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ABSTRACT 23 

Background: Novel temporal-spatial features of the 12-lead ECG can conceptually 24 

optimize culprit lesions’ detection beyond that of classical ST amplitude measurements. 25 

We sought to develop a data-driven approach for ECG feature selection to build a 26 

clinically relevant algorithm for real-time detection of culprit lesion. 27 

Methods: This was a prospective observational cohort study of chest pain patients 28 

transported by emergency medical services to three tertiary care hospitals in the US. 29 

We obtained raw 10-sec, 12-lead ECGs (500 s/s, HeartStart MRx, Philips Healthcare) 30 

during prehospital transport and followed patients 30 days after the encounter to 31 

adjudicate clinical outcomes. A total of 557 global and lead-specific features of P-QRS-32 

T waveform were harvested from the representative average beats. We used Recursive 33 

Feature Elimination and LASSO to identify 35/557, 29/557, and 51/557 most recurrent 34 

and important features for LAD, LCX, and RCA culprits, respectively. Using the union of 35 

these features, we built a random forest classifier with 10-fold cross-validation to predict 36 

the presence or absence of culprit lesions. We compared this model to the performance 37 

of a rule-based commercial proprietary software (Philips DXL ECG Algorithm).  38 

Results: Our sample included 2400 patients (age 59 ± 16, 47% female, 41% Black, 39 

10.7% culprit lesions). The area under the ROC curves of our random forest classifier 40 

was 0.85 ± 0.03 with sensitivity, specificity, and negative predictive value of 71.1%, 41 

84.7%, and 96.1%. This outperformed the accuracy of the automated interpretation 42 

software of 37.2%, 95.6%, and 92.7%, respectively, and corresponded to a net 43 

reclassification improvement index of 23.6%. Metrics of ST80; Tpeak-Tend; spatial 44 

angle between QRS and T vectors; PCA ratio of STT waveform; T axis; and QRS 45 



   
 

   
 

waveform characteristics played a significant role in this incremental gain in 46 

performance. 47 

Conclusions: Novel computational features of the 12-lead ECG can be used to build 48 

clinically relevant machine learning-based classifiers to detect culprit lesions, which has 49 

important clinical implications. 50 

Keywords: ECG, culprit lesion, ACS, machine learning, features selection, 51 

dimensionality reduction. 52 
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INTRODUCTION 54 

The standard 12-lead ECG remains the mainstay for evaluating patients with 55 

suspected acute coronary syndrome (ACS) during first medical contact.(1, 2) Detecting 56 

the presence and severity of coronary occlusion (i.e., culprit lesions) can guide timely 57 

therapeutic interventions and significantly improve patient outcomes. However, current 58 

automated algorithms are suboptimal in detecting or localizing culprit lesions in ST 59 

segment elevation ACS.(3) Furthermore, we currently lack tools to detect the presence 60 

of actionable culprit lesions in those with non-ST elevation ACS.  61 

Acute myocardial ischemia affects the configuration of the QRS complexes, the 62 

ST segments and the T waves; yet most existing ECG algorithms primarily analyze ST 63 

segment deviation alone, which constitutes a missed opportunity and may contribute to 64 

the suboptimal performance seen in many automated algorithms.(4) Markers of 65 

electrical dispersion incorporate much more information in the ECG than that provided 66 

by measuring elevation of the ST segment and constitute powerful and robust means of 67 

assessing ECG morphology and dynamics in addition to classical interval and amplitude 68 

measurements.(5-7) 69 

We have previously demonstrated that markers of ventricular depolarization and 70 

repolarization dispersion on the standard 12-lead ECG, other than ST segment, can 71 

improve the classification performance for detecting potential ACS during first medical 72 

contact.(8, 9) However, identifying ACS patients with acute coronary occlusion has 73 

important implications for timely decision making and resource utilization in the 74 

emergency department. Thus, we sought to explore whether using novel features of 75 

ventricular depolarization and repolarization dispersion on the standard 12-lead ECG 76 



   
 

   
 

can optimize the classification performance for detecting the presence of culprit lesions 77 

in patients evaluated with suspected ACS. 78 

MATERIALS AND METHODS 79 

Design and Settings 80 

Details on the methods of this study have been previously published in detail.(10) 81 

Briefly, this was a prospective observational cohort study recruiting consecutive patients 82 

with chest pain transported by emergency medical services to 1 of 3 tertiary care 83 

hospitals in the United States between 2013 and 2016. The patients were enrolled 84 

under a waiver of informed consent. We conducted an offline analysis on prehospital 85 

10-second 12-lead ECGs stored after being recorded by prehospital personnel. The 86 

study outcomes were then adjudicated up to 30 days after the indexed encounter. The 87 

University of Pittsburgh Institutional Review Board approved this study. 88 

Study Outcomes 89 

We used guidelines proposed by the American College of Cardiology to define 90 

and measure the degree of coronary artery occlusion among patients who had 91 

diagnostic angiography.(11) Major coronary arteries of interest were the Left Anterior 92 

Descending (LAD), Left Circumflex (LCX), Right Coronary Artery (RCA), and Left Main 93 

Coronary artery (LMCA). Major coronary branches of interest included the first Obtuse 94 

Marginal (OM1), first Diagonal (D1), and the Right Posterior Descending Artery (RPDA). 95 

Additional variables for consideration included percent occlusion for previously grafted 96 

arteries, percutaneous coronary intervention (PCI) type (balloon angioplasty or new 97 

stent), or performance of angiography only. Major coronary artery with > 70% occlusion 98 



   
 

   
 

or a newly placed stent were labeled as a culprit vessel, excluding the LMCA where > 99 

50% occlusion or a newly placed stent met criteria for culprit. Major coronary branches 100 

with > 70% occlusion or newly placed stents were labeled as culprit equivalents (e.g., 101 

D1= LAD equivalent, OM1= LCX equivalent, RPDA= RCA equivalent). Notably, if the 102 

LMCA was labeled culprit, the LAD and LCX were labeled culprit as well.   103 

ECG Data Preprocessing and Features Extraction 104 

Before any preprocessing, all ECGs were manually reviewed and overread by an 105 

independent reviewer. ECGs with excessive noise or artifact were replaced by the next 106 

serial ECGs collected before emergency evaluation (n=24, 1%). All available ECGs 107 

were included in the study, including those with confounders (e.g., BBB, LVH, etc.). 108 

Then, the 10-second 12-lead ECGs (500 samples per second, 5 µV per least significant 109 

bit; 0.05-–150 Hz, HeartStart MRx, Philips Healthcare) were preprocessed by Philips 110 

Healthcare Advanced Algorithm Research Center (Andover, MA). Signal was filtered to 111 

eliminate noise, baseline wander, and artifact, and ectopic beats were removed. 112 

Averaged representative beats from each of the 12 leads were computed to remove 113 

residual baseline noise and artifacts.  114 

Next, using the 12 representative beats, a total of 557 global and lead-specific 115 

features of the P-QRS-T waveform were captured from each 12-lead ECG as previously 116 

described in detail.(8, 9) In short, 444 temporal ECG features represent durations, 117 

amplitudes, and areas of various waveform deflections harvested from individual leads. 118 

Also, 6 more temporal ECG features represent global intervals and subintervals 119 

obtained after superimposing all representative beats. Next, 13 spatial ECG features 120 

representing principal component analysis (PCA) ratios of time‐voltage data of various 121 



   
 

   
 

ECG waveforms were computed on orthogonal leads I, II, and V1–V6. Finally, 91 122 

additional spatial ECG features were identified representing axes, angles, loops, and 123 

gradients of QRS and T vectors from Frank lead xy, xz, yz, and xyz planes. Feature 124 

values were normalized (L2 norm), and missing values were imputed using the mean 125 

over the corresponding feature. 126 

Data-Driven Feature Selection 127 

Two feature selection algorithms were used to pinpoint features that are most 128 

associated with individual culprit lesion detection. These algorithms are finetuned to 129 

result in an optimal performance of the classification algorithm while reducing the 130 

number of used ECG features. First, we applied Least Absolute Shrinkage and 131 

Selection Operator (LASSO) algorithm with a random selection of the coefficient to 132 

update at each iteration rather than the default sequential update of all coefficients, in 133 

order to expedite the convergence. Second, Recursive Feature Elimination (RFE) with 134 

5% of features to remove at each iteration was implemented. Every method is applied 135 

on the full dataset, containing all the available ECG features. Then, the two sets of 136 

features selected by these algorithms were combined by keeping only the common 137 

features to obtain a final set. The latter was used in exploring the performance of the 138 

classifier. 139 

This process was applied in three separate models for the different culprit lesions 140 

(LAD, LCX and RCA) to obtain three reduced sets of features for identifying each 141 

outcome. For the LCX outcome, only the LASSO set was used due to the decreased 142 

performance obtained by combining the feature selection results. It is important to note 143 

that feature selection algorithms are used as opposed to feature extraction algorithms 144 



   
 

   
 

for interpretability reasons. Indeed, feature extraction algorithms may result in a set of 145 

new features that are the combination of the original ones so it would be harder to trace 146 

back the contribution of the initial features set. 147 

Finally, we combined the three reduced feature sets obtained for individual culprit 148 

lesions to form a global reduced set for the prediction of the presence or absence of any 149 

culprit lesion, yielding a set of 90 features. The features of this set were used as 150 

predictors for the classifier of the ‘any culprit lesion’ outcome. We plotted the feature 151 

importance bar graph with respect to each outcome as a function of the Gini importance 152 

(or mean decrease impurity) computed for the Random Forest (RF) structure. 153 

Machine Learning Algorithm and Performance Metrics 154 

Considering the sample size of our data and the prevalence of the outcomes, we 155 

decided to use RF. These classifiers are partially interpretable, reliable in unbalanced 156 

and non-linear datasets, and robust to outliers. Four RF classifiers were built: LAD 157 

model, LCX model, RCA model, and any culprit model. We used 10-fold cross-158 

validation on the data sets. Specifically, we implemented the stratified version so that 159 

each split had the same proportions of specific coronary occlusions as the global 160 

unbalanced datasets. The modeling was done using Python which is an open-source 161 

coding language, and built-in functions from the sklearn machine learning library were 162 

mainly used, such as sklearn.ensemble.RandomForestClassifier. 163 

The area under the receiver operating characteristic (ROC) curve was computed 164 

for each classifier to assess its performance. We used the Geometric Mean method to 165 

select an adequate threshold, which is an effective approach in imbalanced 166 

classification. The maximum of the Geometric Mean between the true positive rate 167 



   
 

   
 

(TPR, or sensitivity) and the specificity = 1 - false positive rate (FPR) over 10 thresholds 168 

(one for each fold) was considered to be the best threshold to apply on the fold results 169 

computed in the validation step. Using this cutoff, we obtained the 2x2 confusion matrix 170 

for each classifier and calculated the sensitivity, specificity, positive predictive value, 171 

and negative predictive value. 172 

ECG Reference Standard  173 

We compared our final classifier (any culprit model) against Philips diagnostic 174 

12/16‐lead ECG analysis program (Philips DXL ECG Algorithm). Using this 175 

commercially available software for automated ECG interpretation, we processed each 176 

12-lead ECG to denote the diagnostic likelihood “***Acute MI***” or “Acute Ischemia”. 177 

Both categories were combined to compute the 2x2 confusion matrix and corresponding 178 

sensitivity, specificity, and positive and negative predictive values for the presence of 179 

'any culprit lesion’. These metrics were compared against our final RF model. The 180 

metric chosen for a concrete quantification of the incremental gain or loss in 181 

performance was the net reclassification improvement (NRI) index computed for the RF 182 

classifier against the reference standard. 183 

RESULTS 184 

Baseline Characteristics 185 

Our sample size consisted of 2400 patients (age 59 ± 16, 47% female, 41% 186 

Black). Table 1 shows the baseline characteristics of the study sample. Overall, 84.3% 187 

of the recruited patients had non-ACS etiology and 15.8% had confirmed ACS. Among 188 

the latter, 21.1% had no culprit lesions, 41% had single vessel disease, and another 189 



   
 

   
 

37.9% had multi-vessel disease, reflecting the complexity of these patients. The 190 

prevalence of the individual culprit lesions in our dataset was 7.2% for LAD, 4.8% for 191 

LCX, 5.7% for RCA, and 10.7% for any culprit, again reflecting the severe imbalance of 192 

our binary outcomes. 193 

Table 1. Demographic and Clinical Characteristics 194 

Table 1 legend: COPD: Chronic Obstructive Pulmonary Disease, CAD: Coronary 195 

Artery Disease, MI: Myocardial Infarction, PCI: Percutaneous Coronary Intervention, 196 

 
Consecutive Chest Pain Patients (n = 2400) 

Demographics 
Age (years) 

Sex (Female) 

Race (Black) 

 

59 ± 16 

1119 (47%) 

988 (41%) 

Past Medical History 
Hypertension 

Diabetes 

Dyslipidemia 

COPD 

Heart Failure 

Known CAD 

Old MI 

Prior PCI 

Prior CABG 

Current Smoking 

 

1684 (70%) 

682 (28%) 

973 (41%) 

566 (24%) 

433 (18%) 

851 (36%) 

627 (26%) 

578 (24%) 

215 (95%) 

743 (31%) 

ECG Over-Read by Physician 
Normal Sinus Rhythm 

Atrial Fibrillation 

LBBB or RBBB 

LVH with a strain pattern 

At least one wall with ST elevation 

At least one wall with ST depression 

 

2061 (86.1%) 

252 (10.5%) 

176 (7.3%) 

80 (3.3%) 

163 (6.8%) 

406 (16.9%) 



   
 

   
 

CABG: Coronary Artery Bypass Graft, LBBB: Left Bundle Branch Block, RBBB: Right 197 

Bundle Branch Block, LVH: Left Ventricular Hypertrophy. 198 

Performance of the Machine Learning Classifier 199 

Figure 1 shows the areas under the ROC curves (AUC-ROC) for the four 200 

different classifiers in the study. The AUC-ROC for LAD, LCX, and RCA culprit lesions 201 

were equal to 0.82 ± 0.03, 0.84 ± 0.03, and 0.85 ± 0.05, respectively. Using the union of 202 

these subsets, the AUC-ROC for the ‘any culprit lesion’ model was equal to 0.85 ± 0.03 203 

(Fig. 1, right lower panel), suggesting that the selected feature subsets had very good 204 

classification performance for separating cases and controls for each culprit artery. 205 

Figure 1: Classification performance of the different random forest classifiers 206 



   
 

   
 

 207 

Figure 1 legend: Each plot shows the individual 10-fold curves, the mean ROC curve, 208 

and the corresponding AUC for LAD, LCX, RCA, and any culprit models. The ±2 209 

standard error of the mean ROC curve is based on the different 10 folds. ROC: 210 

Receiver Operating Characteristic, AUC: Area Under the Curve, LAD: Left Anterior 211 

Descending, LCX: Left Circumflex, RCA: Right Coronary Artery. 212 

Table 2 shows the diagnostic accuracy metrics of the final “any culprit lesion” 213 

model and an ECG reference standard. Compared to the commercial interpretation 214 

program, our classifier not only yielded a 34.5% gain in sensitivity (71.7% vs. 37.2%) 215 

but it also maintained a higher negative predictive value (96.1% vs. 92.7%). The NRI of 216 



   
 

   
 

our RF model was 23.6%, which means that, among the 2400 patients in our study, 217 

nearly 1 in 4 patients screened with a prehospital ECG can be reclassified correctly 218 

using our machine-learning algorithm as compared to the automated software. 219 

Table 2. Diagnostic accuracy metrics of the final RF model and the ECG reference 220 

standard 221 

 Performance 
Metrics  

Available automated 
ECG interpretation 

Radom Forest model for 
'any culprit lesion' 

Sensitivity 37.21% 71.71% 

Specificity 95.61%  84.73%  

Positive predictive value 50.53% 36.13% 

Negative predictive value 92.66% 96.13% 

NRI index Reference 23.60% 

Table 2 legend: NRI: Net Reclassification Improvement. 222 

Finally, to enhance the interpretability of our findings, we plotted the features 223 

selected by each classifier according to their classification importance (Figure 2). For 224 

the ‘any culprit lesion’ outcome, the union of the previously selected subsets for 225 

individual culprits (k=90) were reviewed by experienced clinical scientists to investigate 226 

a plausible mechanistic link between the important features used by the machine 227 

learning algorithm and acute myocardial ischemia. The following features were found to 228 

be the most important predictive features contributing to the observed incremental gain 229 

in performance: metrics of ST80; Tpeak-Tend; spatial angle between QRS and T 230 

vectors; PCA ratio of STT waveform; T axis; and QRS waveform characteristics. 231 

Figure 2: Importance rank of ECG features subset for predicting culprit lesions 232 



   
 

   
 

 233 

Figure 2 legend: These plots show the feature importance bar graph as a function of 234 

the Gini importance (or mean decrease impurity) computed for the Random Forest 235 

structures of LAD, LCX, and RCA models. The 10 most important features for the LAD 236 

model were: TpTe, Age, TrelAmp (global T-wave amplitude relative to global R-wave 237 

peak), st80_V4, STT_PCAratio (ratio 2nd to 1st principal component, STT), st80_V2, 238 

pcaTamp, print_III, pamp_V5 and T_PCAratio (ratio 2nd to 1st principal component, T-239 

wave). The 10 most important features for the LCX model were: Age, st80_aVL, TpTe, 240 

st80_III, pctTNDPV (relative (percent) T-wave non-dipolar components, RMS), 241 

STT_PCAratio, PCA2, print_III, TrelAmp and print_V4. The 10 most important features 242 



   
 

   
 

for the RCA model were: st80_aVL, Age, stend_aVL, st80_III, TpTe, fpTinfl1Axis (frontal 243 

plane axis of global T-wave inflection point before T-wave peak), st80_I, st80_aVF, 244 

pctTNDPV and tarea_V2. LAD: Left Anterior Descending, LCX: Left Circumflex, RCA: 245 

Right Coronary Artery. 246 

DISCUSSION 247 

In this study, we sought to explore whether using novel features of ventricular 248 

depolarization and repolarization dispersion on the standard 12-lead ECG can optimize 249 

the classification performance of the presence of culprit lesions in patients evaluated for 250 

suspected ACS. While maintaining a specificity of ~85%, our final RF model improved 251 

sensitivity over existing commercial interpretation software by ~35%, with an NRI of 252 

23.6%. Novel metrics of ventricular activation time (i.e., transmural conduction delays), 253 

QRS and T axes and angles (i.e., global remodeling), non-dipolar electrical dispersion 254 

(i.e., circumferential ischemia), and PCA ratio of ECG waveforms (i.e., regional 255 

heterogeneity) played an important role in this improved reclassification performance. 256 

Acute myocardial ischemia affects the configuration of the QRS complexes, the 257 

ST segments and the T waves, thus novel computational ECG features quantifying 258 

global depolarization and repolarization dispersion have been previously shown to 259 

contain prognostic information on myocardial injury beyond those captured by the 260 

amplitude of the ST segment alone. Waveform principal eigenvalues and corresponding 261 

ratios, as well as non-dipolar voltage beyond the 3rd eigenvalue, have been shown to 262 

specifically correlate with acute myocardial injury.(5, 7, 12) These metrics can quantify 263 

the magnitude of diffusion or widespread global changes secondary to altered signal 264 

propagation speed and velocity between healthy and ischemic myocardium.  265 



   
 

   
 

Furthermore, the angles between depolarization and repolarization vectors and 266 

loops have been shown to correlate with ischemia.(6, 13) These metrics can quantify 267 

the altered electromechanical forces in the ventricular myocardium secondary to global 268 

remodeling after myocardial injury. Other T wave indices (e.g., T peak-end) have also 269 

been shown to correlate with ischemia in prior studies.(14) 270 

This study has important clinical implications. Nearly 10 million patients are 271 

evaluated for chest pain at the emergency department annually in the US. Nearly half of 272 

these patients are admitted because the initial evaluation is inadequate to rule in or out 273 

acute coronary disease. Our results indicate that novel features of ischemia, combined 274 

with RF-based intelligent classifiers, can help reclassify 1 in 4 of these patients 275 

evaluated for suspected ACS. This can potentially expedite treatment in those who 276 

need immediate care and save unnecessary costs (e.g., diagnostics, admissions) in 277 

those without acute coronary occlusions. To better understand the clinical implications 278 

of these results, we present two ECG examples that illustrate the importance of our 279 

findings. Figure 3A displays the ECG of a 60-year-old male patient with 80% occlusion 280 

in one of LAD branches that subsequently had a stent placed in that artery. The 281 

automated algorithm detected a Q wave in V1 and V2 and suggested potential infarct 282 

but remained inconclusive. Our model reclassified this patient correctly for LAD 283 

occlusion. More interestingly, Figure 3B shows the ECG of a 58-year-old male patient 284 

with 50% occlusion in LAD and 90% occlusion in LCX. The automated algorithm 285 

detected a right bundle branch block and did not interpret for infarct (i.e., false negative 286 

for culprit class). Our model reclassified this patient correctly, identifying a culprit lesion. 287 

CONCLUSIONS 288 



   
 

   
 

Metrics of ventricular electrical dispersion on the standard 12-lead ECG can 289 

augment the prediction of culprit coronary lesions during first medical contact in patients 290 

with suspected ACS, which has important clinical implications. 291 

Figure 3: Selected ECG examples reclassified correctly using our RF model 292 



   
 

   
 

 293 

Figure 3 Legend: (A) 60-year-old male with 80% LAD occlusion; (B) 58-year-old male 294 

with 50% LAD occlusion and 90% LCX occlusion. Figure 3 acronyms: LAD: Left Anterior 295 

Descending, LCX: Left Circumflex. 296 

A 

B 
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