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Abstract: DPrevious dual-task balance studies of older adults have shownexplore interference be- 16 
tween cognitive tasksbalance and cognitive tasks. and postural control, suggesting increased cogni- 17 
tive requirements of postural control as automaticity declines with age. The purpose of tThis study 18 
was to conductis a descriptive analysis of accelerometry balance metrics and to determine if a verbal 19 
cognitive task influences postural control after the cognitive task is endedends. Fifty-two healthy 20 
older adults (75 ± 6 years old, 30 female, 22 male) performed dual-task standing balance and cogni- 21 
tive dual-tasks. An tri-axial accelerometer placed on the lower back recorded movement from before 22 
(pre-task), during (task), and after (post-task) a verbal cognitive task (reciting every other letter of 23 
the alphabet). Each condition lasted 20 seconds. Thirty-six balance metrics from acceleration record- 24 
ings were calculated for each task condition. The effect of cognitive task on postural control was 25 
determined by a generalized linear model. Fourteen accelerometry variables showed significantly 26 
different values among the three tasks. Twelve out of fourteenof the significant variables, including 27 
anterior-posterior centroid frequency, peak frequency, and entropy rate, medial-later entropy rate 28 
and wavelet entropy, and bandwidth in all directions, (you have 17 words to list some of the 29 
measures here) were significantly differentexhibited significant differences between the pre- 30 
taskbaseline and cognitive task periods but not between baseline and post-task periods. These re- 31 
sults indicate that the verbal cognitive task did alter balance but did not havewithout persistent 32 
effects on balance in healthy older adultsafter the task ended. Traditional balance measurements, 33 
root mean square and normalized path length, notably lacked significance, highlighting the poten- 34 
tial to use other accelerometer metricss for early detection of balance problems. Thesese novel in- 35 
sights in temporal dynamics from accelerometryof dual-task balance support current dual-task par- 36 
adigms and will inform future diagnostics, and interventions, and caregiver practices that aim to 37 
reduce fall risk in older adults. 38 
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 40 

1. Introduction 41 
One third of people aged 65 and older fall each year, accounting for the majority of 42 

injury-related hospitalizations and deaths in older adults [1] and costing $500 billion an- 43 
nually in the US [2]. Falls are associated with decreased independence and lower life ex- 44 
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pectancy [1]. Older adults are more likely to fall when balance deficits are present. Pos- 45 
tural control, the control of bodily position to maintain balance, was previously consid- 46 
ered an entirelya relatively automatic process.; Hhowever, dual-task studies demonstrate 47 
have shown that postural control suffersis altered during various cognitive tasks, indicat- 48 
ing that postural control can requires demonstrable attentional resources [3]. Addition- 49 
ally, automaticity of postural control can decrease with age, leading to greater attentional 50 
demand to compensate. Cognitive tasks requiring more attention may cause competition 51 
for neural resources and lead to postural control disruptions [4]. It is well-known that 52 
cognitive function, particularly attention, also declines with age [5]. These age-related 53 
changes in cognition and postural control contribute to increased fall risk in older adults 54 
[3,6], but this relation is not well understood. It is important to understand how and the 55 
extent to which cognitive tasks may affect postural control to reduce fall risk. Many dual- 56 
task studies have examined postural stability using a secondary task that requires some 57 
information processing. Changes in performance determine how much interference exists 58 
between the attentional requirements of the two tasks. The severity of these balance per- 59 
formance changes are highly variable and have shown conflicting results [3]. and Addi- 60 
tionally, the temporal dynamics of cognitive interference on postural control are currently 61 
unknown. It is important to understandTherefore, further research is necessary to clarify 62 
how and the extent to which cognitive tasks may affect postural control to reduce fall risk. 63 

 Dual-task studies in postural control of older adults have focused on effects during 64 
task performance [7–9] and the impact of various interventions [10,11]. To date, dual-task 65 
effects on postural control after task performance have not been examined. Commonly, 66 
dual-task paradigms will randomize the order of single-task and dual-task conditions 67 
[7,8,10,11]. If there are carry-over effects on postural control, single-task balance data col- 68 
lected after dual-task conditions could be biased and not represent true single-task meas- 69 
urements. this Persistent effects also could have implications for fall risk,.  as an individ- 70 
ual’s balance would be of concern not only while performing another task but also for 71 
some time after. The research presented in this paper is a secondary analysis of data col- 72 
lected for gait experiments. This study specifically investigated the time course of dual- 73 
task interference from pre-task, during task, and immediate post-task on postural control 74 
performance by measuring center of mass accelerations. A comprehensive list of novel 75 
accelerometry features was extracted to describe standing balance with and without a 76 
dual-task. Previous studies have quantified balance using accelerometry, but the main 77 
outcomes are often limited – with root mean square, normalized path length, and sample 78 
entropy as some of the most common measurements [12]. Additional features in time, 79 
frequency, time-frequency, and information theory domains may provide important bal- 80 
ance information that traditional measurements fail to capture. Thus, aA comprehensive 81 
list of novel accelerometry features was extracted  to describe standing balance with and 82 
without a dual-task. Compared to the current gold standard technologymeasurement 83 
techniques, such as like force plates and motion capture systems, assessing balance using 84 
a single accelerometer cwould provide clinicians with a more accessible, affordable, and 85 
portable measurement tool. The goal of this study was twofold: 1) conduct an exploratory, 86 
descriptive analysis of balance performance accelerometry measures to find which 87 
measures are potentially useful for balance assessment using a single accelerometer and 88 
2) test the hypothesis that a performing a verbal cognitive task alters postural control dur- 89 
ing the task and once completed. We expectedhypothesized that postural stability 90 
wouldto A) change during the cognitive task and B) fail to return to baseline levels after 91 
the cognitive task was completed. We tested our hypotheses by comparing accelerometry 92 
features from the pre-task period (baseline) to those from A) the cognitive task period and 93 
B) the post-task period.We tested the hypotheses that postural control performance dif- 94 
fered during the cognitive task period and in the post-task period relative to the pre-task 95 
period. 96 

2. Materials and Methods 97 
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2.1 Subjects 98 

This study includes data from 52 subjects from two different studies. The data used 99 
in the current study were from 52 subjects from two different studies  using the same 100 
experimental protocol. Twenty-eight older adults (M = 13, F = 15, 75 ± 6 years, range: 67– 101 
87 years) were recruited from a study of amyloid deposition in cognitively healthy older 102 
adults [13]. Primary inclusion criteria were at least 65 years old, no current or history of 103 
neurological or psychiatric disease, no history of stroke, magnetic resonance imaging 104 
(MRI) eligible, and able to walk unassisted. Twenty-four older adults (M = 9, F = 15, 74 ± 105 
6 years, range: 68-91 years) were recruited from a longitudinal study of risk for mild cog- 106 
nitive impairment [14]. Primary inclusion criteria were at least 65 years old, no dementia, 107 
MRI and positron emission tomography eligible, and able to walk unassisted. This was a 108 
fixed sample derived from existing data that were developed for gait outcomes. Subjects 109 
between studies were compared on age, gait speed, and sex and the data were found to 110 
be similar so that the two data sets could be combined. The IRB of the University of Pitts- 111 
burgh approved these procedures and all subjects gave informed consent. 112 

2.2 Dual-Task Procedures 113 
This research is a secondary analysis of data that was collected for a gait study. All 114 

subjects performed a mobility protocol described in detail in Hoppes et al. 2020 [15]. This 115 
study focused on standing portions of the protocol which were performed consecutively: 116 
1) quiet standing (pre-task), 2) standing and cognitive task (task), and 3) quiet standing 117 
(post-task). Each task was 20 seconds long. The cognitive task was reciting every other 118 
letter of the alphabet starting with the letter ‘B’. Subjects were instructed to start back at 119 
‘B’ if they complete the alphabet before the 20 seconds is over. This task was selected to 120 
parallel carrying a conversation [15]. Subjects performed one set of the consecutive tasks 121 
twice during each of four walking trials for a total of eight completed sets. For each walk- 122 
ing trial, subjects completed two loops of a track, with the standing sets randomly inter- 123 
spersed among walking on even and uneven surfaces as single- or dual-task conditions 124 
with the same cognitive task. Subjects were instructed to stand quietly; no instruction was 125 
given to foot placement during standing nor to task prioritization. 126 
 Alphabet performance, a measure of cognitive ability, was quantified by dividing 127 
the number of correct letters by the duration of the cognitive task (20 seconds) and was 128 
averaged over the eight trials. To quantify participant’s general physical function, gait 129 
speed was measured by timing subjects on a flat 15-meter straight pathway. Four trials 130 
were measured in meters/second and then averaged per subject. 131 

2.3 Postural Control Metrics 132 
A tri-axial accelerometer (Actigraph wGT3X) placed over the L3 segment of the lum- 133 

bar spine measured linear accelerations of the approximated center of mass (CoM) [16] in 134 
the medial-lateral (ML), vertical (V), and anterior-posterior (AP) axes. We chose to include 135 
vertical signals since these were exploratory analyses and the vertical direction is not typ- 136 
ically represented in literature on balance. Accelerometry has been validated to evaluate 137 
postural control performance [17]. For the pre-task and post-task conditions, the signals 138 
were trimmed to avoid overlap with walking tasks. The last 15 seconds of the PRE condi- 139 
tion signal and the first 15 seconds of the POST condition signal were used. All 20 seconds 140 
of the COG condition signal were used.  141 

Acceleration signals were sampled at 100 Hz for 39 subjects; the remaining 14 sub- 142 
jects were sampled at 30 Hz due to technical issues. For those measured at 30 Hz, the 143 
signals were up-sampled to 100 Hz by first zero-padding the signals and then using a 144 
finite-impulse response anti-aliasing low pass filter method that employs a Kaiser win- 145 
dow. This method preserves the frequency content of the signals [18,19]. Impulse-like ar- 146 
tifacts were then removed using a median-filter [20]. The signals were then processed with 147 
a 4th order, low-pass Butterworth filter with a cutoff frequency of 2Hz [21]. The effect of 148 
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gravity was removed using coordinate transformations to account for accelerometer tilt 149 
[22] and subtracting the mean from each signal [20]. Root-mean-square (RMS) and nor- 150 
malized path length (NPL) were selected as primary postural control features [17,23,24]. 151 
In addition to the two time-domain measures, three frequency, one time-frequency, three 152 
statistical, and three information theory features were extracted based on their use in gait 153 
accelerometry analysis [25]. Altogether, 12 different signal processing features were im- 154 
plemented. These features were extracted from all three directional signals for each task 155 
and averaged over the eight trials for a total of 36 signal features per subject. All signal 156 
processing was done using custom Matlab code. The data processing pipeline is outlined 157 
in Figure 1. Definitions, descriptions, and acronyms of the different features are in Table 158 
A1.  159 
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 160 

Figure 1. Flow diagram of the data processing pipeline to extract accelerometry features. 161 



Sensors 2021, 21, x FOR PEER REVIEW 6 of 17 
 

 

Any signal with more than 2 seconds of signal drop (consecutive 0 values) was 162 
deemed of insufficient signal quality and removed from analysis. Of the 64 total subjects, 163 
12 did not have sufficient signal quality for each of the three dual-task conditions (PRE, 164 
COG, POST) and were removed from analysis. Subjects with poor signal quality were 165 
compared to included subjects to identify any systematic differences between groups. 166 
Age, gait speed, alphabet performance, and sex were all examined in relation to amount 167 
of signal drop using scatter plots and none showed trends of difference between those 168 
included and excluded. 169 

2.4 Statistical Analysis 170 

The effect of cognitive task on postural control was determined by a generalized lin- 171 
ear regression model with the random effect of person to account for repeated measures. 172 
Model fit was tested by assessing residual normality. F-values were reported for global 173 
differences among PRE, COG, and POST conditions. β-estimates from the model showed 174 
differences between pairs of conditions. Significance was determined at 𝛂𝛂 =  𝟎𝟎.𝟎𝟎𝟎𝟎. Accel- 175 
erometry features with significant global differences among conditions were then exam- 176 
ined for associations with age, gait speed, and alphabet performance using Pearson cor- 177 
relations. Specifically, values obtained during the PRE condition, change from PRE to 178 
COG, and change from PRE to POST were assessed. To account for multiple comparisons, 179 
the Dunn-Sidak correction for significance was calculated using an initial value of 𝛂𝛂 = 180 
 𝟎𝟎.𝟎𝟎𝟎𝟎, resulting in a corrected value of 𝛂𝛂 =  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. The general linear regression model 181 
was implemented using SAS software (version 9.4) and the correlations were computed 182 
using Matlab (version 2020a). 183 

3. Results 184 
Table 1 summarizes descriptive characteristics of the 52 included subjects. Average 185 

age for the combined sample was 75 ± 6 years (range of 67-91). Average gait speed was 186 
1.03 ± 0.22 m/s and average alphabet performance was 0.61 ±0.18 correct letters/s. 187 

Table 1. Summary of demographic information and descriptive characteristics for subjects by 188 
study and combined. 189 

Variable Study 11 
(n=28) 

Study 22 Title 3 

Female (n, %) 15, 54% 15, 63% 30, 58% 
White (n,%) 21, 75% 23, 96% 44, 85% 
Age (years) 75 ± 6 74 ± 6 75 ± 6 

Gait Speed (m/s) 0.98 ± 0.13 1.10 ± 0.28 1.03 ± 0.22 
Alphabet Performance 

(# correct letters/s) 0.63 ± 0.22 0.58 ± 0.11 0.61 ± 0.18 

1 Study of amyloid deposition in cognitively healthy older adults; 2 Longitudinal study of risk for 190 
mild cognitive impairment 191 

 192 
The 36 accelerometry variables are summarized in Table 2. For our primary postural 193 

control features, no significant differences among conditions were found for RMS or NPL 194 
in any direction. Additionally, synchronization index (SI) and skewness (SKEW) lacked 195 
significant differences. 196 

The following variables did demonstrate statistically different values among the 197 
three conditions (p < 0.05): centroid frequency (CFR), peak frequency (PFR), entropy rate 198 
(ENTR), wavelet entropy (WE), and kurtosis (KURT) in the AP direction; PFR, ENTR, and 199 
WE in the ML direction; Lampel-Ziv complexity (LZ) in the V direction; bandwidth (BND) 200 
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in all directions; and cross-correlations (CORR) between the ML and AP signals and be- 201 
tween the AP and V signals. PFR in the ML direction showed differences between the PRE 202 
and POST task. WE in the AP direction showed that the three conditions were not equal, 203 
but no significant differences were found between PRE and COG or PRE and POST. The 204 
remaining 12 variables have differences between the PRE and COG task (Table 3). Specific 205 
F-values and p-values can be found in Table S1. Box plots for the significant variables can 206 
be found in Figure S1. Of the 14 significant variables, only AP BND during the PRE con- 207 
dition showed a significant, moderate correlation with average gait speed (r = 0.490, p = 208 
0.0002) after using the Dunn-Sidak correction for multiple comparisons (𝛼𝛼 = 0.0004 ). Re- 209 
sults for all correlations can be found in Table S3.  210 
  211 
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Table 2. Averaged raw values across task type for each feature in each direction. Rows in gray 212 
indicate features with significant differences among conditions. 213 

 214 
 215 

* Differences are significant between PRE and COG conditions; † Differences are significant be- 216 
tween PRE and POST conditions; ‡ PRE, COG, and POST are not all equal 217 

  218 

  PRE COG POST 
Feature Direction Mean ± STD Mean ± STD Mean ± STD 

RMS 
(G) 

ML 0.011 ± 0.007 0.011 ± 0.005 0.009 ± 0.006 
V 0.003 ± 0.003 0.004 ± 0.003 0.003 ± 0.003 

AP 0.029 ± 0.021 0.028 ± 0.011 0.027 ± 0.015 

NPL 
(G/s) 

ML 0.023 ± 0.018 0.023 ± 0.011 0.019 ± 0.015 
V 0.011 ± 0.075 0.018 ± 0.021 0.013 ± 0.023 

AP 0.031 ± 0.017 0.038 ± 0.018 0.031 ± 0.019 

CFR 
(Hz) 

ML 0.47 ± 0.15 0.45 ± 0.17 0.52 ± 0.25 
V 1.10 ± 0.31 1.06 ± 0.28 1.13 ± 0.34 

AP* 0.29 ± 0.08 0.25 ± 0.07 0.29 ± 0.09 

PFR 
(Hz) 

ML† 0.19 ± 0.11 0.17 ± 0.13 0.26 ± 0.26 
V 0.64 ± 0.41 0.81 ± 0.50 0.62 ± 0.47 

AP* 0.14 ± 0.06 0.08 ± 0.05 0.14 ± 0.09 

BND 
(Hz) 

ML* 0.92 ± 0.32 0.74 ± 0.26 0.95 ± 0.43 
V* 1.63 ± 0.73 1.00 ± 0.44 1.70 ± 0.66 

AP* 0.82 ± 0.27 0.69 ± 0.27 0.87 ± 0.34 

ENTR 
ML* 0.88 ± 0.015 0.90 ± 0.020 0.88 ± 0.009 

V 0.86 ± 0.030 0.86 ± 0.031 0.86 ± 0.030 
AP* 0.89 ± 0.009 0.91 ± 0.008 0.89 ± 0.010 

WE 
ML* 0.40 ± 0.23 0.57 ± 0.38 0.44 ± 0.26 

V 0.67 ± 0.32 0.77 ± 0.33 0.66 ± 0.38 
AP‡ 0.30 ± 0.18 0.37 ± 0.26 0.26 ± 0.17 

SI 
ML-V 0.86 ± 0.06 0.88 ± 0.06 0.86 ± 0.07 

ML-AP 0.87 ± 0.05 0.85 ± 0.05 0.87 ± 0.05 
AP-V 0.87 ± 0.06 0.88 ± 0.06 0.87 ± 0.07 

CORR 
ML-V 0.35 ± 0.08 0.32 ± 0.13 0.36 ± 0.09 

ML-AP* 0.42 ± 0.07 0.39 ± 0.09 0.45 ± 0.11 
AP-V* 0.37 ± 0.15 0.31 ± 0.11 0.37 ± 0.15 

SKEW 
ML 0.11 ± 0.69 -0.04 ± 1.07 -0.02 ± 0.97 
V -0.63 ± 0.85 -0.63 ± 1.20 -0.60 ± 0.91 

AP -0.06 ± 0.51 -0.04 ± 0.73 0.01 ± 0.50 

KURT 
ML 5.37 ± 2.74 7.36 ± 5.96 6.40 ± 6.20 
V 10.13 ± 6.30 9.57 ± 9.21 10.10 ± 6.60 

AP* 3.33 ± 0.90 3.89 ± 1.31 3.28 ± 1.16 

LZ 
ML 0.32 ± 0.04 0.31 ± 0.05 0.32 ± 0.04 
V* 0.32 ± 0.06 0.35 ± 0.05 0.31 ± 0.06 
AP 0.31 ± 0.04 0.30 ± 0.04 0.30 ± 0.05 
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Table 3. Summary of significant features from the generalized linear regression model. ⎯ Indicates 219 
no significant differences. △ Indicates that the three conditions were not all equal. ✓ Indicates that 220 
the PRE condition was different from the COG condition. ✕ Indicates that the PRE condition was 221 
different from the POST condition. 222 

Feature ML V AP 

RMS ⎯ ⎯ ⎯ 

NPL ⎯ ⎯ ⎯ 

CFR ⎯ ⎯ ✓ 

PFR ✕ ⎯ ✓ 

BND ✓ ✓ ✓ 

ENTR ✓ ⎯ ✓ 

WE ✓ ⎯ △ 

SI (ML-V) ⎯ (AP-V) ⎯ (ML-AP) ⎯ 

CORR (ML-V) ⎯ (AP-V) ✓ (ML-AP) ✓ 

SKEW ⎯ ⎯ ⎯ 

KURT ⎯ ⎯ ✓ 

LZ ⎯ ✓ ⎯ 

4. Discussion 223 
We found 14 of 36 accelerometry features differed during a standing dual-task pro- 224 

tocol. Differences were observed from pre-task to during task and returned to pre-task 225 
levels during the post-task phase for all variables except for PFR in the ML direction and 226 
WE in the AP direction. 227 

RMS and NPL are some of the most common signal features extracted from force 228 
plate measurements and previous research has that accelerometry measures correlate well 229 
with those from force plates [17]. RMS is a measure of variability of signal amplitudes, 230 
relating to the dispersion of the amount of sway. NPL is a measure of how fast the person 231 
is moving, giving an indication of how fast and how often the person is correcting their 232 
balance. No significant differences were found among conditions for RMS or NPL in any 233 
direction. The lack of significant differences among conditions for could be a reflection of 234 
the time variance of postural sway [26]. Even though the traditional features are not in- 235 
formative for the balance protocols used in this study, we were able to detect differences 236 
in several other features.  237 

CFR and PFR in the AP direction and PFR in the ML direction showed significant 238 
differences among the conditions. CFR is the frequency at which the power in the spec- 239 
trum above that frequency is equal to the power in the spectrum below that frequency. 240 
PFR is the frequency at which the highest amount of power is attributed. Average CFR 241 
and PFR in the AP direction decreased during COG condition but generally returned to 242 
baseline during POST condition. This may reflect that subjects while under cognitive load 243 
are exhibiting slower oscillations. The shift to lower frequencies may also indicate a less 244 
stiff sway [27], as attention is shifted to the cognitive task during the COG condition. Con- 245 
versely, increases in ML PFR in the POST condition compared to the PRE condition may 246 
indicate and increased postural stiffening. BND for each direction was lower during the 247 
COG task than the PRE task and returned to baseline by POST task. Smaller BND values 248 
indicate a narrower frequency response to maintain balance during the COG task. These 249 
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BND results could be interpreted as subjects being less adaptable during the COG task as 250 
they are limiting their potential balance responses. 251 

ENTR measures the regularity of the signals by examining relatedness of consecutive 252 
points, with higher values associated with higher regularity and lower values associated 253 
with randomness [25]. ENTR in the ML and AP directions showed increases – higher reg- 254 
ularity – during COG condition and returned to baseline during POST condition. Higher 255 
regularity is associated with less automatic control and more ineffective postural strate- 256 
gies [28] as attentional resources are diverted to the cognitive task [29]. Younger adults 257 
usually show decreased regularity during cognitive tasks, as the task pulls attention from 258 
balance and increases automaticity and efficiency [30]. Thus, our could results indicate 259 
that the attentional resources diverted away from postural control may be necessary to 260 
compensate for the postural control automaticity that is lost with age. WE in the ML and 261 
AP directions also showed significant differences among conditions. WE measures how 262 
disordered a signal is by measuring the contribution of different frequency bands on the 263 
wavelet representation of the signal. Higher WE values indicate more disordered, random 264 
signals [25]. Results from the linear model showed that WE AP in the three conditions 265 
were not equal, but no significant differences were found between PRE and COG condi- 266 
tions nor between PRE and POST conditions. Due to the limitations of the model, we did 267 
not test for differences between COG and POST conditions. In contrast, WE ML had sig- 268 
nificant increases during the COG condition, indicating higher disorder and randomness, 269 
before returning to baseline. It is important to note that ENTR and WE analyze random- 270 
ness on different scales. ENTR measures randomness between consecutive points which 271 
is a more local metric; while WE is a more global metric and measures randomness across 272 
time-frequency bands. 273 

CORR measures the similarity between two signals. CORR ML-AP and CORR AP-V 274 
showed decreased values during the COG condition and similar values for POST and PRE 275 
conditions. Decreased CORR means the signals were less coupled during the COG condi- 276 
tion but they returned to baseline during the POST condition. KURT is a statistical metric 277 
that quantifies how spread out signal amplitudes are from the mean. KURT in the AP 278 
direction was significantly higher during the COG condition compared to the PRE condi- 279 
tion. Higher values mean more peaked distributions (fewer outliers) and indicate less var- 280 
iable sway. LZ measures the predictability of the signal and higher values indicate more 281 
predictable, less complicated signals [25]. LZ in the V direction was significantly higher 282 
during COG condition, with a return to baseline during the POST condition, pointing to 283 
less complex postural control while under cognitive load.  284 

The lack significant findings in our primary outcomes (RMS and NPL) and the slight 285 
disagreement between the significant features in terms of returning to baseline levels of 286 
balance performance could indicate that the cognitive dual-task conditions wereas not 287 
difficult enough to elicit strong differences in this relatively healthy sample [3]. Addition- 288 
ally, the changes in postural control performance may be too minute to strongly alter bal- 289 
ance performance. On the other hand, the RMS and NPL results may show a floor effect 290 
meaning that the other accelerometry metrics may be more sensitive to changes in balance. 291 

We are unable to determine whether the changes we observe represent maladaptive 292 
effects on balance control (i.e. cognitive interference) or other adaptive strategies. For ex- 293 
ample, higher complexity and randomness in the signal may reflect better online adjust- 294 
ments, allowing the individual to adapt to perturbations more easily. LZ V points to lower 295 
complexity, ENTR ML and AP point to higher local regularity, and WE ML points to 296 
higher global randomness. Different explanations for changes in postural control perfor- 297 
mance in older adults, cognitive task difficulty, stiffening method and signal-to-noise ra- 298 
tio, may support our varied results.  299 

Several neuromotor mechanisms potentially underly the observed results. Cognitive 300 
mechanisms suggest that a concurrent information processing task requires cognitive re- 301 
sources normally used to control posture, particularly executive functions [31–33]. A[ref]  302 

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Commented [RM1]: Redfern, et al. 2019; 
Mendelson, et al., 2010; Redfern et al. 2001) 



Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

Another potential cognitive mechanism is generalized slowing with aging that can ac- 303 
count for changes is more complicated processes [31,34].(Salthouse 2000; Redfern, et al, 304 
2019)  A previous study showed that subjects undergo postural stiffening, characterized 305 
by lower sway distance and variability and higher frequency components, which indicates 306 
more frequent adjustments [31]. This study was done in young adults and may not apply 307 
to older adults. Dual-task postural responses can show increases in sway and reduced 308 
sway, depending upon the cognitive and postural task. A number of studies have shown 309 
increased sway amplitude with a concurrent cognitive task [ref]. However, Oolder adults 310 
do can show improvements in postural controlreduced postural sway under dual-task, 311 
but the cognitive and postural control tasks have to be sufficiently difficult [35]. A poten- 312 
tial biomechanical mechanism is postural stiffening, characterized by reduced sway dis- 313 
tance and higher frequency components, which indicates more frequent adjustments [36]. 314 
Under these conditions, the cognitive task performance does not suffer because and pos- 315 
tural control processing is believed to become moves from controlled, more neural re- 316 
sources, to automatic, fewer neural resources, and thus less interference of shared associ- 317 
ated brain regions occurs [37]. Alternatively, deficits in postural control in older adults 318 
may be due to deincreased signal-to-noise ratio from declines in sensory systems and 319 
muscular strength. This deincreased signal-to-noise ratio would then require recruitment 320 
of more neural resources to make up for reduced sensitivity of the sensory inputs and 321 
reduced functionality of the motor outputs [37].  322 

The trend of some variables indicating balance improvement and others indicating 323 
deficits may be supported by several of these theories. Some subjects may be stiffening 324 
and improving their postural control performance [38]; others may not have good 325 
enoughhave deficits in sensory integration [31] and that result in poorer performance 326 
when attention is deviated. The cognitive task may have been more difficult for some sub- 327 
jects than others. Some subjects may be more likely to use hip strategy than ankle strategy 328 
and vice versa [39,40]. 329 

For this study, the cognitive task did not show carry-over effects. Changes that oc- 330 
curred in postural sway during the concurrent cognitive task returned to their pre-task 331 
levels once the cognitive task was completed. Previous studies have not examined the 332 
time course of cognitive effects on postural control. The ramifications for these results are 333 
twofold. Firstly, our results indicate that changes in postural stability are due specifically 334 
to the cognitive task (i.e. once removed, the changes in sway return to baseline).current 335 
dual-task paradigms capture the extent of changes on postural control This is important 336 
not only for exploratory dual-task studies but also for interventions that rely on single- 337 
and dual-task performance measurements to evaluate the effectiveness of the interven- 338 
tion. Secondly, Importantly, this verbal cognitive task was intended to mimic attentional 339 
demands of everyday activities such as carrying on a conversation, so these results have 340 
important implications for fall risk. While performing a cognitive task may alter balance 341 
in a way that could lead to higher incidence of falls, our results indicate that subjects do 342 
not have continued diminished capabilities after the task. Confirming that effects from 343 
cognitive tasks on postural stability do not persist may provide some relief for individuals 344 
with fear of falling, a factor that contributes to increased fall risk. Additionally, this infor- 345 
mation could guide caregivers to limit multitasking in patients with high fall risk.If most 346 
daily activities do not interfere with postural control, then potential interventions would 347 
not require healthy older adults to alter those behaviors. This study did not account for 348 
potential effects of vocalization on postural sway. Vocalization affects mean sway fre- 349 
quency but not mean sway velocity or sway area [31]. Thus, our frequency measures could 350 
have been altered by vocalization. In future studies, more challenging postural tasks, like 351 
single-leg standing or translational perturbations, and more attentionally demanding, 352 
non-verbal cognitive tasks could be used to further explore potential for carry-over effects 353 
on posture.  354 

The comprehensive list of accelerometry features in this study includes many that 355 
are not common in literature for balance assessment (e.g., bandwidth, wavelet entropy). 356 
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Our results show that these accelerometer metrics seems to be picking up on identify more 357 
subtle changes that are not showing up on traditional force plate measures. In the interest 358 
of early detection, accelerometry may be a more sensitive way to look for very early bal- 359 
ance problems. Early detection of balance problems could serve as a biomarker for neuro- 360 
degeneration because balance deficits seem to predate neurodegeneration [6]. Accord- 361 
ingly, detecting balance changes early enough is imperative to develop effective interven- 362 
tions for preventative care or treatment. Integrating accelerometers into balance assess- 363 
ments would provide clinicians with objective and sensitive measurements. Accelerome- 364 
ters also provide an opportunity to expand accessibility of balance assessments due to 365 
their portability and commercial availability. Not only would more clinics be capable of 366 
obtaining this technology, but balance assessments could be administered in community 367 
settings for those who are unable to travel to receive healthcare services. 368 

Some limitations were due to experimental setup being optimized for gait and not 369 
for standing postural control. The length of each trial was only 20 seconds. Healthy older 370 
adults have more varied postural control during the first 30 seconds of quiet standing 371 
before leveling out [41]. Additionally, there were problems with signal drop at low levels 372 
of activity due to an “idle sleep mode” that caused the accelerometers to enter low battery 373 
mode. Signals that contained more than 2 seconds of dropped signal were removed from 374 
analysis. This data removal could have skewed the data towards more variant balance 375 
performance. Frequency domain variables provided limited information due to low fre- 376 
quency resolution and length of tasks. With signal lengths of 1200 to 1700 points, identi- 377 
fying specific frequencies is more challenging. This study did not account for potential 378 
effects of vocalization on postural sway. Vocalization affects mean sway frequency but 379 
not mean sway velocity or sway area [42]. Thus, our frequency measures could have been 380 
altered by vocalization. In future studies, more challenging postural tasks, like single-leg 381 
standing or translational perturbations, and more attentionally demanding, non-verbal 382 
cognitive tasks could be used to further explore potential for carry-over effects on posture. 383 

Our study had several strengths. This is the first study to examine balance before, 384 
during, and after a cognitive task to evaluate the temporal dynamics of changes in pos- 385 
tural control. Additionally, while most balance studies look at only a few outcomes, we 386 
extracted signal features from a variety of domains to provide a more comprehensive un- 387 
derstanding of balance control. Our results show that the accelerometer seems to be pick- 388 
ing up on more subtle changes that are not showing up on traditional force plate 389 
measures. In the interest of early detection, accelerometry may be a more sensitive way to 390 
look for very early balance problems. These novel insights in temporal dynamics and 391 
broader quantification of postural control will inform future dual-task experiments, diag- 392 
nostic tests, and interventions that aim to improve balance. 393 

5. Conclusions 394 

Sustained alterations to postural control after completing recitation of alternating let- 395 
ters of the alphabet did not occur in healthy, older adults. These findings have important 396 
implications for dual-task paradigm design and for fall risk in older adults. With no threat 397 
to balance after the cognitive task, the focus of dual-task interference lies solely on the 398 
cognitive task condition. The lack of persistent effects on postural control after the sec- 399 
ondary task indicates that an individual’s balance would only be of concern while per- 400 
forming another task.  401 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: 402 
Summary of the results from the generalized linear regression model: F-value(p-value). Features in 403 
gray showed significant differences among the three conditions., Figure S1: Box plots showing 404 
change from baseline for all significant variables. For each subject, average PRE values are sub- 405 
tracted from their averaged COG and POST values. Baseline, or initial values measured during the 406 
PRE condition, is indicated by the dashed line at 0. All variables except PFR ML and WE AP deviate 407 
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during the COG condition and then return to baseline during the POST condition according to the 408 
results of the generalized linear regression model. 409 
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Appendix A 428 

Table A1. Acronym definitions and descriptions 429 

Acronym Definition Measurement Connection to Balance 

COG Cognitive task - - 

PRE 
Quiet standing before 

cognitive task 
- - 

POST 
Quiet standing after 

cognitive task 
- - 

ML Medial-lateral signal Linear acceleration left/right - 

V Vertical signal Linear acceleration up/down - 

AP 
Anterior-posterior 

signal 

Linear acceleration 

forward/backward 
- 

Accelerometry features   

RMS Root mean square Measure of spread (G) Higher values indicate more sway 

NPL Normalized path length Measure of speed (G/s) 

Higher values indicate more distance 

traveled, thus more frequent adjustments 

and poorer postural control 
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CFR Centroid frequency 
Frequency that halves the 

power spectrum (Hz) 
Lower values indicate poor postural control 

PFR Peak frequency 
Frequency with the most power 

(Hz) 

High values indicate more frequent 

postural adjustments and thus poorer 

postural control 

BND Bandwidth 
Range of frequencies in the 

signal (Hz) 

The larger the range, the more frequencies 

used to maintain balance 

ENTR Entropy rate 
Measure of the regularity of the 

signal, index from 0 to 1 

Values closer to 1 indicate high signal 

regularity, values closer to 0 indicate high 

signal randomness 

WE Wavelet entropy 
Measure of signal disorder, 

randomness 

Values closer to 0 indicate ordered signals, 

high values indicate disordered signals 

with equivalent contributions from most 

frequencies 

SI 

Cross entropy 

rate/Index of 

synchronization 

Measure of signal predictability 

using past and present points 

from another signal, index from 

0 to 1 

Values closer to 1 indicate signals are highly 

synchronized 

CORR Cross correlation 
Measure of similarity between 

two signals, index from 0 to 1 

Values closer to 1 indicate higher agreement 

between signals 

SKEW Skewness of signal 
Measure of asymmetry of 

amplitudes about the mean 

Higher absolute values (positive or 

negative) indicate more asymmetry in 

postural control 

KURT Kurtosis of signal 
Measure of how spread out the 

amplitudes are from the mean 

Higher values indicate more peaked 

distributions and thus less variable sway 

and fewer extreme outliers 

LZ Lampel-Ziv complexity 
Measure of the complexity of 

the signal 

Higher values indicate more predictable, 

less complicated, signals and thus smoother 

postural control 
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