observational cohort study. The methods for each study cohort were 387 

described in detail elsewhere.57,58 All study cohorts enrolled adult patients with an emergency call for 388 

non-traumatic chest pain or anginal equivalent symptoms (arm, shoulder, jaw pain, shortness of breath, 389 

diaphoresis, syncope). Eligible patients were transported by an ambulance and had at least one 390 

recorded prehospital 12‑lead ECG. There were no selective exclusion criteria based on sex, race, 391 

http://www.clinicaltrials.gov/


comorbidities, or acuity of illness. For this prespecified analysis, we only included non-duplicate ECGs 392 

from unique patient encounters, and we removed patients with prehospital ECGs showing ventricular 393 

tachycardia or ventricular fibrillation (i.e., these patients are managed by ACLS algorithms). We also 394 

removed patients with confirmed prehospital STEMI, which included machine-generated ***ACUTE 395 

MI*** warning, EMS-documentation of STEMI, and medical consult for potential CATH lab activation. 396 

Independent reviewers extracted data elements from hospital systems on all patients meeting 397 

eligibility criteria. If a prehospital ECG had no patient identifiers, we used a probabilistic matching 398 

approach to link each encounter with the correct hospital record. This previously validated data linkage 399 

protocol was based on the ECG-stamped birth date, sex, and date/time logs, as well as based on EMS 400 

dispatch logs and receiving hospital records. All probabilistic matches were manually reviewed by 401 

research specialists for accuracy. The match success rate ranged from 98.6% to 99.8%. 402 

Clinical Outcomes 403 

Adjudications were made by independent reviewers at each local site after reviewing all 404 

available medical records within 30 days of the indexed encounter. Reviewers were blinded from all 405 

ECG analyses and models’ predictions. OMI was defined as coronary angiographic evidence of an 406 

acute culprit lesion in at least one of the three main coronary arteries (LAD, LCX, RCA) or their primary 407 

branches with TIMI flow grade of 0-1. TIMI flow grade of 2 with significant coronary narrowing > 70% 408 

and peak troponin of 5-10.0 ng/mL was also considered indicative of OMI.17,21 These adjudications 409 

were made by two independent reviewers. The Kappa coefficient statistic between the two reviewers 410 

was 0.771 (i.e., substantial agreement). All disagreements were resolved by a third reviewer.  411 

ACS was defined per the fourth universal definition of myocardial infarction as the presence of 412 

symptoms of ischemia (i.e. diffuse discomfort in the chest, upper extremity, jaw, or epigastric area for 413 

more than 20 minutes) and at least one of the following criteria: (1) subsequent development of labile, 414 

ischemic ECG changes (e.g., ST changes, T inversion) during hospitalization; (2) elevation of cardiac 415 

troponin (i.e., > 99th percentile) during the hospital stay with rise and/or drop on serial testing; (3) 416 



coronary angiography demonstrating greater than 70% stenosis, with or without treatment; and/or (4) 417 

functional cardiac evaluation (stress testing) that demonstrates ECG, echocardiographic, or 418 

radionuclide evidence of focal cardiac ischemia.5 Patients with type 2 MI and pre-existing subacute 419 

coronary occlusion were labeled as negative for ACS and OMI. This included around 10% of patients 420 

with positive troponin but with no rise and/or drop in concentration on serial testing (i.e., chronic leak) or 421 

with troponin leak attributed to non-coronary occlusive conditions such as pericarditis. On a randomly 422 

selected small subset of patients (n=1,209), the Kappa coefficient statistic for ACS adjudication ranged 423 

from 0.846 to 0.916 (i.e., substantial to perfect agreement). 424 

ECG Methods 425 

Prehospital ECGs were obtained in the field by paramedics as part of routine care. ECGs were 426 

acquired using either Heart Start MRX (Philips Healthcare) or LIFEPAK-15 (Physio-Control Inc.) 427 

monitor-defibrillator devices. All digital 12-lead ECGs were acquired at a sampling rate of 500 s/s (0.05-428 

150 Hz) and transmitted to the respective EMS agency and receiving hospital. Digital ECG files were 429 

exported in XML format and stored in a secondary server at each local site. ECG images were de-430 

identified and manually annotated by independent reviewers or research specialists; ECGs with poor 431 

quality or missing leads were removed from the study. Next, digital XML files were transmitted to the 432 

Philips Advanced Algorithm Research Center for offline analysis (Cambridge, Massachusetts, USA).  433 

ECG featurization was described in detail elsewhere.18 Briefly, ECG signal preprocessing and 434 

feature extraction were performed using a manufacturer-specific software (Philips DXL diagnostic 12/16 435 

lead ECG analysis program). ECG signals were first preprocessed to remove noise, artifacts, and 436 

baseline wander. Ectopic beats were removed, and median beats were calculated for each lead. Next, 437 

we used the root mean square (RMS) signal to identify global waveform fiducials, including the onset, 438 

offset, and peak of the P wave, QRS complex, and T wave. Lead-specific fiducials were then identified 439 

to further segment individual waveforms into Q, R, R`, S, S`, and J point.  440 



We then computed a total of 554 ECG features based on (1) the amplitude, duration, area, 441 

slope and/or concavity of global and lead-specific waveforms; (2) the QRS and T axes and angles in 442 

the frontal, horizontal, spatial, XY, XZ, and YZ planes, including directions at peak, inflection point, and 443 

initial / terminal loops; (3) eigenvalues of the principal components of orthogonal ECG leads (I, II, V1-444 

V6), including PCA ratios for individual ECG waveform segments; and (4) T loop morphology 445 

descriptors. Features with zero distribution were removed to prevent representation bias.  446 

Next, we previously identified an optimal parsimonious list of the most important ECG features 447 

that are mechanistically linked to cardiac ischemia as described in detail elsewhere.18 Briefly, to prevent 448 

omitted-feature bias, we used a hybrid approach that combines domain knowledge with a data-driven 449 

strategy. First, clinical scientists identified 24 classical features that are known to correlate with cardiac 450 

ischemia (i.e., lead-specific ST-80 and T wave amplitudes). Next, starting with a comprehensive list of 451 

554 candidate features, we used data-driven algorithms (e.g., recursive feature elimination and 452 

LASSO) to identify 198 supplemental features potentially related to ischemia. LASSO selects features 453 

with non-zero coefficients after L1 norm regularization, and recursive feature elimination uses repeated 454 

regression iterations to identify the features that have significant impact on model predictions. We then 455 

examined the feature pairs in this expanded list of 222 features and removed features with very high 456 

collinearity scores that contains redundant information (e.g., we kept QTc if both QT and QTc were 457 

selected by the model). Finally, we used feature importance ranking to identify the most parsimonious 458 

subset of features that are complementary and can boost the classification performance. This hybrid 459 

approach eventually yielded a subset of 73 features that can serve as plausible markers of 460 

ischemiaClinical scientists initially reviewed a list of 554 features and marked the ones that are known 461 

to correlate with cardiac ischemia. This list was then expanded by supplemental features identified by 462 

data-driven algorithms (e.g., recursive feature elimination and LASSO). The clinical scientists then 463 

reviewed the expanded list to examine feature pairs with high collinearity and retained the subset of 464 



features that are complementary and can serve as plausible markers of ischemia. This approach 465 

eventually yielded a subset of 73 features that was shown to boost classification performance.18  466 

Machine Learning Methods 467 

We followed best practices recommended by “ROBUST-ML” and “ECG-AI stress test” checklists 468 

to design and benchmark our machine learning algorithms.51,59 To prevent measurement bias, ECG 469 

features were manually reviewed to identify erroneous calculations. Physiologically plausible outliers 470 

were replaced with ±3 SD. On average, each feature had a 0.34% missingness rate (range 0.1% to 471 

1.6%). Thus, we imputed missing values with the mean, median, or mode of that feature after 472 

consultation with clinical experts. ECG metrics were then z-score normalized and used as input 473 

features in machine learning models. The derivation and validation datasets were cleaned 474 

independently to prevent data leakage. Both cohorts were recruited over the same time window, 475 

suggesting the lack of temporal bias. To prevent potential mismatch with intended use, input features 476 

for model development included only ECG data plus the machine-stamped age. No other clinical data 477 

were used for model building.  478 

We randomly split the derivation cohort into an 80% training set and a 20% internal testing set. 479 

On the training set, we fit 10 machine learning classifiers: regularized logistic regression, linear 480 

discriminant analysis, support vector machine, Gaussian Naïve Bayes, random forest, gradient 481 

boosting machine, extreme gradient boosting, stochastic gradient descent logistic regression, k-nearest 482 

neighbors, and artificial neural networks. Each classifier was optimized over 10-fold cross validation to 483 

finetune hyperparameters. After selecting optimal hyperparameters, models were re-trained on the 484 

entire training subset to derive final weights and create a lockout model to evaluate on the holdout test 485 

set. We calibrated our classifiers to produce a probabilistic output which can be interpreted as a 486 

confidence level (probability risk score). Trained models were compared using the AUROC curve with 487 

Wilcoxon signed-rank test for pairwise comparisons. ROC-optimized cutoffs were chosen using Youden 488 

index, and classifications on confusion matrix were compared using McNemar’s test.  489 



The random forest classifier (RF) achieved high accuracy on the training set (low bias) with a 490 

relatively small drop in performance on the test set (low variance), indicating an acceptable bias-491 

variance tradeoff and low risk of overfitting (Extended Data Fig. 78). Although the support vector 492 

machine (SVM) model had lower variance on the test set, when compared with the RF model, there 493 

were no significant differences in AUROC (Delong’s test) or their binary classifications (McNemar’s 494 

test). Moreover, there were no differences between the RF and SVM models in terms of Kolmogorov-495 

Smirnov goodness-of-fit (0.716 vs. 0.715) or the Gini purity index (0.82 vs. 0.85). Due to its scalability 496 

and intuitive architecture, we chose the probability output of the RF model to build our derived OMI 497 

score. We generated density plots of these probability scores for positive and negative classes and 498 

selected classification thresholds for low, intermediate, and high-risk groups based on prespecified 499 

NPV > 0.99 and TPR > 0.50. Finally, we used the lock-out random forest classifier to generate 500 

probability scores and risk classes on the completely unseen external validation cohort. The code to 501 

generate probability scores is included with the supplemental materials of this manuscript.  502 

Reference Standard 503 

To reduce the risk of evaluation bias, we benchmarked our machine learning models against 504 

multiple reference standards used during routine care in clinical practice. First, we used a commercial, 505 

FDA-approved, ECG interpretation software (Philips DXL diagnostic algorithm) to denote the likelihood 506 

of ischemic myocardial injury. This likelihood (yes/no) was based on a composite of the followings: (1) 507 

diagnostic codes for “>>>Acute MI<<<”, including descriptive statements that denote “acute”, “recent”, 508 

“age indeterminate”, “possible” or “probable”; and (2) diagnostic codes for “>>>Acute Ischemia<<<”, 509 

including descriptive statements that denote “possible”, “probable”, or “consider”. Diagnostic statements 510 

that denoted “old” [infarct], “nonspecific” [ST depression], or “secondary to” [LVH or high heart rate] 511 

were excluded from this composite reference standard.  512 

We also used practicing clinicians’ overread of ECGs to denote the likelihood of ischemic 513 

myocardial injury on a given ECG (yes/no) when a STEMI pattern does not exist, which is congruent 514 



with how ED physicians evaluate these patients in clinical practice. Independent physician reviewers 515 

annotated each 12-lead ECG image as per the fourth universal definition of MI criteria,5 including two 516 

contiguous leads with ST-elevation (≥ 0.2 mV for V2-V3 in men ≥ 40 years and ≥ 2.5 mm in men < 40 517 

years; ≥ 0.15 mV for V2-V3 in women; or ≥ 0.1 mV in other leads) or ST-depression (new horizontal or 518 

down-sloping depression ≥ 0.05 mV); with or without T wave inversion (> 0.1 mV in leads with 519 

prominent R wave or R/S ratio > 1). Reviewers were also prompted to use their clinical judgment to 520 

identify highly suspicious ischemic changes (e.g., reciprocal changes, hyperacute T waves), as well as 521 

to account for potential confounders (e.g., bundle branch blocks, early repolarization). On a randomly 522 

selected subset of patients in the derivation cohort (n=1,646), the Kappa coefficient statistic between 523 

two emergency physicians who interpreted the ECGs was 0.568 (i.e., moderate agreement). A third 524 

reviewer was used to adjudicate discrepancies on this randomly selected subset. Similarly, on a 525 

randomly selected subset of patients in the external validation cohort (n=375), the Kappa coefficient 526 

statistic between the two board-certified cardiologists who interpreted the ECGs was 0.690 (i.e., 527 

substantial agreement). 528 

Finally, given that clinicians largely depend on risk scores to triage patients in the absence of STEMI, 529 

which would significantly affect how OMI patients are diagnosed and treated in clinical practice, we 530 

compared our derived OMI risk score against the HEART risk score. This score is commonly used in 531 

US hospitals and it has been well-validated for triaging patients in the emergency department.60 The 532 

HEART score is based on the patient’s History at presentation, ECG interpretation, Age, Risk factors, 533 

and initial Troponin values (range 0-10). This score places patients in low (0-3), intermediate (4-6), and 534 

high-risk (7-10) groups. Given that troponin results are not usually available at first medical contact, we 535 

used a modified HEAR score after dropping the Troponin values, which has also been previously 536 

validated for use by paramedics prior to hospital arrival.36 The comparison against the HEART score 537 

herein focused on establishing the incremental gain of using the derived OMI score over routine care at 538 

initial triage. We compared how the new risk classes assigned by our derived OMI score  539 



agree with or differ from the risk classes assigned by the HEART score, which could inform 540 

potential incremental gain over routine care. 541 

Statistical  Analysis 542 

Descriptive statistics were reported as mean ± standard deviation or n (%). Missing data was 543 

assessed for randomness and was handled during ECG feature selection (see Machine Learning 544 

Methods section above). Normality of distribution was assessed prior to hypothesis testing where 545 

deemed necessary. ECG features were z-score normalized as part of standard input architectures for 546 

machine learning models. Comparisons between cohorts were performed using chi-square (for discrete 547 

variables) and independent samples t-test or Mann-Whitney U test (for continuous variables). The level 548 

of significance was set at alpha 0.05 for two-tailed hypothesis testing where applicable. 549 

All diagnostic accuracy values were reported as per STARD recommendations (Reporting 550 

Guidelines for Diagnostic Accuracy Studies). We reported classification performance using AUROC 551 

curve, sensitivity (recall), specificity, PPV (precision), and NPV, along with 95% confidence interval (CI) 552 

where applicable. For 10-fold cross validation, we compared the multiple classifiers using the Wilcoxon 553 

signed-rank test (for AUROC curves) and McNemar’s test (for confusion matrices). We derived low-, 554 

intermediate-, and high-risk categories for the final classifier using Kernel density plot estimates 555 

between classes. The adequacy of these risk classes was evaluated using Log-rank chi-square of 556 

accumulative risk for clinically important outcomes over the length of stay during the indexed 557 

admission.  558 

For assessing the incremental gain in classification performance, we compared the AUROC of 559 

the final model against reference standards using DeLong’s test. For ease of comparison, the 560 

confidence bounds for AUROC of the reference standards (commercial system and practicing 561 

clinicians) were generated using 1000 bootstrap samples. To place the incremental gain value in a 562 

broader context of the clinical workflow, We we then also computed the Net Reclassification 563 

Improvement (NRI) index of our model against the HEAR score during the initial assessment at first 564 



medical contact. Risk scores are an integral part of clinical workflow in patients with suspected ACS 565 

who do not meet STEMI criteria. As per STARD recommendations (Reporting Guidelines for Diagnostic 566 

Accuracy Studies), the NRI Index evaluates the net gain between up-triage and down-triage when 567 

correctly reclassifying risk class assignments of an “old” test (HEART score) using a “new” test (the 568 

derived OMI score). 569 

We used logistic regression to identify the independent predictive value of OMI risk classes. We 570 

used variables significant in univariate analysis and then built multivariate models with stepwise 571 

backward selection method using Wald chi-square criteria. We reported odds ratios with 95% CI for all 572 

significant predictors. All analyses were completed using Python v3.8.5 and SPSS v24.   573 



REFERENCES  574 

1. Al-Zaiti S, Macleod MR, Van Dam PM, Smith SW, Birnbaum Y. Emerging ECG Methods for 575 

Acute Coronary Syndrome Detection: Recommendations & Future Opportunities. Journal of 576 

Electrocardiology. 2022;74:65-72. 577 

2. Birnbaum Y, Wilson JM, Fiol M, de Luna AB, Eskola M, Nikus K. ECG diagnosis and 578 

classification of acute coronary syndromes. Annals of Noninvasive Electrocardiology. 579 

2014;19(1):4-14. 580 

3. Goodacre S, Pett P, Arnold J, et al. Clinical diagnosis of acute coronary syndrome in patients 581 

with chest pain and a normal or non-diagnostic electrocardiogram. Emergency medicine journal. 582 

2009;26(12):866-870. 583 

4. Ioannidis JP, Salem D, Chew PW, Lau J. Accuracy and clinical effect of out-of-hospital 584 

electrocardiography in the diagnosis of acute cardiac ischemia: a meta-analysis. Annals of 585 

emergency medicine. 2001;37(5):461-470. 586 

5. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction 587 

(2018). European Heart Journal. 2018:ehy462-ehy462. 588 

6. Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR 589 

Guideline for the Evaluation and Diagnosis of Chest Pain. Journal of the American College of 590 

Cardiology. 2021;78(22):e187-e285. 591 

7. Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary 592 

percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an 593 

update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 594 

2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. Journal of 595 

the American College of Cardiology. 2016;67(10):1235-1250. 596 

Formatted: Font: (Default) Arial



8. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC Guideline for the Management 597 

of Patients With Non–ST-Elevation Acute Coronary Syndromes: Executive Summary. 598 

Circulation. 2014;130(25):2354-2394. 599 

9. Dixon WC, Wang TY, Dai D, et al. Anatomic distribution of the culprit lesion in patients with 600 

non–ST-segment elevation myocardial infarction undergoing percutaneous coronary 601 

intervention: findings from the National Cardiovascular Data Registry. Journal of the American 602 

College of Cardiology. 2008;52(16):1347-1348. 603 

10. Wang TY, McCoy LA, Bhatt DL, et al. Multivessel vs culprit-only percutaneous coronary 604 

intervention among patients 65 years or older with acute myocardial infarction. American heart 605 

journal. 2016;172:9-18. 606 

11. Karwowski J, Gierlotka M, Gąsior M, et al. Relationship between infarct artery location, acute 607 

total coronary occlusion, and mortality in STEMI and NSTEMI patients. Polish Archives of 608 

Internal Medicine. 2017;127(6):401-411. 609 

12. Figueras J, Otaegui I, Marti G, et al. Area at risk and collateral circulation in a first acute 610 

myocardial infarction with occluded culprit artery. STEMI vs non-STEMI patients. International 611 

Journal of Cardiology. 2018;259:14-19. 612 

13. Tanaka T, Miki K, Akahori H, et al. Comparison of coronary atherosclerotic disease burden 613 

between ST‑elevation myocardial infarction and non‑ST‑elevation myocardial infarction: Non‑614 

culprit Gensini score and non‑culprit SYNTAX score. Clinical Cardiology. 2021;44(2):238-243. 615 

14. Aslanger EK, Meyers HP, Bracey A, Smith SW. The STEMI/NonSTEMI Dichotomy needs to be 616 

replaced by Occlusion MI vs. Non-Occlusion MI. International Journal of Cardiology. 617 

2021;330:15. 618 

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial



15. Avdikos G, Michas G, Smith SW. From Q/Non-Q Myocardial Infarction to STEMI/NSTEMI: Why 619 

It’s Time to Consider Another Simplified Dichotomy; a Narrative Literature Review. Archives of 620 

Academic Emergency Medicine. 2022;10(1):e78-e78. 621 

16. Aslanger EK, Meyers PH, Smith SW. STEMI: A transitional fossil in MI classification? Journal of 622 

Electrocardiology. 2021;65:163-169. 623 

17. Meyers HP, Bracey A, Lee D, et al. Comparison of the ST-elevation myocardial infarction 624 

(STEMI) vs. NSTEMI and occlusion MI (OMI) vs. NOMI paradigms of acute MI. The Journal of 625 

emergency medicine. 2021;60(3):273-284. 626 

18. Bouzid Z, Faramand Z, Gregg RE, et al. In search of an optimal subset of ECG features to 627 

augment the diagnosis of acute coronary syndrome at the emergency department. Journal of 628 

the American Heart Association. 2021;10(3):e017871. 629 

19. Meyers HP, Bracey A, Lee D, et al. Ischemic ST‑Segment Depression Maximal in V1–V4 630 

(Versus V5–V6) of Any Amplitude Is Specific for Occlusion Myocardial Infarction (Versus 631 

Nonocclusive Ischemia). Journal of the American Heart Association. 2021;10(23):e022866. 632 

20. Birnbaum Y, de Luna AB, Fiol M, et al. Common pitfalls in the interpretation of 633 

electrocardiograms from patients with acute coronary syndromes with narrow QRS: a 634 

consensus report. Journal of Electrocardiology. 2012;45(5):463-475. 635 

21. Meyers HP, Bracey A, Lee D, et al. Accuracy of OMI ECG findings versus STEMI criteria for 636 

diagnosis of acute coronary occlusion myocardial infarction. IJC Heart & Vasculature. 637 

2021;33:100767. 638 

22. Al-Zaiti S, Callaway CW, Kozik TM, Carey M, Pelter M. Clinical Utility of Ventricular 639 

Repolarization Dispersion for Real-Time Detection of Non-ST Elevation Myocardial Infarction in 640 

Emergency Departments. Journal of the American Heart Association. 2015;4(7):e002057. 641 

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial



23. Al-Zaiti S, Alrawashdeh M, Martin-Gill C, Callaway C, Mortara D, Nemec J. Evaluation of Beat-642 

to-Beat Ventricular Repolarization Lability from Standard 12-Lead ECG During Acute Myocardial 643 

Ischemia. Journal of Electrocardiology. 2017;50(6):717-724. 644 

24. Al-Zaiti S, Sejdic E, Nemec J, Callaway C, Soman P, Lux RL. Spatial Indices of Repolarization 645 

Correlate with Non-ST Elevation Myocardial Ischemia in Patients with Chest Pain. Medical & 646 

Biological Engineering & Computing 2018;56(1):1-12. 647 

25. Sharma A, Miranda DF, Rodin H, Bart BA, Smith SW, Shroff GR. Interobserver variability 648 

among experienced electrocardiogram readers to diagnose acute thrombotic coronary occlusion 649 

in patients with out of hospital cardiac arrest: Impact of metabolic milieu and angiographic 650 

culprit. Resuscitation. 2022;172:24-31. 651 

26. Gregg RE, Yang T, Smith SW, Babaeizadeh S. ECG reading differences demonstrated on two 652 

databases. Journal of Electrocardiology. 2021;69:75-78. 653 

27. Cook DA, Oh S-Y, Pusic MV. Accuracy of physicians’ electrocardiogram interpretations: a 654 

systematic review and meta-analysis. JAMA internal medicine. 2020;180(11):1461-1471. 655 

28. McRae AD, Innes G, Graham M, et al. Undetectable concentrations of an FDA‑approved high‑656 

sensitivity cardiac Troponin T assay to rule out acute myocardial infarction at emergency 657 

department arrival. Academic Emergency Medicine. 2017;24:DOI: 10.1111/acem.13229. 658 

29. Body R, Mahler S. Welcome to the real world: Do the conditions of FDA approval devalue high 659 

sensitivity troponin? Academic Emergency Medicine. 2017;24:DOI: 10.1111/acem.13256. 660 

30. Wereski R, Chapman AR, Lee KK, et al. High-sensitivity cardiac troponin concentrations at 661 

presentation in patients with ST-segment elevation myocardial infarction. JAMA cardiology. 662 

2020;5(11):1302-1304. 663 

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial



31. Cotterill PG, Deb P, Shrank WH, Pines JM. Variation in chest pain emergency department 664 

admission rates and acute myocardial infarction and death within 30 days in the Medicare 665 

population. Academic Emergency Medicine. 2015;22(8):955-964. 666 

32. Kang MG, Kang Y, Kim K, et al. Cardiac mortality benefit of direct admission to percutaneous 667 

coronary intervention-capable hospital in acute myocardial infarction: Community registry-based 668 

study. Medicine (Baltimore). 2021;100(10):e25058-e25058. 669 

33. Quinn T, Johnsen S, Gale CP, et al. Effects of prehospital 12-lead ECG on processes of care 670 

and mortality in acute coronary syndrome: a linked cohort study from the Myocardial Ischaemia 671 

National Audit Project. Heart. 2014;100(12):944-950. 672 

34. Bouzid Z, Faramand Z, Martin-Gill C, et al. Incorporation of Serial 12-Lead Electrocardiogram 673 

With Machine Learning to Augment the Out-of-Hospital Diagnosis of Non-ST Elevation Acute 674 

Coronary Syndrome. Annals of Emergency Medicine. 2023;81(1):57-69. 675 

35. Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary 676 

syndrome using only the pre-hospital 12-lead electrocardiogram. Nature communications. 677 

2020;11(3966):https://doi.org/10.1038/s41467-41020-17804-41462. 678 

36. Stopyra JP, Harper WS, Higgins TJ, et al. Prehospital modified HEART score predictive of 30-679 

day adverse cardiac events. Prehospital and disaster medicine. 2018;33(1):58-62. 680 

37. Ashburn NP, Snavely AC, O’Neill JC, et al. Performance of the European Society of Cardiology 681 

0/1-Hour Algorithm With High-Sensitivity Cardiac Troponin T Among Patients With Known 682 

Coronary Artery Disease. JAMA Cardiology. 2023. 683 

38. Sabatine MS, Morrow DA, McCabe CH, Antman EM, Gibson CM, Cannon CP. Combination of 684 

quantitative ST deviation and troponin elevation provides independent prognostic and 685 

therapeutic information in unstable angina and non–ST-elevation myocardial infarction. 686 

American heart journal. 2006;151(1):25-31. 687 

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Arial

https://doi.org/10.1038/s41467-41020-17804-41462


39. Lux RL. Non‑ST‑Segment Elevation Myocardial Infarction: A Novel and Robust Approach for 688 

Early Detection of Patients at Risk. Journal of the American Heart Association. 689 

2015;4(7):e002279. 690 

40. Marrusa S, Zhangc M, Arthurb M. Identification of Acute Coronary Syndrome via Activation and 691 

Recovery Times in Body-Surface Mapping and Inverse Electrocardiography. International 692 

Journal of Bioelectromagnetism. 2019;21(1-6). 693 

41. Lux RL. Basis and ECG measurement of global ventricular repolarization. Journal of 694 

Electrocardiology. 2017;50(6):792-797. 695 

42. Al-Zaiti S, Runco K, Carey M. Increased T-Wave Complexity Can Indicate Subclinical 696 

Myocardial Ischemia in Asymptomatic Adults. Journal of Electrocardiology. 2011;44(6):684-688. 697 

43. Forberg JL, Green M, Björk J, et al. In search of the best method to predict acute coronary 698 

syndrome using only the electrocardiogram from the emergency department. Journal of 699 

Electrocardiology. 2009;42:58-63. 700 

44. Green M, Bjork J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between neural 701 

networks and multiple logistic regression to predict acute coronary syndrome in the emergency 702 

room. Artificial Intelligence in Medicine. 2006;38:305-318. 703 

45. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning 704 

methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine. 705 

2020;122:103801. 706 

46. Baxt WG, Skora J. Prospective validation of artificial neural network trained to identify acute 707 

myocardial infarction. The Lancet. 1996;347(8993):12-15. 708 

47. Tsien CL, Fraser HS, Long WJ, Kennedy RL. Using classification tree and logistic regression 709 

methods to diagnose myocardial infarction. Studies in health technology and informatics. 710 

1998;52 Pt 1:493-497. 711 

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Cambria Math

Formatted: Font: (Default) Arial



48. Berikol GB, Yildiz O, Özcan İT. Diagnosis of Acute Coronary Syndrome with a Support Vector 712 

Machine. Journal of Medical Systems. 2016;40(84). 713 

49. Wu C-C, Hsu W-D, Islam M, et al. An artificial intelligence approach to early predict non-ST-714 

elevation myocardial infarction patients with chest pain. Computer Methods and Programs in 715 

Biomedicine. 2019;173:109-117. 716 

50. Brisk R, Bond R, Finlay D, et al. Neural networks for ischaemia detection: Revolution or red 717 

herring? A systematic review and meta-analysis. Journal of Electrocardiology. 2021;69:79. 718 

51. Bond R, Finlay D, Al-Zaiti SS, Macfarlane P. Machine learning with electrocardiograms: A call 719 

for guidelines and best practices for ‘stress testing’algorithms. Journal of Electrocardiology. 720 

2021;69S:1-6. 721 

52. Elul Y, Rosenberg AA, Schuster A, Bronstein AM, Yaniv Y. Meeting the unmet needs of 722 

clinicians from AI systems showcased for cardiology with deep-learning–based ECG analysis. 723 

Proceedings of the National Academy of Sciences. 2021;118(24):e2020620118. 724 

53. Cohen MV, Downey JM. What are optimal P2Y12 inhibitor and schedule of administration in 725 

patients with acute coronary syndrome? Journal of Cardiovascular Pharmacology and 726 

Therapeutics. 2020;25(2):121-130. 727 

54. Tziakas D, Chalikias G, Al-Lamee R, Kaski JC. Total coronary occlusion in non ST elevation 728 

myocardial infarction: Time to change our practice? International Journal of Cardiology. 729 

2021;329:1-8. 730 

55. Udelson JE, Selker HP, Braunwald E. Glucose–Insulin–Potassium Therapy for Acute 731 

Myocardial Infarction: 50 Years On and Time for a Relook. Circulation. 2022;146(7):503-505. 732 

56. Zvuloni E, Read J, Ribeiro AH, Ribeiro ALP, Behar JA. On Merging Feature Engineering and 733 

Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based on the 12-Lead ECG. 734 

arXiv preprint arXiv:220706096. 2022. 735 



57. Al-Zaiti SS, Martin-Gill C, Sejdic E, Alrawashdeh M, Callaway C. Rationale, development, and 736 

implementation of the Electrocardiographic Methods for the Prehospital Identification of Non-ST 737 

Elevation Myocardial Infarction Events (EMPIRE). J Electrocardiol. 2015;48(6):921-926. 738 

58. Zègre-Hemsey JK, Hogg M, Crandell J, et al. Prehospital ECG with ST-depression and T-wave 739 

inversion are associated with new onset heart failure in individuals transported by ambulance for 740 

suspected acute coronary syndrome. Journal of Electrocardiology. 2021. 741 

59. Al-Zaiti SS, Alghwiri AA, Hu X, et al. A clinician’s guide to understanding and critically appraising 742 

machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine 743 

Learning (ROBUST-ML). European Heart Journal-Digital Health. 2022;3(2):125-140. 744 

60. Al-Zaiti SS, Faramand Z, Alrawashdeh MO, Sereika SM, Martin-Gill C, Callaway C. Comparison 745 

of clinical risk scores for triaging high-risk chest pain patients at the emergency department. The 746 

American journal of emergency medicine. 2019;37(3):461-467. 747 

  748 



Table 1. Baseline demographic and clinical characteristics 749 

 DERIVATION & TESTING 
COHORT (N=4,026) 

EXTERNAL VALIDATION 
COHORT (N=3,287) 

AGE (YEARS) 59±16 (18−102) 60±15 (21−100) 
SEX 

Male 
Female 

 
2,122 (53%) 
1,904 (47%) 

 
1,814 (55%) 
1,473 (45%) 

RACE 
White 
Black 

Others 
Unknown 

 
1,698 (42%) 
1,328 (33%) 
52 (1.3%) 
948 (24%) 

 
1,326 (40%) 
1,544 (47%) 
40 (1%) 
377 (12%) 

ETHNICITY 
Not Hispanic 

Hispanic / Latino 
Unknown 

 
3,043 (76%) 
19 (1%) 
964 (23%) 

 
2,850 (87%) 
116 (3.5%) 
321 (9.5%) 

PAST MEDICAL HISTORY 
Hypertension 

Diabetes 
High cholesterol 
Current smoker 

Known CAD 
Prior MI 

Prior PCI 
Prior CABG 

 
2,767 (69%) 
1,146 (29%) 
1,520 (38%) 
1,244 (31%) 
1,388 (35%) 
930 (23%) 
963 (24%) 
357 (10%) 

 
2,090 (64%) 
1,067 (33%) 
1,376 (42%) 
802 (25%) 
964 (30%) 
929 (29%) 
134 (4%) 
470 (14%) 

ECG & LAB FINDINGS 
Sinus rhythm 

Atrial fibrillation 
Left BBB 

Right BBB 
ECG-LVH 

cTnI positive (initial) 
cTnI positive (serial testing) 

 
3,496 (87%) 
354 (9%) 
94 (2.3%) 
237 (5.9%) 
383 (9.5%) 
330 (8.2%) 
729 (18.1%) 

 
2,614 (80%) 
352 (11%) 
114 (3.5%) 
215 (6.6%) 
467 (14.2%) 
736 (22.4%) 
1,177 (35.8%) 

MEDICAL THERAPY 
PCI (ANY STENT) 

Emergent PCI (<90 MIN) 
Total LAD occlusion 
Total LCX occlusion 
Total RCA occlusion 

CABG 

 
300 (7.5%) 
144 (3.6%) 
91 (2.3%) 
63 (1.6%) 
101 (2.5%) 
34 (0.8%) 

 
245 (7.5%) 
157 (4.8%) 
94 (2.9%) 
88 (2.7%) 
102 (3.1%) 
30 (0.9%) 

STUDY OUTCOMES 
CONFIRMED ACS 

OMI 
Other Acute MI (NOMI) 

Unstable Angina 
30-DAY CV DEATH 

 
550 (13.7%) 
210 (5.2%) 
240 (6.0%) 
100 (2.5%) 
137 (3.4%) 

 
537 (16.3%) 
209 (6.4%) 
220 (6.7%) 
108 (3.3%) 
111 (3.4%) 

Values are mean ± SD (min-max) or n (%); CAD: coronary artery disease; MI: myocardial infarction; BBB: bundle 750 
branch block; LVH: left ventricular hypertrophy; PCI: percutaneous coronary intervention; LAD: left anterior 751 
descending artery; LCX: left circumflex artery; RCA: right coronary artery; CABG: coronary artery bypass graft; 752 
OMI: occlusion MI; NOMI: non-occlusion MI; CV: cardiovascular.  753 



FIGURE LEGENDS 754 

Fig. 1. Cohort and sample selection 755 

This flow diagram shows patient inclusion and exclusion in each cohort, as well as the dataset partition 756 

for training, internal testing, and external validation. Exclusions are not mutually exclusive. 757 

Fig. 2. Algorithm derivation and testing 758 

This figure shows (A) the classification performance of the machine learning model against other 759 

reference standards for detecting occlusion myocardial infarction (OMI), (B) the probability density plots 760 

of OMI(+) and OMI(-) classes as denoted by the machine learning model, along with optimal cutoffs of 761 

low-risk, intermediate, and high-risk, and (C) distribution of patients in low-risk (+), intermediate risk 762 

(++) and high-risk (+++) as per the machine learning model and HEART score. 763 

Fig. 3. Model explainability for OMI detection 764 

This figure shows (A) SHAP values for the 25 most important features driving the predictions of the 765 

machine learning classifier in the derivation cohort, and (B) the aggregate median beats of ECGs with 766 

occlusion myocardial infarction (OMI) class (red) and the aggregate median beats of ECGs with normal 767 

sinus rhythm and no OMI (blue).  768 

Fig. 4. External validation of ECG-SMART algorithm 769 

This figure shows (A) the classification performance of the machine learning model against other 770 

reference standards for detecting occlusion myocardial infarction (OMI), (B) the independent clinical 771 

predictors of OMI on multivariate logistic regression testing, and (C) the overall sensitivity and 772 

specificity (95% confidence interval [CI]) of the derived OMI score, along with breakdown across 773 

subgroups based on age, sex, comorbidities, and baseline ECG findings. The size of markers denotes 774 

the sample size of the respective subgroup. 775 

Fig. 5. Net reclassification improvement of OMI risk score when integrated in the clinical 776 

workflow at first medical contact Decision analysis for the incremental gain of OMI risk score in 777 

reclassifying patients 778 



This figure simulates the incremental gain of the derived risk score in reclassifying the initial triage 779 

decisions by emergency personnel at first medical contact.   780 



Fig. 1. Cohort and sample selection 781 
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Fig. 2. Algorithm derivation and testing for OMI detection 785 
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Fig. 3. Model explainability for OMI detection 788 
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(Fig. 3B) 790 
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Fig. 4. External validation of ECG-SMART algorithm for OMI detection 792 
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Fig. 5. Decision analysis for the incremental gain Net reclassification improvement of OMI risk 794 

score when integrated in the clinical workflow re-classifying patients at first medical contact 795 
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DATA SUPPLEMENT 798 

Legend for Extended Data Figures 799 

Extended Data Fig. 1. The relationship between the magnitude of vessel occlusion and the 800 

classification of acute coronary events  801 

This figure shows the spectrum of coronary artery disease (CAD) as a function of severity and extent of 802 

atherosclerosis plaque progression, ranging from patent coronary artery (far left) to total coronary 803 

occlusion (far right). Among patients who develop symptomatic CAD, including those evaluated for 804 

chest pain or angina-like symptoms, a subset is diagnosed with acute coronary syndrome (ACS). This 805 

group is subclassified as either acute myocardial infarction (MI) or unstable angina (UA). Those with 806 

acute MI can be further subclassified, based on the presence of ST-elevation on the ECG, as either ST-807 

elevation myocardial infarction (STEMI) or without ST-elevation (NSTEMI). The STEMI and NSTEMI 808 

patients overlap in terms of the presence or absence of total occlusion (depicted as triangles across the 809 

continuum in the figure). Alternatively, the same group with acute MI can be subclassified, based on 810 

angiographic TIMI flow criteria, as either occlusion (OMI) or non-occlusion (non-OMI) myocardial 811 

infarction. Unlike STEMI, OMI classification better aligns with focal angiographic findings since this 812 

group exclusively contains patients with total coronary occlusion. The color gradient indicates the 813 

severity of disease. This Figure was created with BioRender.com. Reproduced with permission from Al-814 

Zaiti et. al.1 (permission number 5471421247333, Licensed content publisher: Elsevier).  815 

Extended Data Fig. 2. Graphical abstract summarizing the flow of study and main findings 816 

This figure provides a graphical summary of the study flow and main findings.  817 

Extended Data Fig. 3. Local explainability of feature importance on a selected example 818 

This figure shows the Bbaseline ECG of a 50-year-old female with a past medical history of 819 

hypertension, high cholesterol, prior myocardial infarction, and current smoking. The ECG was 820 

documented as benign with isolated non-specific T wave changes, and the patient was triaged as 821 



intermediate risk. The OMI score was 62 indicating the need to up-triage. The patient was later sent to 822 

the catheterization lab where she had complete occlusion of the right coronary artery. The OMI score 823 

on this baseline ECG was 62 indicating high risk designation. The force plot identified the five most 824 

important ECG features that met the contribution threshold of the random forest model: negative T 825 

wave in aVL, slight ST depression in aVL and V2, and slight ST elevation in aVF and III. 826 

Extended Data Fig. 34. Selected examples of a patients correctly reclassified as OMI 827 

This figure shows two examples of an ECG that was patients who were correctly reclassified as 828 

occlusion myocardial infarction by the machine learning model. (A) This Baseline baseline ECG was for 829 

of a 67-year-old male with a past medical history of high cholesterol and a prior myocardial infarction. 830 

The ST-depression in anterior-lateral leads were noted, and the patient was triaged as intermediate 831 

risk. The OMI score was 49 indicating the need to up-triage. The patient was later sent to the 832 

catheterization lab where he had complete occlusion of the right coronary artery. (B) Baseline ECG of a 833 

50-year-old female with a past medical history of hypertension, high cholesterol, prior myocardial 834 

infarction, and current smoking. The ECG was documented as benign with isolated non-specific T wave 835 

changes, and the patient was triaged as intermediate risk. The OMI score was 62 indicating the need to 836 

up-triage. The patient was later sent to the catheterization lab where she had complete occlusion of the 837 

right coronary artery. 838 

Extended Data Fig. 45. Selected example of a missed OMI by our model 839 

This figure provides a selected example of a patient with occlusion myocardial infarction that was 840 

missed by the machine learning model and other reference standards. This ECG was obtained on a 70-841 

year-old female with a past medical history of hypertension, high cholesterol, prior myocardial 842 

infarction, and current smoking. The baseline clinical interpretation suggests normal sinus rhythm with 843 

benign findings. There are isolated Q waves in inferior leads, low ECG voltage, and some baseline 844 

wander and high frequency noise in few leads. The OMI risk score was 2 indicating a low risk. The 845 

patient was later sent to the catheterization lab, which showed significant left main occlusion and had 846 



many stents placed. The patient developed new-onset HF during hospitalization. A closer look at this 847 

ECG by experienced ECG readers suggests that this ECG could resemble the “precordial swirl 848 

pattern”, a rightward ST-elevation vector, with STE in V1 and aVR and reciprocal ST-depression in V5 849 

and V6. This pattern was found to correlate with LAD occlusion. 850 

Extended Data Fig. 56. Development and validation of an algorithm to screen for any ACS event 851 

This figure shows the classification performance of the machine learning model against other reference 852 

standards for detecting any acute coronary syndrome event (ACS). The figure also shows the 853 

distribution of patients in low-risk, intermediate risk, and high-risk groups as per our derived risk score. 854 

There is a notable gain in precision (rule-in) but a significant loss in recall (rule-out). 855 

Extended Data Fig. 67. Limitations of ST amplitude on surface ECG as a sole marker of 856 

myocardial ischemia 857 

This figure shows: (A) cardiac model of anterior wall epicardial ischemia with corresponding ST-858 

elevation on V3 to V5 of the 12-lead ECG. (B) cardiac model of anterolateral and inferior-apical 859 

epicardial ischemia with corresponding attenuation of ST changes on the 12-lead ECG. This figure was 860 

generated using ECGSIM (www.ecgsim.org). Reproduced with permission from Al-Zaiti et. al.1 861 

(permission number 5471421247333, Licensed content publisher: Elsevier).  862 

Extended Data Fig. 78. Comparison between 10 algorithms trained on the derivation cohort to 863 

classify OMI 864 

This figure compares the area under the receiver operator characteristics curves (95% confidence 865 

interval) of 10 classifiers during training (left) and testing (right) on the derivation cohort. RF: random 866 

forest; KNN: K-nearest neighbors; GBM: gradient boosting machine; XGB: extreme gradient boosting; 867 

SVM: support vector machine; ANN: artificial neural networks; LogReg: regularized logistic regression; 868 

LDA: linear discriminant analysis; SGD_LogReg: stochastic gradient descent logistic regression; G_NB: 869 

Gaussian Naïve Bayes.  870 

http://www.ecgsim.org/
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Extended Data Fig 1. The relationship between magnitude of coronary occlusion and coronary 872 

artery disease and acute events classification  873 
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Extended Data Fig 2. Graphical abstract summarizing the flow of study and main findings 875 
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Extended Data Fig. 3. Local explainability of feature importance on a selected example 878 
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Extended Data Fig 34. Selected examples of a patients correctly reclassified as OMI 881 
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Extended Data Fig 45. Selected example of a missed OMI by our model 885 
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Extended Data Fig. 56. Development and validation of an algorithm to screen for any ACS event 888 
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Extended Data Fig. 67: Limitations of ST amplitude on surface ECG as a sole marker of 892 

myocardial ischemia 893 
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Extended Data Fig 78. Comparison between 10 algorithms trained on the derivation cohort to 897 

classify OMI 898 
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