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Abstract 

 

Background: The relation of gait quality to real-life mobility among older adults is poorly 

understood. This study examined the association between gait quality, consisting of step 

variability, smoothness, regularity, symmetry and gait speed with the Life-Space 

Assessment (LSA). 

Methods: In community-dwelling older adults (N=232, age 77.5±6.6, 65% females), gait quality 

was derived from: a) an instrumented walkway: gait speed, variability and walk-ratio; and b) 

accelerometer: signal variability, smoothness, regularity, symmetry, and time-frequency 

spatiotemporal variables during 6-minute walk. In addition to collecting LSA scores, cognitive 

functioning, walking-confidence, and falls were recorded. Spearman correlations (speed as 

covariate) and Random Forest Regression were used to assess associations between gait 

quality and LSA, and Gaussian-mixture modeling (GMM) was used to cluster participants.  

Results: Spearman correlations of ρp=0.11 (signal amplitude variability ML), ρp=0.15, ρp=-0.13 

(symmetry AP-V, ML-AP), ρp=0.16 (power V) and ρ=0.26 (speed), all p<0.05 and marginally 

related, ρp=-0.12 (regularity V), ρp=0.11 (smoothness AP) and ρp=-0.11 (step-time variability), 

p<0.1 were obtained. The cross-validated Random Forest model indicated good fit LSA 

prediction error of 17.77; gait and cognition were greater contributors than age and 

gender. GMM indicated two clusters. Group-1(N=189) had better gait quality than Group-

2(N=43): greater smoothness AP (2.94±0.75 vs 2.30±0.71); greater similarity AP-V (0.58±0.13 

vs 0.40±0.19); lower regularity V (0.83±0.08 vs 0.87±0.10); greater power V (1.86±0.18 vs 

0.97±1.84); greater speed (1.09±0.16 vs 1.00±0.16 m/s); lower step time CoV (3.70±1.09 vs 

5.09±2.37) and better LSA (76±18 vs 67±18), padjusted<0.004. 

Conclusions: Gait quality measures taken in the clinic are associated with real-life mobility 

in the community.  



Keywords: Gait accelerometry, walkway gait analysis system, Community mobility, Random 

forest regressor, Gaussian mixture model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Community mobility is an individual’s movement outside of his home and is known to decline 

with age (1,2). In the United States alone, 31.7% of adults aged 65 years and older report 

difficulty in performing daily tasks such as walking 3 city blocks in a neighborhood (1). Some of 

the public health burdens associated with limited and restricted mobility in the older population 

include compromised health and limited cognitive function (2), injuries from falls (1,3), and 

decreased social interactions and overall a less frequent participation in civic life (2). This social 

burden of impaired mobility is increasing rapidly. By 2040, the United States is expected to have 

more than 81 million adults older than 65 years, and 15.4 million older adults will be expected to 

be unable to walk 2 to 3 blocks, potentially adding an estimated $42 billion to annual health care 

costs (4). Mobility disability is common but it is not an inevitable consequence of aging (5). 

Though environment is an important determinant of mobility (6), it is an individual’s walking, 

thinking and individual perceptions that enable a person to successfully navigate in the 

community (7,8). 

Walking, a common form of physical activity in daily life of older adults (9) is a highly skilled 

task that requires coordination, maintenance of an up- right posture and modulation during 

phases of gait cycle (10). This complex process allows one to be adaptable in real-life situations. 

These situations include, for example, variations in walking surface, elevation in land, need for 

dual-tasking and presence of a staircase (11).  This ability to adapt is known to decline with age 

(12). Another perspective is to measure the achieved mobility of older adults in real-life as the 

spatial area that they navigate and their need for assistance in doing so; Life Space Assessment 

score (LSA) is a popular self-reported questionnaire, used to quantify mobility in a community 

(6,13). The LSA has been used to recognize that mobility can be affected by cognitive and 

functional factors (14,15) and to reveal what the patient actually does in real-life (6,13). 



Although speed of walking is a typically measured gait characteristic and has proven to be a 

primary health indicator (16), it doesn’t capture the integration of stepping with postural 

adjustments.  Clinicians are interested in ‘how’ a person walks as one indicator of motor skill 

(10).  Gait quality is one method of evaluating how well a person walks.  Quantitative 

measures of gait quality include pace, rhythm, stepping variability, asymmetry, and 

regularity (17).  Accelerometry is an efficient method to objectively capture these measures 

(18). Accelerations taken from sensor placement on the lower back are often used (19,20) to 

derive a number of metrics, such as smoothness, regularity, symmetry and variability, which are 

the descriptors of gait quality. These are chosen because they capture motor skill during 

straight path walking, commonly experienced during steady state walking in the 

community(21). We collected gait in the laboratory and quantify smoothness as the 

harmonic ratio for measuring acceleration-deceleration pattern of the trunk (20); 

regularity as entropy-rate for assessing the step-to-step predictability of acceleration 

signals (22); symmetry (sometimes referred to as similarity) as cross-correlation between 

axes capturing the multi-dimensional aspect of walking and thereby quantifying agreement 

in contralateral motion while walking, or more precisely a measure to determine whether 

signals change phase at similar times (23,24); and variability as step-time coefficient of 

variation accounting for stride to stride spatio-temporal fluctuations. 

The main hypothesis is that better gait quality is associated with better LSA. We assess this 

hypothesis by the following three aims. First, we examine associations between laboratory-

measured gait quality and community mobility. We hypothesized that people with better gait 

quality consisting of less variability, greater smoothness, more regularity, more symmetry and a 

faster speed of walking will have better community mobility (higher LSA). Second, we show the 

importance of these gait quality measures in combination with other factors known to be 



important determinants (or contributors) of LSA; namely demographics (13,25), cognition (15), 

gait efficacy, and fall history (26). Third, we perform a cluster analysis to group participants 

based on gait quality. We hypothesize that the participants will form groups based upon gait 

quality measures that will be related to the LSA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methods 

Study design and Population 

This is a cross-sectional relational study of gait quality and community mobility. We utilize 

baseline data from a randomized control clinical trial, called the program for improving mobility 

in aging (PRIMA). The participants come from the greater Pittsburgh metropolitan region 

and had to be able to get themselves to the clinic site for two intervention visits per week 

and so by default had access to reliable transportation. Briefly, PRIMA is a single-blinded 

two-arm intervention trial intended to compare the effects of interventions on mobility, activity, 

and participation in older adults. Detailed methods of PRIMA have been fully introduced 

elsewhere (27). In this study, participants were at least 65 years of age, were able to walk 

household distances independently, had usual gait speed between 0.60 m/s and 1.20 m/s, and 

were able to follow two step commands.  

Quantifying out-of-home mobility 

Life Space Assessment (LSA) is a self-reported metric of a person’s achieved mobility (13). The 

life-space levels range from an individual’s bedroom (Level 1) to beyond the individual’s town 

(Level 5). The assessment includes a series of three questions for each defined level as it pertains 

to the previous four weeks. For each level, the subject is asked whether he has been to that level, 

how often he has been to that level, and whether assistance was needed for mobility in that zone. 

Thus, for each of the five levels a score is obtained and finally these scores are summed to get a 

total LSA score. The composite LSA score ranges from 0 (totally bed-bound) to 120 (travelled 

out of town every day without assistance). Higher scores are indicative of greater community 

mobility. 

 

 



Acceleration measures of walking 

Gait data were collected during a six-minute walking test in a laboratory setting on an oval 

track which had a lap distance of 37.56 m (28). The subject was asked to cover as much 

distance as possible during the allotted amount of time. Before the test, five tri-axial 

accelerometers (Actigraph LLC; Pensacola, FL) were placed on the subject, one on each 

wrist and ankle and one on lower back (L3 level). The data used in this analysis was 

obtained from an accelerometer placed at the L3 spinal level as it is close to the center of 

mass of the body and accelerations measured by a single sensor at this location can better 

represent the major human motion  (19) ( eFigure 1A in the Supplement). Accelerometer data 

were sampled at 100 Hz in most cases. Accelerations from 29 (12.5%) subjects were sampled 

at 30 Hz due to technical issues at the time of data collection. These signals were upsampled 

to 100 Hz using MATLAB. For upsampling, we first perform zero-padding and then use a 

finite impulse response, anti-aliasing filtering technique with a Kaiser window. We then 

normalize to account for processing gain of the window, thereby preserving the frequency 

content of the signal.  Gait events (heel contact and toe-off) were identified using our previously 

developed robust event-detection algorithm (29,30). Briefly, the accelerations during the 

walking trials were recorded at 100 Hz. These signals were then zero-mean filtered to 

remove outliers using a median filter of order 5 and normalized by the maximum 

magnitude of the amplitude present. Stride information was obtained using the method 

described in (29).  An illustration of the processed signal segment is provided in eMethods 1 in 

the Supplement. 

Gait parameters were calculated for each stride included: 1) Statistical features: signal variability 

(31) (standard deviation of accelerations amplitudes); symmetry and similarity -  skewness and 

kurtosis of signal amplitude, cross-correlations between axes.) 2) Signal frequency features (peak 



frequency (32), centroid frequency, bandwidth, smoothness of walking (20,30) - harmonic ratio), 

(3 Time-frequency feature (wavelet entropy) (4 Information-theoretic features (regularity of 

walking (22) - entropy rate, lempel-ziv complexity). Previous studies have shown that these 

spatiotemporal measures are impacted due to age in all three directions of walking - mediolateral 

(ML), vertical (V) and anterior- posterior (AP) (33,34), hence all of them were analyzed in 

detail. MATLAB 2019a has been used for signal processing and extracting accelerometry 

measures. 

Gait measures from Instrumented walkway 

Gait speed was derived from walks over a 4 m long instrumented walkway (eFigure 1B in 

the Supplement) (Zeno Walkway, Zenometrics, Peekskill, NY) in laboratory conditions. The 

subject began walking approximately two meters from the start of the mat and stopped 

approximately two meters past the end of the mat and completed six passes at their self-

selected usual speed. The reported gait speed is the subject’s average gait speed over six 

passes. Gait variability measures i.e., coefficient of variation of step length, step time and 

stride width were calculated from the recorded measures of the footfalls (35,36). During 

these six passes, 24 or more steps are generally available for extraction of these measures. 

Previous research by our group has shown these number of steps to be sufficient for 

reliability of variability measures (37). PKMAS software (Protokinetics, Havertown, PA) was 

used for calculating the measures from footfall time and length recordings. Besides these 

measures, walk ratio (step length/cadence) was also computed. The walk ratio considered an 

index of neuro-motor control (38).   

Collecting health characteristics 

Self-reported walking confidence score, fall history and executive function constitute health 

characteristics that are known to impact life space score. Modified Gait Efficacy Scale is a self-



report measure of an individual’s confidence in walking in different circumstances. It includes 

ten questions about confidence in safely walking on even and uneven surfaces, safely negotiating 

curbs and stairs, and more.  A subject can respond anywhere from 1 (no confidence) to 10 

(complete confidence) for each item and there are ten items. Scores range from 10 to 100 (39). 

For fall history, each subject reported first whether they are afraid of falling. In addition, the 

participant reported if they had fallen more than once in the past year. Falls are associated with a 

limited life space (26). Trail making tests are a general measure of executive functioning. Trails 

A and B components considered an indicator of visual search and perceptual processing speed, 

especially related to cognitive flexibility (40). Both Trails A and Trails B consist of 25 circles 

distributed over the page. Subjects are asked to complete each of the trail making tests as quickly 

as possible, maximum allowable time being 90s and 300s, respectively. The variables including 

gait variables from two modalities, demographics and health characteristics used in the analyses, 

are summarized in eFigure 1C-1E in the Supplement.  

LSA predictive modeling and variable importance analysis 

Random Forest model (41) was developed to investigate the predictability of LSA from the gait 

measures. Included in the model were the selected gait variables, demographics (age, gender) 

and cognitive function (Trails A). A reduced set of gait variables were included in the model. 

The method of reducing the number of variables used partial spearman correlations of the 

gait quality variables (controlled for gait speed) with LSA with a significance level of p<0.1 

for further evaluation. To avoid multicollinearity effects in gait variables, a correlation 

matrix of the selected variables was then constructed. If there are a group of gait variables 

that were moderately or highly correlated, one of the groups was chosen to be in the model. 

If a variable is correlated only with its variants in different direction, then the variable with 

higher correlation coefficient is chosen, if the coefficient value is same, then ML direction is 



given preference, since it is known to be the most affected direction in older adults (33,34). 

For detailed variable reduction analysis, see eMethods 2 in the Supplement.  The random 

forest method was chosen for the analysis because it is robust to outliers and to non-linearities in 

the variable distributions. Further, bootstrapping and parallel decision trees in random forest 

model control for over-fitting. We used SHapley Additive exPlanation (SHAP) method to 

determine importance of gait features contributing to LSA. SHAP computes marginal 

contribution of each variable in predicting LSA, considering all possible permutations of 

variables in the model (42). Thus, the model investigates how gait measures compared to other 

factors in predicting LSA. The dataset was split into a training set (70%) and testing set 

(remaining 30%). A 3-fold cross validation on the training set was used for parameter tuning of 

the random forest. Python 3.7 software, specifically sklearn machine learning library, was 

used for data modelling. We iteratively found the most appropriate set of parameters that 

resulted in minimum mean squared error. The parameter settings that we tested are given 

in eTable 1 in the supplement. The parameters indicated by the tuned model were then used. The 

5-fold cross-validation mean squared error and the percentage explained variance on the data is 

reported for two models – first, using only gait variables and second, using gait and additional 

variables. 

Clustering participants based on their gait quality 

A Gaussian mixture model-based clustering algorithm was built to investigate participant 

groups with similar gait characteristics. We included the uncorrelated gait performance 

variables. In this unsupervised method, we used the Bayesian information criterion to evaluate 

the appropriate number of clusters. Equation (1) and (2) illustrate the algorithm.  

L = 𝐥𝐨𝐠{∏ ∑ 𝝅𝒌
𝑲
𝒌=𝟏

𝒏
𝒊=𝟏 𝑵(𝒙𝒊,µ𝒌, ∑𝒌)}       (1) 



For n observations, xi=1,2,…. n assumed to be independent and identically distributed, given K 

clusters, the iterative algorithm maximizes the log-likelihood, L of probability of an 

observation belonging to kth cluster. The mean vector and covariance matrix of the kth 

gaussian mixture component are represented as µk  and ∑k ; πk is the mixture probability of 

an observation belonging to cluster k. We varied the number of clusters, K from 1 to 10. 

The K corresponding to minimum Bayesian information criterion, BIC was selected.  

𝐁𝐈𝐂 = 𝐩 𝐥𝐨𝐠𝐧 − 𝟐(𝐋)        (2) 

In the above equation, BIC, p is the number of parameters to be estimated. Python 3.7 

sklearn library using default parameter settings has been used for Gaussian mixture 

modeling. 

After selection of number of clusters, subject datapoints with automated labels are 

visualized in a 3-dimensional plane constructed using the first three components from 

Principal Component Analysis. The clusters of participants that were obtained were examined 

for differences in gait quality and in all other measures not used in the model i.e., LSA score, gait 

efficacy, cognitive and fall history variables. The significance in difference was computed using 

an independent t-test and Chi-square tests, adjusting p-value for multiple comparisons using 

Bonferroni correction (padjusted = 1/14 ~ 0.004) for variables in model and for variables not 

in model. A dataflow diagram illustrating the overall steps in the analysis is indicated in 

eMethods 3 in the supplement. 

 

 

 

 

 



Results 

Community-dwelling older adults participated (N=232, mean age 77.54 (STD 6.56), 152 

females, 89% whites, 44% had more than a high school education). LSA scores ranged from 34 

to 120, with a mean of 74.66 (STD 18.57). The distribution of LSA scores of within and out-of-

home mobility is shown in eTable 2 in the Supplement. These community-dwelling older adults 

had less variable within-home mobility trends compared to their mobility behaviors in the 

neighborhood and beyond. 

Gait quality and LSA association analysis 

Associations between laboratory-measured gait quality and community mobility assessed using 

are shown in Table 1. Statistically significant correlation values (p<.10 ranged between -0.22 to 

0.26. A detailed association analysis of all variables assessed is presented in eTable 3-5 in the 

supplement. An inter-variable correlation heatmap is also presented in eMethods 2 of the 

Supplement.  

Gait Quality based Predictive Modelling for LSA 

Controlling for gait speed and multicollinearity, eight gait variables were selected for building a 

random forest based predictive model (Table 2). After 3-fold cross-validation, the parameters 

for the random forest model were selected as maximum depth of 10, maximum features = 

'sqrt', minimum samples at leaf = 2, Minimum samples split = 2, and number of estimators 

= 1050. The random forest model to assess variable importance in LSA prediction had a 5-

fold cross-validation root-mean-squared-error of 18.17 and an explained variance of 4%. A 

second model that also included age, gender, gait efficacy, and Trails A resulted in a 5-fold 

cross-validation root mean squared error of 17.77 and a 10% explained variance in 

prediction of LSA. Gait quality variables of Standard deviation ML, cross-correlation AP-V, 

Harmonic Ratio AP and Peak frequency V ranked in the top five variables for both models, with 



little change in prediction errors (Figure 1A-B and 1C-D). Age and gender had relatively low 

importance compared to gait and cognitive measures. In addition to showing how much each 

predictor contributes, SHAP plots show the positive and negative relationship for each variable. 

The SHAP plots indicate global interpretability (Figure 1A and 1C), to understand the 

contribution of each variable as well as local interpretability (Figure 1B and 1D), where each 

observation receives its own set of values.  

Clustering of participants and their gait characteristics 

A Gaussian mixture model implemented using only gait variables indicated two groups (Figure 

2A) of older adults (better gait quality (N=189) and poorer gait quality (N=43)). The better gait 

quality group was defined by a greater: cross-correlation AP-V, harmonic ratio AP, peak 

frequency V, and gait speed and a lower: mean step time CoV, entropy rate V, and cross-

correlation ML-AP compared to the group with poorer gait quality, p < 0.004 (Table 1, Figure 

2B). We also examined bivariate distributions of selected gait variables (eFigure 2 in the 

Supplement). For visualizing the 8-dimensional gait data in a 3-dimensional space, principal 

components analysis was used. The datapoints here are labelled per the clusters identified by 

GMM (Figure 2C). The better gait defined by these three principal components are clustered, 

whereas the poorer functioning subject are dispersed outside this range of components. The 

primary contributors to each of the principal axes (indicating maximum variance) are gait speed 

(Principal Component-1), step time variability (Principal Component-2) and peak spectral 

frequency (Principal Component-3) (Figure 3). We compared the health and demographic 

characteristics between the two groups indicated by gait quality of older adults. We found that 

the real- life achieved mobility i.e., LSA and walking confidence measured as the gait efficacy 

were greater for the group with better gait quality (p<0.004 for each) (Table 1). No other 

between group differences with respect to cognitive and fall history variables were noted. 



Discussion 

Gait quality measures were primary predictors of high LSA, even when age, speed of processing 

(Trails A), and gait efficacy were included. We found a combination of greater walking speed, 

low step time variation, greater smoothness with more symmetric but a lower gait regularity are 

associated with a better LSA i.e., the achieved mobility of older adults.  

Analyzing the acceleration features in both time and frequency domains is important as we learn 

more about the gait characteristics quantifying ’how we walk’. A lower step-time coefficient of 

variation (CoV) as obtained by the instrumented walkway may be a desirable characteristic as it 

relates to a better LSA, but, from the analysis of trunk acceleration, a greater standard deviation 

of walking i.e., a greater spread of amplitudes was related to high LSA. This insinuates that step-

time CoV maybe interpreted as variability in the lower-extremities and the standard deviation of 

acceleration signal could be interpreted as adaptability, an ability to shift between greater and 

lesser variability; adaptability indeed being a key characteristic to navigate in the outdoor 

community. Association of high peak frequency of the signal, specifically in the V direction to a 

high LSA aligns with prior studies where low amplitude of the dominant frequency was shown 

to be associated with increased fall risk (33) and was found to differentiate patients with 

Parkinson’s disease from healthy controls (43). Harmonic ratios specifically in AP direction is an 

important variable in our predictive modelling approach. This directional measure differentiates 

young and old walkers (44), Parkinson’s affected patients from healthy controls (30,45) and even 

identifies subjects with a high risk of falling (46). 

As for gait regularity (which is an information-theoretic feature), contrary to our expectations, 

we found its lower value in V direction to be associated with higher mobility. In some studies, an 

increased entropy in V direction has been found to associate with increased fall risk (47). 

Entropy V also differentiates walk-only and dual task walking (22). One possible explanation is 



that a high entropy rate also means that an individual is restricting his degree of freedom of 

motion and is walking en bloc, thus a lower entropy may be a desirable quality - meaning greater 

inter-segment degrees of freedom important for effective mobility in everyday life. It is 

important to note, that after controlling for gait speed, most gait variables that add unique yet 

complimentary information for understanding mobility in older adults are the ones derived from 

trunk acceleration, and not from the instrumented walkway. “Individual associations are 

statistically significant but small, ranging from 0.11 to 0.26. High correlations for bivariate 

relations were not expected for any particular aspects of the quality with self-reported 

mobility. The LSA is influenced by potentially many factors beyond walking ability such as 

risk-taking, necessity, match between person and environment accessibility, comfort and 

interest. However, the associations found in this study may well indicate important aspects 

as well.  How a person walks and their confidence in walking ability for conditions found in 

navigating the environment could be important towards addressing improvements through 

rehabilitation.  Our non-linear data-driven approach, i.e. Random forest and clustering 

analysis, led us to consider not just individual gait quality factors but also combinations 

that could affect LSA.” With these gait quality measures we could identify two groups with 

distinct gait qualities. One of the groups identified using unsupervised classification was found to 

not only have a better gait quality (faster gait speed, less step time variability, higher peak 

frequency amplitudes and high cross correlation in AP-V direction) but also was found to have a 

better LSA and more gait efficacy, even though LSA and gait efficacy were not included in the 

model; these results being well matched to our Spearman correlation findings (Table 1) and to 

the Random forest regressor analysis (Figure 1). Some studies have found a difference or change 

of 5 or more points in LSA  to be clinically important (48,49). Thus, our finding of a difference 



in the LSA of 10 points may help in identifying the older adults that are at more risk for 

mobility related disability and in informing early physical therapy interventions. 

Considering daily walking, it is essential to monitor walking ‘quality’ besides the quantity of 

daily walking. So far, ‘number of steps taken’ has been the primary focus of wearable activity-

monitoring devices but step count can be deceiving since older subjects with functional 

limitations likely take a greater number of steps to cover the same distance and may appear to be 

more active than other healthier subjects, when in fact this may not be the case (50). The time-

frequency measures we extract during the laboratory can also be extended as potential measures 

for real-life gait assessment. 

There are some limitations to the study. Potentially important contributors such as daily activity, 

environment, economic stature, marital status, education and mental health that may impact a 

person’s mobility in the community (6) were not able to be included in the study.  Another 

potential limitation is that our measures were performed in a laboratory environment, 

thus, indicating gait capacity rather than gait of daily life. One technical limitation is that 

the assessment is restricted to three linear accelerations i.e., Mediolateral, Vertical and 

Anterior-Posterior and did not include rotation information from gyroscopes. Future 

studies should consider using gyroscope information which may prove useful in examining 

gait quality during curve path and challenge task walking in relation to LSA. Though daily-

activity behavior monitoring via accelerometery has been done in recent studies, measurement of 

quality remains an open research question. A combination of information from both LSA (a self-

reported, validated, reliable and quick to compute measure) along with other emerging wearable 

technology like global positioning system, may inform us better about community mobility. 

In summary, we examined the associations between multiple gait measures and self-reported 

community mobility in older adults. Among older adults, gait quality measures along with gait 



efficacy and speed of processing informed more about mobility than age and gender. Using an 

unsupervised machine learning approach to classify participants based on gait quality, life-space 

and gait efficacy, we further established the importance of gait quality measures. 
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Table 1. Correlations of demographic, health and gait variables to Life Space Assessment, p<0.1 

Gait Variable Mean ± STDa Spearman correlation 

with LSAb, ρ 

Health Characteristics 

*Age (years 

*Gender 

*Gait Efficacy 

*Trails Ac (s) 

*Trails Bd (s) 

 

77.54 ± 6.56 

65% females 

85.41 ± 13.36 

33.56 ± 13.14 

85.30 ± 46.23 

 

-0.22 

-0.17 

0.23 

-0.19 

-0.15 

Gait Quality: Trunk Acceleration 

Statistical features 

*Standard deviation MLe 

**Standard deviation APf 

*Kurtosis Vg 

*Cross-correlation ML-AP 

*Cross-correlation AP-V 

 

 

0.13 ± 0.05 

0.18 ± 0.07 

5.33 ± 6.34 

0.20 ± 0.09 

0.55 ± 0.16 

 

 

0.11 

0.11 

-0.13 

-0.13 

0.15 

Frequency features 

*Peak frequency V 

**Harmonic ratio ML 

**Harmonic ratio AP 

 

1.70 ± 0.87 

0.59 ± 0.27 

2.82 ± 0.78 

 

0.16 

0.11 

0.12 

Info-theoretic features 

**Entropy rate V 

**Entropy rate AP 

*Lempel-Ziv complexity V 

 

0.84 ± 0.08 

0.86 ± 0.06 

0.46 ± 0.09 

 

-0.12 

-0.13 

0.16 



**Lempel-Ziv complexity AP 0.43 ± 0.09 0.13 

Gait Quality: Instrumented Walkway 

**Step time CoVh 

*Gait Speed (m/s) 

 

3.96 ± 1.51 

1.08 ± 0.16 

 

-0.11 

0.26 

 

Notes.  

aStandard Deviation 

bLife Space Assessment 

cTime taken to do trail making test A 

dTime taken to do trail making test B  

eMedio-lateral axis  

fAnterior-Posterior axis  

gVertical Axis  

hCoefficient of variation  

*statistically significant, p<0.05, ** statistically significant, p<0.1 

 

 

 

 



Table 2. Health and Gait quality measures selected to model life-space mobility; along with characteristics of two 

groups that were identified using unsupervised Gaussian mixture model clustering 

 

Variable Total Sample 

N=232 

Group 1 

N=189 

(Better gait) 

Group 2 

N=43 

(Poorer gait) 

Health Characteristics    

Age (years) 77.54 ± 6.56 77.57 ± 6.55 77.4 ± 6.69 

*Body Mass Index (kg/m2) 28.50 ± 5.75 28.07 ± 5.51 30.41 ± 6.42 

Female 152 (65%) 118 (62.43%) 34 (79.07%) 

**Gait efficacy 85.41 ± 13.36 86.86 ± 12.58 79.05 ± 14.93 

Fear of Fallinga 96 (40%) 75 (39.68%) 21 (48.84%) 

Recurrent fallerb 25 (10.77%) 20 (10.58%) 5 (11.63%) 

Trails Ac (s) 33.56 ± 13.14 33.19 ± 13.33 35.19 ± 12.30 

Trails Bd (s) 85.30 ± 46.23 82.76 ± 40.98 96.46 ± 63.89 

*Life Space Assessment 74.66 ± 18.57 76.41 ± 18.31 66.95 ± 17.94 

Gait quality: Trunk acceleration     

Statistical features 

**Cross-correlation MLe-APf (signal symmetry and similarity)  

**Cross-correlation AP-Vg (signal symmetry and similarity) 

Standard deviation ML (signal amplitude variability) 

 

0.20 ± 0.09 

0.55 ± 0.16 

0.13 ± 0.05 

 

0.19 ± 0.08 

0.58 ± 0.13 

0.13 ± 0.05 

 

0.23 ± 0.11 

0.40 ± 0.19 

0.13 ± 0.05 

Frequency features 

**Harmonic Ratio AP (smoothness of walking) 

 

2.82 ± 0.78 

 

2.94 ± 0.75 

 

2.30 ± 0.71 



 

Notes.  

aNumber of people (percentage) who are afraid of falling  

bNumber of people (percentage) who have fallen more than once in the past one-year  

cTime taken to do trail making test A 

dTime taken to do trail making test B  

eMedio-lateral axis  

fAnterior-Posterior axis  

gVertical Axis  

hCoefficient of variation  

* statistically different, p< .05 **statistically different after adjusting for multiple comparisons, p<.004 

 

 

 

**Peak frequency V (power and dominant frequency) 1.70 ± 0.87 1.86 ± 0.18 0.97 ± 1.84 

Information-theoretic features 

**Entropy rate V (regularity of walking) 

 

0.84 ± 0.08 

 

0.83 ± 0.08 

 

0.87 ± 0.10 

Gait quality: Instrumented Walkway    

**Step time CoVh (variability of lower extremities) 

**Gait Speed (m/s) (speed of walking) 

3.96 ± 1.51 

1.08 ± 0.16 

3.70 ± 1.09 

1.09 ± 0.16 

5.09 ± 2.37 

1.00 ± 0.16 


