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ABSTRACT 24 

Background: Clinical practice primarily relies on classical ST amplitude measures during the 25 

initial evaluation of patients with suspected acute coronary syndrome (ACS). Machine learning, 26 

when driven by domain-specific knowledge, could help identify an optimal subset of ECG 27 

features to augment clinicians’ decision during patient evaluation.  28 

Methods: This was an observational study of consecutive patients evaluated at the emergency 29 

department for suspected ACS (Cohort 1 n=745, age 59±17, 42% Female, 15% ACS; Cohort 2 30 

n=499, age 59±16, 49% Female, 18% ACS). A total of 554 temporal-spatial waveform features 31 

were extracted from baseline 12-lead ECGs. We identified a subset of 65 physiology-driven 32 

features that are mechanistically linked to myocardial ischemia, and compared their 33 

performance to a subset of 229 data-driven features selected by multiple machine learning 34 

algorithms. We then used random forest to select a subset of 73 most important ECG features 35 

that had both data- and physiology-driven basis to ACS prediction and compared their 36 

performance to clinical experts. Classifiers were evaluated using logistic regression (LR) and 37 

artificial neural network (ANN) with 10-fold cross-validation on cohort 1 followed by independent 38 

testing on cohort 2.  39 

Results: Compared to physiology-driven features, classifiers based on data-driven features 40 

were superior during model training, but generalized poorly to testing data. LR classifiers based 41 

on the 73 hybrid features yielded a stable model that outperformed clinical experts in terms of 42 

predicting ACS and non-ST elevation ACS (net reclassification improvement 0.10 [-0.02–0.23] 43 

and 0.19 [0.04–0.33], respectively). For the latter, classical ST and T wave amplitudes had the 44 

least predictive importance, with metrics of non-dipolar electrical dispersion (i.e., circumferential 45 

ischemia), ventricular activation time (i.e., transmural conduction delays), QRS and T axes and 46 

angles (i.e., global remodeling), and PCA ratio of ECG waveforms (i.e., regional heterogeneity) 47 

playing a more important role. 48 
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Conclusions: We identified a subset of novel ECG features that would improve ACS detection. 49 

These features guided by domain-specific knowledge yielded stable LR classifiers highly 50 

adaptable to clinical decision support applications.  51 

 52 

Key Words: machine learning, dimensionality reduction, acute coronary syndrome, 53 

electrocardiogram, ischemia 54 

55 
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INTRODUCTION  56 

The prompt identification of acute coronary syndrome (ACS) is a longstanding challenge 57 

in emergency practice.(1-3) The electrocardiogram (ECG) is readily available during initial 58 

patient evaluation, and sensitive ECG markers of acute myocardial ischemia can expedite the 59 

current time-consuming, biomarker-driven approach for ACS diagnosis.(4-6) The 60 

electrophysiological basis of acute myocardial ischemia has been thoroughly studied over the 61 

past few decades, (7) with many studies suggesting the abundance of hidden signatures of 62 

acute myocardial ischemia in the surface ECG signal (8, 9). Yet, current guidelines exclusively 63 

rely on the amplitude of ST segment and T wave for ACS detection (10), translating into a 64 

diagnostic sensitivity of approximately 40% for the standard 12-lead ECG (11). Given that ECG 65 

waveform is among the most extensively studied signals in cardiovascular medicine, existing 66 

computational algorithms can extract hundreds of features from a single 10-second 12-lead 67 

ECG. Thus, recent advances in pattern recognition and machine learning could help in 68 

identifying an optimal subset of features to augment clinicians’ decision in detecting ACS during 69 

initial evaluation. (12) 70 

Although it is being widely adopted in various clinical applications, machine learning is 71 

limited by the relatively small size of available clinical datasets and the difficulty of finding 72 

comparable external datasets for replication.(13) Accordingly, feature subset selection (FSS) 73 

plays a significant role in optimizing the accuracy of supervised classification systems, including 74 

improved understandability of the final classifier. In addition to available data-driven approaches 75 

of FSS, some studies suggest the need for domain-specific expertise to guide feature selection 76 

and model development during the learning process. (13) The electrophysiology of myocardial 77 

ischemia is well understood, and it is feasible to perform FSS based on cardiac physiology. 78 

However, there is a paucity of evidence regarding the effect of manual FSS on the performance 79 

of supervised classification systems. In fact, manual FSS is counter-intuitive to the premise of 80 
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machine learning—the discovery of hidden patterns in the data that might not be apparent to 81 

clinicians. Accordingly, using two prospective clinical cohorts, we sought to (1) compare the 82 

accuracy of supervised classifiers in detecting ACS using ECG feature subsets selected based 83 

on either data-driven techniques or domain-specific knowledge; and (2) whether data-driven 84 

FSS techniques can identify ECG features indicative of ACS that were overlooked by domain-85 

specific human experts.  86 

METHODS  87 

Design and Settings 88 

This was a prospective observational cohort study of consecutive patients with chest 89 

pain transported by Emergency Medical Services to one of three tertiary care hospitals in the 90 

US between 2013 and 2015. The methods of this study were previously described in detail. (14) 91 

In short, we collected the prehospital 12-lead ECGs obtained by paramedics in the field and 92 

stored them for offline analysis. We then followed patients up to adjudicate study outcomes. 93 

Clinical data were obtained from medical charts by independent reviewers. Patients were 94 

recruited under a waiver of informed consent and the study was approved by the Institutional 95 

Review Board of University of Pittsburgh. 96 

The primary study outcome was the presence of ACS (myocardial infarction or unstable 97 

angina) during the primary indexed admission, defined according to the 4th Universal Definition 98 

of myocardial infarction consensus statement as the presence of symptoms of ischemia (i.e. 99 

diffuse discomfort in the chest, upper extremity, jaw, or epigastric area for more than 20 100 

minutes) with the presence of biomarker, nuclear, or angiographic evidence of myocardial 101 

ischemia and / or loss of viable myocardium. (10) Study outcomes were adjudicated by two 102 

independent physician reviewers and disagreement was resolved by a third physician reviewer. 103 

Patients discharged from the emergency department were classified as negative for ACS if they 104 
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had no 30-day adverse events. Patients presenting ventricular tachycardia or fibrillation on 105 

prehospital ECG were excluded from this analysis. 106 

ECG Preprocessing and Feature Extraction 107 

Each ECG was manually over-read by an independent reviewer. ECGs with excessive 108 

noise or artifact (n=24, 2%) were substituted by the next serial ECG obtained during emergency 109 

evaluation. ECGs with ventricular tachycardia or fibrillation were excluded from this analysis 110 

(n=7, 0.5%). All other available ECGs, including those with secondary repolarization changes 111 

(i.e., pacing, BBB, coarse atrial fibrillation, or LVH with strain, n=178, 14%) were included in the 112 

analysis. We decided to keep these ECGs because their removal had no effect on the 113 

performance of subsequent predictive models. Besides, the ability to classify these challenging 114 

ECGs would have huge clinical utility during emergency care. 115 

Then, 10-second, 12-lead ECG signals (500 s/s, HeartStart MRx, Philips Healthcare) 116 

were pre-processed at Philips Healthcare Advanced Algorithm Research Center (Andover, MA). 117 

Raw ECG signals were decompressed to extract individual ECG leads. Noise, artifact, and 118 

ectopic beats were then removed, and representative average beats were computed for each 119 

ECG lead to eliminate residual baseline noise and artifacts. This technique yields high signal-to-120 

noise ratio and stable average waveform signal for each of the 12 leads.  121 

Next, fiducial points from these representative beats were identified and corresponding 122 

ECG features were extracted. The details of feature extraction from this dataset was previously 123 

described in detail. (12) In short, a total of 554 features were extracted from each 12-lead ECG. 124 

First, duration, amplitude, and area of various waveform deflections were calculated from each 125 

of the 12 leads, yielding 444 temporal ECG features (Figure 1A). Second, the 12 representative 126 

beats were superimposed, and global intervals and subintervals were computed, yielding 6 127 

more temporal ECG features (Figure 1B). Third, principal component analysis (PCA) on time-128 

voltage data was performed on orthogonal leads I, II, V1–V6 to compute PCA ratios of the 129 
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eigenvalues of various ECG waveforms, yielding 13 spatial ECG features (Figure 1C). Finally, 130 

axes, angles, loops, and gradients of QRS and T vectors from xy, xz, yz, and xyz planes were 131 

computed, yielding 91 more spatial ECG features (Figure 1D).  132 

All extracted ECG features were then z-score normalized. Missing data, representing 133 

less than 0.2% of the total features’ values available in our dataset, were imputed using the 134 

mean or the mode of the corresponding feature. 135 

FSS using Domain-Specific Human Expertise 136 

Two research scientists trained in cardiac electrophysiology reviewed the 554 extracted 137 

ECG features and agreed on a reduced set of 65 features that had strong physiological basis as 138 

plausible markers of acute myocardial ischemia, including 24 classical measures (amplitude of 139 

J+80 point and T wave from each of the 12 leads), and 41 supplemental features that may 140 

correlate with acute cardiac ischemia: depolarization and repolarization times (i.e., QRS 141 

duration, JTend, JTpeak, Tpeak-end, and QT interval, k=6); depolarization and repolarization vectors 142 

(QRS and T axes and angles, k=8); repolarization velocity (i.e., T wave peak inflection, 143 

amplitude, and slope, k=5); global electrical dispersion (PCA ratios between QRS, STT, J, and 144 

T eigenvalues, k=13); repolarization characteristics (i.e., T wave morphology and T loop 145 

features, k=7); and high frequency signal noise values (k=2). The selection of these candidate 146 

features was based on review of literature (15) and our previous work. (8, 16, 17) 147 

FSS using Data-Driven Algorithms 148 

We used three different data-driven algorithms to identify a list of features most 149 

important for optimizing the performance of the classification algorithm. First, we used Cohen’s 150 

d effect size, which compares how distinguishable ACS vs. non-ACS distributions of a given 151 

feature are in terms of the distance between the means. All distributions were evaluated for 152 

normality of distributions and homogeneity of variances. Features corresponding to an effect 153 
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size lower than 0.35 are assumed to fail to differentiate between the two populations and were 154 

excluded from our dataset. Using this cutoff value, only 23 features out of 554 remained (4%). 155 

Second, we used recursive features elimination as part of logistic regression. We evaluated 156 

20 features per iteration and used F1 scores to evaluate model performance. F1 scores 157 

provides the best tradeoff between precision and recall using imbalanced datasets like ours, 158 

which had a 6:1 ratio of non-ACS to ACS subgroups. The selection of the optimal set of features 159 

went through a 10-fold cross-validation process. Using this technique, 156 features out of 554 160 

(28%) were selected. Finally, we used LASSO regression to select the most important features 161 

with non-zero coefficients. We used the L1 norm method to penalize the least square error 162 

between the outcome and an affine function of the input variables. The regularization parameter 163 

alpha was set by the means of a 10-fold cross-validation. Using this technique, 96 features out 164 

of 554 (17%) were selected. 165 

Next, given that the three FSS techniques described above use complementary, non-166 

competing approaches, we identified the features that received at least one vote (i.e., appeared 167 

in at least one FSS algorithm). This yielded a total of 229 features. We used these data-driven 168 

features in subsequent training and testing of machine learning classifiers in order to compare 169 

against the domain-specific manually selected features. It is noteworthy that this step-by-step 170 

process for FSS was selected after a comprehensive evaluation of our dataset. This is important 171 

to note because the performance of machine learning algorithms is dependent on the inherent 172 

properties of the dataset used. Several studies have used multiple FSS procedures to tackle 173 

one specific disease diagnosis.(18) 174 

FSS using a hybrid data- and physiology-driven approach 175 

 To identify any important ECG features that were missed by domain-specific experts, we 176 

mapped the 229 data-driven features against the major components of the 12-lead ECG signal, 177 

identifying the overlap between the data-driven features and the ones selected by domain-178 
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specific experts. We identified pertinent data-driven features that could be mechanistically linked 179 

to ischemia and yet missed by human experts. This yielded a total of 100 hybrid features that 180 

are both data-driven and judged by clinicians as presumably contributing as signatures of 181 

myocardial ischemia. To reduce the apparent redundancy in these features, we used random 182 

forest to identify and keep the important features for the task of ACS detection. This yielded a 183 

final novel subset of 73 features that we used in subsequent tuning of ML classifiers. 184 

Machine Learning Methods 185 

Logistic regression (LR) and artificial neural networks (ANN) have been preferentially 186 

used in previous studies focusing on ECG-based prediction of ACS. (19-21) Considering the 187 

size of our dataset and the expected reduction of model complexity achieved through FSS, we 188 

started with LR as the machine-learning classifier of choice to address the aims of our study. 189 

We then used ANN to explore whether FSS approaches would have a similar effect on more 190 

sophisticated, non-linear machine learning classifiers. 191 

Our LR and ANN classifiers were trained using a 10-fold cross-validation on Cohort 1 192 

and, afterwards, tested on an independent Cohort 2 being completely blinded to its outcomes. 193 

We started with all 556 available features (554 ECG features with age and sex) without any FSS 194 

(i.e., LR554 and ANN554). Next, we built models using the 65 manual features selected by 195 

domain-specific human experts (i.e., LR65 and ANN65), the 229 data-driven features (i.e., LR229 196 

and ANN229), and the 73 hybrid data- and physiology-driven features (i.e., LR73 and ANN73). The 197 

algorithms were trained using 10-fold cross-validation and then evaluated on an independent 198 

testing set that was blinded to the outputs. 199 

The classification performance of each classifier was evaluated using the area under the 200 

receiver operating characteristic (AUROC) curve. This tool is powerful because it reflects the 201 

ability of binary classifiers to distinguish between two populations. We used DeLong’s test to 202 

compare the difference between the mean AUC of two correlated ROC curves of different 203 
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classifiers (22), and we opted for pairwise comparisons. We set alpha at p<0.05 for two tailed 204 

hypothesis testing. 205 

ECG Reference Standards 206 

We compared the performance of the final LR73 classifier against two current ECG 207 

reference standards: (1) clinical experts’ interpretation and (2) commercial interpretation 208 

software. To get these annotations, each 12-lead ECG was over-read by two experienced 209 

clinicians. Each reviewer classified each ECG according to the likelihood of underlying ACS 210 

(yes / no) taking into account diagnostic ST-T changes as per the fourth Universal Definition of 211 

Myocardial Infarction consensus statement, (10) and the presence of other suspicious ECG 212 

findings (i.e., contiguous territorial involvement, evidence of reciprocal changes, changes 213 

beyond those caused by secondary repolarization, and lack of ECG evidence of non-ischemic 214 

chest pain etiologies). Disagreements were resolved by a board-certified cardiologist. Next, we 215 

used Philips diagnostic 12/16 lead ECG analysis program (Philips Healthcare, Andover, MA) for 216 

automated ECG interpretation. This software is commercially available and is used in practice to 217 

denote the diagnostic likelihood of ACS on the ECG printout (i.e., “***Acute MI***”).  218 

We computed and compared the sensitivity, specificity, and positive and negative 219 

predictive values for the final ML classifier and the reference standards. We also computed the 220 

net reclassification improvement (NRI) index for our final ML classifier against each reference 221 

standard. Finally, in subsequent sensitivity analyses, we re-evaluated the diagnostic 222 

performance of our final ML classifier in detecting patients with non-ST elevation ACS (NSTE-223 

ACS) after excluding patients with confirmed STEMI on their prehospital ECG and who were 224 

sent to the catheterization lab emergently. 225 

  226 
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RESULTS 227 

Baseline Characteristics 228 

Our sample consisted of 1,244 patients from two study cohorts: a training cohort (n=745, 229 

age 59±17, 42% Female, 40% Black) and a testing cohort (n=499, age 59±16, 49% Female, 230 

40% Black). Most patients were evaluated for chest pain (90%) or shortness of breathing (39%); 231 

most patients presented in normal sinus rhythm (88%) or atrial fibrillation (9%); and the rate of 232 

30-day cardiovascular death was 4.6%. Table 1 summarizes the baseline characteristics of 233 

each cohort. The two cohorts were comparable in terms of demographics, past medical history, 234 

chief complaint, baseline ECG characteristics, and clinical outcomes. 235 

Performance of ML classifiers 236 

The primary study outcome was ACS, which occurred in 114 out of 745 patients (15.3%) 237 

in the training cohort and 92 out of 499 patients (18.4%) in the testing cohort. Figure 2 238 

compares the AUROC curves of the different LR and ANN classifiers considered in this study. 239 

On training set (Fig. 2A, left panel), both manual FS and data-driven FSS techniques had better 240 

performance compared to no-FSS, with the best performance (lowest bias) achieved using the 241 

data-driven approach. However, on independent testing (Fig. 2A, right panel), data-driven FS 242 

approach generalized poorly (high variance). Manual FSS, on the other hand, generalized well 243 

to the testing set, suggesting a better bias-variance tradeoff. Comparing the area under ROC 244 

curve of manual FSS and data-driven FSS yielded a statistically significant difference for the 245 

Logistic Regression model with a p-value equal to 0.0105. The same trend was observed using 246 

ANN. The data-driven FSS approach performed best on the training set (Fig. 2B, left panel), but 247 

generalized poorly to the testing set (Fig. 2B, right panel), again suggesting more overfitting 248 

compared to manual FSS approach, with a p-value equal to 0.0411. 249 

 250 
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Overlap in Features between FSS Approaches 251 

Among the 229 data-driven features, 31 features (14%) were among the ones manually 252 

selected by human experts. These data-driven features with physiological plausibility for ACS 253 

classification included (1) lead-specific ST and T wave amplitudes; (2) T peak–Tend interval; (3) 254 

frontal and horizontal QRS and T axes; (4) spatial QRS-T angle and total-cosine R-to-T angle; 255 

(5) T loop morphology dispersion; (6) PCA ratio of QRST waveform, STT waveform, and T 256 

wave; and (7) the non-dipolar component of J wave. Among these features, T peak–T end was 257 

specifically selected by all three data-driven FSS algorithms, and was also ranked by LR 258 

classifiers as the most important feature among the ones selected by human experts. Finally, to 259 

discern which data-driven features contributed to noise vs. contributed to true prognostic value 260 

in ACS prediction, we mapped the 229 data-driven features against the major components of 261 

the 12-lead ECG signal (Table 2). This table highlights a potential subset of features that data-262 

driven algorithms ranked as important for the task of ACS detection but were not selected by 263 

domain-specific experts. 264 

Performance of Hybrid Subset of Novel Features 265 

The final hybrid subset included 73 features that had both data- and physiology-driven 266 

basis. Figure 3A compares the AUROC curves of the three LR classifiers based on data-driven 267 

basis alone, domain-expertise alone, and hybrid data- and physiology-driven basis. As seen in 268 

this panel, the hybrid features model generalized well to the testing set, outperforming the other 269 

two models. Similar trends were seen with ANN algorithms, but without any additional gain 270 

compared to LR algorithms (LR73 0.79 vs. ANN73 0.76). Thus, compared the diagnostic 271 

accuracy of the final LR73 against the reference standards (Table 3). As seen in this table, our 272 

LR classifier had higher sensitivity compared to expert clinicians and the commercial software 273 

while maintaining higher negative predictive value (i.e., superior rule out performance). Although 274 
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the LR classifier had lower specificity than other reference standards, it achieved positive overall 275 

net reclassification improvement (0.10 [-0.02–0.23] and 0.21 [0.10–0.32], respectively). 276 

Finally, in our sensitivity analyses, we re-evaluated the diagnostic performance of our 277 

final ML classifier in detecting patients with NSTE-ACS. Figure 3B and Table 3 show the 278 

AUROC of LR73 and its corresponding diagnostic accuracy values as compared to the reference 279 

standards. Similar to previous results, our classifier had higher sensitivity compared to expert 280 

clinicians and the commercial software while maintaining higher negative predictive value (i.e., 281 

superior rule out performance), achieving positive overall net reclassification improvement for 282 

NSTE-ACS detection (0.19 [0.04–0.33] and 0.29 [0.15–0.42], respectively). Figure 4 displays 283 

the importance ranking of the novel ECG features for the task of NSTE-ACS detection. 284 

Intriguingly, classical ST and T wave amplitudes had the least predictive importance, with 285 

metrics of non-dipolar electrical dispersion, ventricular activation time, QRS and T axes and 286 

angles, and PCA ratio of ECG waveforms playing a more important role. 287 

 288 

DISCUSSION 289 

This study evaluated the effect of two FSS techniques on the accuracy of machine 290 

learning classifiers in augmenting the ECG detection of ACS. Using two prospective clinical 291 

cohorts, our data show that machine learning classifiers have better bias-variance tradeoff when 292 

built based on features manually selected by human experts as compared to no FSS or using 293 

data-driven techniques alone. On independent testing, our data show that using a hybrid subset 294 

of 73 novel ECG features based on data- and physiology-driven approaches yields not only 295 

more powerful and interpretable model, but also outperforms clinical experts and commercial 296 

rule-based software in detecting any ACS event, as well as NSTE-ACS events. More 297 

interestingly, feature importance ranking demonstrates the presence of novel and plausible 298 

markers of ischemia that are highly adaptable to clinical decision support applications. 299 
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Effect of FSS Approach on Classifiers Performance 300 

Our data show that, compared to no-FSS, physiology-driven features optimized our LR 301 

classifier and yielded a generalizable model. This finding is expected given that using domain-302 

specific knowledge not only tremendously reduced the dimensionality (65 out of 556 features), 303 

but also intuitively reduced the redundancy in the data, both of which are compatible with linear 304 

classifiers. On the other hand, our data show that the initial gain observed by using data-305 

selected features generalized poorly to an independent unseen cohort. Our training set results 306 

are similar to the ones reported by Green et al. (2006). In their work, they built the model based 307 

on 16 ECG features chosen using the Principal Component Analysis (PCA) approach. Their 308 

cohort consisted of a comparable sample size (634 patients) and ACS prevalence (130 ACS 309 

patients i.e. ≈ 20.5%). (20) However, Green et al. did not have an independent testing set for 310 

validation. In our data, we showed that data-driven FSS lacked generalizability on a new test 311 

example, indicating overfitting of training data coupled with a substantial variability of classifier 312 

performance. Although this finding was surprising, the small dataset size as well as the inclusion 313 

of patients with confounders in our datasets could provide a simple rationale for this unexpected 314 

finding. Besides, some strict requirements about data nature, such as the homogeneity of 315 

variances for the Cohen’s d effect size algorithm, were not satisfied which may jeopardize the 316 

predictive performance, including its generalizability. 317 

We observed similar trends in results when we applied ANN as a non-linear classifier. 318 

These findings are a little bit counterintuitive given that ANN is expected to better capture the 319 

underlying characteristics of the dataset when fed with more features. This divergence can be 320 

attribute to the small sample size, especially for training data, which is incompatible with 321 

learning a complex model without increasing the risk of overfitting. (23) This was observed as a 322 

significant reduction in ANN classifiers performance using all available features (k=554) or the 323 

data-selected ones (k=229). Again, we speculate the reduced dimensionality and data 324 
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redundancy when using physiology driven features reduced the complexity of the ANN 325 

classifiers, yielding a more generalizable model. 326 

Finally, it is worth noting that using ANN classifiers consistently yielded higher 327 

classification accuracy when compared to LR classifiers, with or without any FSS (Figure 2). 328 

However, this gain in accuracy was negligible when using the physiology-driven features (ANN65 329 

= 0.77 vs. LR65 = 0.76 [for test set]). Given that LR classifiers are easily interpretable, our results 330 

suggest that using an LR65 classifier with physiology-driven features can yield a fully 331 

understandable decision support tool for clinical use. 332 

Overlap between Data- and Physiology-Driven Features  333 

The secondary aim of this study was to explore whether data-driven FSS techniques 334 

might identify ECG features indicative of ACS that were overlooked by domain-specific human 335 

experts. Table 2 mapped the 229 data-driven features against the major components of the 12-336 

lead ECG signal, identifying the overlap between the data-driven features and the ones selected 337 

by domain-specific expertise. More interestingly, this table summarizes the cluster of data-338 

driven features that were overlooked by human-experts. Some of these overlooked data-driven 339 

features are contextually understandable, like ST slope, ST deviation morphology, and T wave 340 

attributes, but some other features were more challenging to classify. Upon careful annotation, 341 

we classified the overlooked data-driven features in one of these three broad categories: (1) 342 

noise attributed to existing comorbidities or patient medications (i.e., lead-specific P duration, P 343 

amplitude, and PR interval); (2) redundant information quantified by simultaneous ECG features 344 

(i.e., lead-specific Q, R, and S wave attributes that are redundant with scar size, and lead-345 

specific QRS duration and QT interval that are redundant with principal component analysis); 346 

and (3) features that could be mechanistically linked to myocardial ischemia and can serve as 347 

plausible features of ACS (i.e., presence of fragmented QRS and lead-specific ventricular 348 

activation time). 349 
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Novel ECG Features of Ischemia 350 

 The novel features identified in this study as plausible markers of ACS that are 351 

potentially mechanistically linked to myocardial ischemia bring a valuable addition to clinical 352 

knowledge. Intriguingly, although the classical ST and T wave amplitude measures were among 353 

the predictive features, they ranked as the least important when compared to the contribution of 354 

other novel features (Figure 4). Some of the observed patterns and clusters of the most 355 

important features can be summarized in the following major categories: 356 

1. Features of the non-dipolar voltage, which quantifies the spatial electrical dispersion in 357 

the fourth to eighth eigenvalues. In the context of ST, T, and J components, the non-358 

dipolar voltage would indicate the magnitude of diffusion or widespread global 359 

changes,(24) a probable measure of circumferential ischemia in ACS. 360 

2. Ventricular activation time, which quantifies the time from Q onset to R peak. Whereas 361 

depolarization of the whole ventricular myocytes is assessed through global QRS 362 

duration, localized regional depolarization can be assessed using individual leads facing 363 

that myocardial region. Thus, ventricular activation time measured from anterior and 364 

inferior leads would primarily indicate transmural conduction delays in the left ventricle 365 

and apex,(25) a probable consequence of localized ischemia in these regions. 366 

3. QRS and T axes and corresponding angles, which characterize the propagation 367 

direction of depolarization and repolarization signals and, hence, global electrical 368 

dispersion. In the context of ACS, these features can reflect the altered 369 

electromechanical forces in the ventricular myocardium and probably the resulting global 370 

remodeling after myocardial injury.(26) 371 

4. Waveform eigenvalues and corresponding ratios, which quantifies the principal 372 

components of ECG signal in perpendicular space. The altered signal propagation 373 

speed and velocity between healthy and ischemic myocardium leads to spatial 374 
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heterogeneity and significantly impacts these features.(9) Thus, in the context of ACS, 375 

these eigenvalues would resemble regional myocardial ischemia (or injury vectors).(8) 376 

5. Other T wave metrics that quantify duration (e.g., T peak T end), amplitude (e.g., relative 377 

R-to-T), area (e.g., JTpeak area), morphology (e.g., T asymmetry), and loop 378 

characteristics (e.g., loop dispersion). Some studies have demonstrated that such simple 379 

T wave metrics may better predict early ischemia as compared to ST segment,(27) a 380 

finding that is supported by our current results. 381 

6. Residual high frequency noise in the signal. Although this might be a simple incidental 382 

finding reflective of acuity of illness at the time of ECG acquisition, we previously 383 

demonstrate that such noise highly correlates with beat-to-beat repolarization lability.(16) 384 

This lability can resemble the alternans of intracellular Ca+2 transient in adjacent cells 385 

during acute myocardial ischemia.  386 

Clinical Implications 387 

Unlike the majority of previous studies that primarily used the limited, open-source MIT-388 

PTB diagnostic ECG database, our results are based on two large clinical cohorts with real-389 

world ECG data. Thus, our study has some immediate clinical implications. Our machine 390 

learning algorithms are fully interpretable and can be easily incorporated into existing ECG 391 

software or embedded into ECG interpretation platforms for decision support. These algorithms 392 

can help clinicians in identifying NSTE-ACS events in real-time, which constitutes a long-lasting 393 

challenge in clinical practice. Given that our algorithm has higher sensitivity and negative 394 

predictive value compared to experienced clinicians, our models are well-suited as an initial 395 

screening tool (i.e., rule out). This has the potential to better allocate hospital resources by 396 

avoiding prolonged observations, unnecessary admissions, or invasive testing. With an average 397 

net reclassification improvement of 20%, our approach can positively impact the initial triage of 398 

1.4 out of the 7 million Americans evaluated at the emergency department for chest pain every 399 
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year. This is inclusive of the challenging group of patients whom baseline ECGs are typically 400 

deemed un-interpretable for ischemia (e.g., pacing, BBB, LVH, etc.). Finally, given that our 401 

machine learning model are less dependent on classical ST and T wave amplitude measures, 402 

they can be used to augment (rather than replace) commercial rule-based ECG software that 403 

follow published recommendations by AHA/ACC guidelines. 404 

Study Limitations 405 

Strengths of our current study include the quality of our prehospital ECG dataset, using 406 

two independent training and validation sets, the selection of features mechanistically linked to 407 

ischemia, the emphasis on the interpretability and clinical relevance, and the comparison 408 

against a reference standard. Yet, our study had some limitations. Even though the data were 409 

collected from multiple healthcare centers, both training and testing sets were still restricted to 410 

one region. Thus, the study may be biased by disparities inherent to sex, race and other factors’ 411 

distributions in the community. Our algorithms need to be tested on a more diverse population 412 

including data from more geographically distant healthcare centers. Besides, the patient to 413 

feature ratio, which reaches almost 1:1 value for one of the classifiers, is low. This fact, 414 

aggregated with the unbalanced dataset presenting only 15.3% prevalence of outcome, would 415 

considerably influence the performance of the classifiers, especially ANN. Future research 416 

needs to include more patients in the study while ensuring the collection of similar proportions of 417 

diseased and healthy patients with respect to the primary outcome of the study.  418 

CONCLUSION 419 

In this prospective analysis, we explored the value of different algorithms to identify an 420 

optimal subset of ECG features that can augment the diagnosis of ACS at the Emergency 421 

Department. In this context, we arrived at the conclusion that LR classifiers guided with domain-422 

specific expertise yield the most reliable classification performance and are consequently more 423 

adapted to developing clinically relevant decision support tools. However, data-driven classifiers 424 



ECG Features Selection - 19 
 

identified a subset of novel ECG features that would improve ACS detection by providing 425 

important insights for developing cardiac electrical biomarkers that are mechanistically linked to 426 

ischemia and can be clinically relevant. 427 

 428 

  429 
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Table 1: Baseline Study Characteristics 430 

 Cohort 1 (N=745) 
(Training Set) 

Cohort 2 (N=499) 
(Testing Set) 

Demographics 
Age in years 

Sex (Female) 

Race (Black) 

 

59 ± 17 

317 (42%) 

301 (40%) 

 

59 ± 16 

243 (49%) 

202 (40%) 

Past Medical History 
Hypertension 

Diabetes mellitus 

Old myocardial infarction 

Known CAD 

Known heart failure 

Prior PCI / CABG 

 

519 (69%) 

196 (26%) 

205 (27%) 

248 (33%) 

130 (17%) 

207 (28%) 

 

329 (66%) 

132 (26%) 

122 (24%) 

179 (36%) 

74 (15%) 

124 (25%) 

Clinical Presentation 
Chest Pain 

Shortness of Breathing 

Normal Sinus Rhythm 

Atrial Fibrillation 

 

665 (89%) 

250 (34%) 

648 (87%) 

71 (9%) 

 

454 (91%) 

234 (47%) 

442 (88%) 

46 (9%) 

Course of Hospitalization 
Length of Stay (median [IQR]) 

Confirmed ACS (all events) 

NSTE-ACS  

Treated by Primary PCI / CABG 

30-Day CV Death   

 

2.3 [1.0–3.0] 

114 (15.3%) 

83 (11.1%) 

74 (10%) 

33 (4.4%) 

 

1.2 [0.6-2.5] 

92 (18.4%) 

74 (14.8%) 

65 (13%) 

24 (4.8%) 

 431 

  432 



Table 2: Overlap in Features Between Data-driven and Human-Expert Techniques 433 

12-Lead ECG Component 

Number of 
Features Selected Comparison between techniques 

Human 
Expert 

Data-
Driven Overlap in Features Features Overlooked by Clinicians 

ECG normalization (k=2) 2 2 Age and sex - 

P duration, amplitude, or area (k=72) 0 25 - Lead-specific P duration & amplitude  

PR interval metrics (k=26) 1 11 Global PR interval Lead-specific PR interval  

Q duration or amplitude (k=24) 0 10 - Lead-specific Q wave presence 

R duration or amplitude (k=48) 0 23 - Lead-specific R amplitude 

S duration or amplitude (k=48) 0 16 - S amplitude in precordial leads 

Other QRS complex metrics (k=74) 1 31 Global QRS duration QRS notch; ventricular activation time; 
lead-specific QRS duration or area 

Selvester Score (k=19)  1 0 Total scar size - 

ST amplitude, duration, or slope (k=72) 12 31 Lead-specific ST amplitude Lead-specific ST duration and slope 

ST deviation morphology (k=14) 0 7 - Presence of concaved ST deviation 

T duration, amplitude, or area (k=76) 14 33 Lead-specific T amplitude, 
T-to-R relative amplitude 

Lead-specific T duration or area; 
presence of notched T wave 

QT interval and subintervals (k=23) 4 12 Global QTc, T peak−T end Lead-specific QT interval 

QRS axis (k=12) 1 7 Frontal plane QRS axis Horizontal and spatial QRS axis 

T axis (k=11) 4 6 T axis in frontal, horizontal, 
and spatial planes 

- 

QRS and T vector angles (k=5) 2 3 QRS-T angle and TCRT - 

T loop morphology (k=6) 4 4 T asymmetry & dispersion - 

Principal Components Analysis (k=16) 16 6 PCA ration of J, T, and STT - 

Noise signal (k=8) 3 2 Noise & baseline wander - 

 434 



Table 3: Diagnostic Accuracy Measures of Machine-Learning Classifiers against Gold 435 

Standard Reference on the Testing Set (n=499) 436 

 Clinical Experts 

Interpretation 

Commercial 

Software Read 

Novel ECG 

Features (LR73) 

Predicting Any ACS Event    

Sensitivity 0.40 (0.30–0.51) 0.25 (0.17–0.35) 0.72 (0.61–0.81) 

Specificity 0.94 (0.92–0.96) 0.98 (0.96–0.99) 0.73 (0.68–0.77) 

Positive Predictive Value 0.63 (0.51–0.73) 0.79 (0.62–0.90) 0.38 (0.33–0.42) 

Negative Predictive Value 0.88 (0.86–0.89)  0.85 (0.83–0.87) 0.92 (0.89–0.94) 

NRI Index Reference 

– 

– 

Reference 

0.10 (-0.02–0.23) 

0.21 (0.10–0.32) 

Predicting NSTE–ACS Event    

Sensitivity 0.26 (0.16-0.37) 0.12 (0.06–0.22) 0.72 (0.60–0.82) 

Specificity 0.94 (0.92–0.97) 0.98 (0.96–0.99) 0.68 (0.63–0.72) 

Positive Predictive Value 0.46 (0.33–0.60) 0.60 (0.35–0.80) 0.29 (0.25–0.33) 

Negative Predictive Value 0.87 (0.85–0.89) 0.85 (0.84–0.87) 0.93 (0.90–0.95) 

NRI Index Reference 

– 

– 

Reference 

0.19 (0.04–0.33) 

0.29 (0.15–0.42) 

 437 



Figure Legends: 438 

Figure 1: Computation of ECG Features  439 

This figure shows the computation of 554 features from each 12-lead ECG. (a) Duration, 440 

amplitude, and area of various waveform deflections are calculated from the median beat of 441 

each of the 12 leads. (b) The 12 median beats are superimposed, and global intervals and 442 

subintervals are computed. (c) Principal component analysis (PCA) on time-voltage data is 443 

performed on the orthogonal leads I, II, V1–V6 to compute PCA ratios of the eigenvalues of 444 

various ECG waveforms. (d) Axes, angles, loops, and gradients of QRS and T vectors from xy, 445 

xz, yz, and xyz planes are computed. 446 

Figure 2: Classification Performance using LR and ANN classifiers 447 

These plots show the performance of logistic regression (LR) and artificial neural network (ANN) 448 

classifiers on training data (Cohort 1) and testing data (Cohort 2) using all available ECG 449 

features (k=554), data-driven subset of ECG features (k=229), or physiology-driven subset of 450 

ECG features (k=65). P values are based on non-parametric method by Delong. 451 

Figure 3: Classification Performance using different subsets of novel ECG features 452 

These plots show the performance of logistic regression (LR) classifiers on testing data (Cohort 453 

2) for predicting (A) acute coronary syndrome (ACS) and (B) non-ST elevation acute coronary 454 

syndrome (NSTE-ACS) using data-driven subset of ECG features (k=229), physiology-driven 455 

subset of ECG features (k=65), or hybrid subset with novel features (k=73).  456 

Figure 4: Importance Rank of subset of novel ECG features for the task of NSTE-ACS 457 

detection 458 

This plot shows the feature importance ranking obtained using a Random Forest model on a 459 

hybrid dataset including novel ECG features with prehospital ECG data after excluding STEMI 460 

patients.  461 
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Figure 1: Computation of ECG Features 462 

 463 

  464 
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Figure 2. Classification Performance using LR and ANN classifiers 465 

 466 

  467 
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Figure 3. Classification Performance using different subsets of novel ECG features 468 

 469 

470 
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Figure 4. Importance Rank of novel ECG features for the task of NSTE-ACS detection 472 

 473 
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