Noname manuscript No. (will be inserted by the editor)

- ¹ The prediction of risk of penetration-aspiration via
- ² hyoid bone displacement features

3

4 Received: date / Accepted: date

Abstract Videofluoroscopic swallow studies are widely used in clinical and re-5 search settings to assess swallow function and to determine physiological impair-6 ments, diet recommendations, and treatment goals for people with dysphagia. 7 Videofluoroscopy can be used to analyze biomechanical events of swallowing, in-8 cluding hyoid bone displacement, to differentiate between normal and disordered 9 swallow function. Previous research has found significant associations between hy-10 oid bone displacement and penetration/aspiration during swallowing, but the pre-11 dictive value of hyoid bone displacement during swallowing has not been explored. 12 The primary objective of this study was to build a model based on aspects of hyoid 13 bone displacement during swallowing to predict the extent of airway penetration or 14 aspiration during swallowing. Aspects of hyoid bone displacement from 1433 swal-15 lows from patients referred for videofluoroscopy were analyzed to determine which 16 aspects predicted risk of penetration and aspiration according to the Penetration-17 Aspiration Scale. A generalized estimating equation incorporating components of 18 hyoid bone displacement and variables shown to impact penetration and aspiration 19 (such as age, bolus volume, and viscosity), was used to evaluate penetration and 20 aspiration risk. Results indicated that anterior-horizontal hyoid bone displacement 21 was the only aspect of hyoid bone displacement predictive of penetration and as-22 piration risk. Further research should focus on improving the model performance 23 by identifying additional physiological swallowing events that predict penetration 24

and aspiration risk. The model built for this study, and future modified models,
will be beneficial for clinicians to use in the assessment and treatment of people
with dysphagia, and potentially to track improvement in hyolaryngeal excursion
resulting from dysphagia treatment, thus mitigating adverse outcomes that can
occur secondary to dysphagia.

⁶ Keywords: hyoid bone, penetration/aspiration, deglutition, generalized estima-

7 tion equation, deglutition disorders

8 1 Introduction

Dysphagia affects approximately one in twenty-five adults in the United States 9 annually [1–5]. It can occur in patients secondary to a variety of etiologies such as 10 stroke, Parkinsons disease [6], head and neck cancer, and brain injuries [7], as well 11 as many other neurological, iatrogenic, and developmental conditions. Aspiration 12 may occur because of dysphagia, which can lead to adverse outcomes including 13 aspiration pneumonia, malnutrition, and dehydration [8-11]. Additionally, dys-14 phagia and secondary medical complications often result in reduced quality of 15 life for patients. Because of this, it is necessary to rapidly identify dysphagia and 16 determine aspiration risk of patients through timely diagnosis and management. 17

Videofluoroscopy (VF) is one instrumental evaluation tool used to assess phys-18 iological impairments of swallowing and reduced airway protection[12,13]. Clin-19 icians rely on subjective interpretation of the biomechanical events of swallow-20 ing observed during VF to determine patient risk of penetration and aspiration. 21 Standardized tools exist for categorizing swallow events during VF, such as the 22 Modified Barium Swallow Impairment Profile (MBSImP) and the Penetration-23 Aspiration Scale (PAS). The MBSImP is a widely used clinical tool that allows 24 clinicians to evaluate 17 physiological components of swallowing using a subjective 25 ordinal scale. The PAS is an 8-point interval rating scale used to determine the 26 severity of penetration and aspiration. The PAS is used to determine how far ma-27 terial enters the airway and whether or not patients are able to clear penetrated 28 or aspirated material from the airway. While these tools are useful in identifying 29 gross impairments in swallowing function, they involve subjectivity to quantify 30 the degree of swallowing impairment. Swallow kinematic analysis is an objective 31

¹ way to quantify biomechanical events of swallowing, however it requires standard-

² ized training and experience to perform with high levels of intra- and inter-rater

³ reliability and is not used in most settings.

VF exposes patients to radiation, which forces clinicians to conduct swallowing evaluations in a short period of time. Because of these time constraints, swallowing evaluations may not fully capture a patients risk of penetration and aspiration. For this reason, clinicians would benefit from having a tool that objectively and automatically measures physiological events that occur during swallowing, such as hyoid bone displacement, to more accurately quantify patient risk of penetration or aspiration.

While differences in hyoid bone displacement are known to exist among healthy, especially aging, individuals [14–16], is it known to be associated with an increased risk of penetration and aspiration [17] and can be measured in both horizontal and vertical planes, as described in previous research [18]. However, the exact relationship between hyoid bone displacement and penetration and aspiration risk remains unknown due to conflicting research [19–23].

We previously investigated six aspects of hyoid bone displacement using coor-17 dinates based on anatomical landmarks of the vertebral column. Results revealed 18 that reduced anterior-horizontal displacement was the only aspect of hyoid bone 19 displacement associated with higher scores on the PAS [24]. The primary aim of 20 the current study was to determine which aspects of hyoid bone displacement 21 predict the risk of penetration and aspiration. We also investigated the effect of 22 patient demography and clinical variables in the model. We hypothesized that a 23 predictive model would reasonably predict penetration and aspiration risk using 24 aspects of hyoid bone displacement and important clinical variables that are as-25 sociated with penetration and aspiration risk. To test this hypothesis, we built a 26 generalized estimating equation (GEE) model by extracting aspects of hyoid bone 27

²⁸ displacement data from VF images.

29 2 Methods

¹ 2.1 Data Acquisition

² Two hundred and sixty-five patients with suspected dysphagia were enrolled in
³ this prospective study and underwent VF at the University of Pittsburgh Medical
⁴ Center Presbyterian Hospital. The protocol for the study was approved by the
⁵ Institutional Review Board at the University of Pittsburgh and all participants
⁶ provided informed consent. Patients with tracheostomies or anatomical abnormal⁷ ities of the head and neck were excluded from the study.
⁸ The data for this study was collected in the course of standard clinical care

rather than solely for research purposes. We intentionally did not interfere with 9 clinical decision-making in the conduct of the VF examinations. Clinicians who 10 conducted VF modified the protocol for the administration of boluses (e.g. num-11 ber of swallows, bolus consistencies, head positions, etc.) based on clinical hy-12 potheses and the patients clinical presentation of dysphagia. The following consis-13 tencies were used: E-Z-EM Canada, Inc. Varibar thin (Bracco Diagnostics, Inc.) 14 (<5cPs viscosity), Varibar nectar (300 cPs viscosity), Varibar pudding (5000 cPs 15 viscosity), and Keebler Sandies Mini Simply Shortbread Cookies (Kellogg Sales 16 Company). Clinicians administered boluses by spoon (3-5mL) or had participants 17 self-administer a comfortable volume by cup. Head positions included neutral and 18 chin down. Participant characteristics and methods for VF data collection can be 19 found in Table 1. 20

VF was conducted in the lateral plane using a 30PPS pulse rate and recorded at 60FPS by a video card (AccuStream Express HD, Foresight Imaging, Chelmsford, MA) and recorded to a hard drive with a LabVIEW program. Videos were converted into digital movie clips of 720 x 1080 resolution and then down-sampled to 30 frames per second to eliminate duplicate frames.

26 2.2 Image Analysis

- 27 Over 3000 video clips were obtained from VF swallow evaluations. The final data
- set used for analysis included 1434 video clips because over half of the original clips
- ²⁹ were unacceptable for tracking hyoid bone displacement due to poor image quality

Fig. 1 The landmarks for hyoid bone, C2, C3, C4 and established coordinate.

or obstruction of hyoid bone landmarks by the shoulder or other medical equipment
such as cardiac monitor lines, pacemaker leads, etc. Videos were segmented into
individual swallow events based on the frame in which the head of the bolus reached
the ramus of the mandible (onset), and the frame in which the bolus tail passed
the upper esophageal sphincter (UES) (offset) [25]. Swallows were categorized into
single (one swallow per bolus), multiple 1 (two swallows per bolus), and multiple
2 (more than two swallows per bolus).

As shown in Fig. 1, an expert judge, trained in swallow kinematic rating, 7 initially identified the following points of interest in each video frame: (1) anterior-8 inferior corner of C2 vertebral body; (2) anterior-inferior corner of the C4 vertebral 9 body; (3) anterior-inferior corner of the body of the hyoid bone; (4) posterior-10 superior corner of the body of the hyoid bone; (5) anterior-inferior corner of C3 11 vertebral body; (6) anterior-superior corner of C3 vertebral body. The anterior-12 inferior corner of the C4 vertebral body (2) was defined as the origin. The straight 13 line connecting (2) and (1) was defined as the y-axis. The x-axis was defined as the 14 horizontal line perpendicular to the y-axis and intersecting with (2). To normalize 15 patients with different heights to a common anatomical referent, the anatomical 16 scaling factor for displacement measures was defined as the length between (5) and 17 (6) (i.e. the height of the C3 vertebral body). Image pixels were used to measure 18 distance. 19

Three raters trained in swallow kinematic analysis identified anatomical points 20 of interest in each of the 1434 swallows, and tracked hyoid displacement using 21 frame-by-frame analysis in MATLAB (R2015b, The MathWorks, Inc., Natick, MA, 22 USA). Reliability was established on 10% of the videos with ICCs of over .99 and 23 intra-rater reliability was maintained throughout testing to avoid judgment drift. 24 Two clinicians trained in PAS analysis established a priori inter- and intra-rater 25 reliability with ICCs of 0.99. All raters were blinded to participant age, sex and 26 diagnosis. 27

28 2.3 Statistical Analysis

SAS R version 9.3 (SAS Institute, Inc., Cary, North Carolina) was used for all 1 statistical analyses with the GENMOD procedure for obtaining the main results. 2 A dichotomous (normal; disordered) operational definition of PAS scores (1-2, and 3 3-8 respectively) was used for analyses, because there was a skewed distribution of 4 PAS scores. Logistic regression models that are typically used with dichotomous 5 data could not be used, because the independence criterion was not met due to 6 having multiple swallows in the data set from each patient. Therefore, a GEE 7 model [26] with a binomial distribution, a logit link function, and an exchange-8 able working correlation structure (which is an extension of a logistic regression 9 model suitable for analyzing auto-correlated data) was used. Age, gender, swal-10 low type (single/multiple 1/multiple 2), viscosity (thin/nectar/pudding/cookie), 11 utensil (cup/spoon), head position (neutral/chin down), and swallow duration were 12 used as forced-in independent variables based on face validity and prior knowledge 13 of their dependence on PAS scores. In addition to these independent variables, 14 we examined various aspects of hyoid bone displacement using a forward selection 15 strategy with an entry criterion of p < 0.05. The measurement of these landmarks 16 (superior hyoid hone and anterior hyoid bone) includes maximal displacement, 17 maximal peak position, velocity, acceleration and duration in horizontal and ver-18 tical direction. To assess the predicted and observed disordered PAS scores, we 19 created a contingency table based on the predicted probability deciles. The deciles 20 were formed by sorting and separating the predicted probabilities into ten sub-21 groups based on each patients risk profile, from lowest to highest risk (1-10). We 22 examined the observed percentage of disordered PAS swallows (3-8) within each 23 decile compared to the predicted percentage according to the model. See Appendix 24 A for the predictive model. 25

26 3 Results

²⁷ Table 1 illustrates the descriptive statistics and participant characteristics. The

 $_{28}\,$ swallow analysis data was presented in this study for 1433 swallows from 265 $\,$

29 distinct patients. Ninety-one swallows were excluded from the analysis due to

Features		Frequency(%)	Features		Frequency(%)
	1	687(47.94%)		thin liquid by teaspoon	264(18.4%)
	2	442(30.84%)		thin liquid by cup	614(42.8%)
	3	138(9.63%)		not recorded utensil with nectar	1(0.007%)
	4	48(3.35%)	Viscosity&Volume	nectar by teaspoon	195(13.6%)
PA	5	29(2.02%)		nectar by cup sip	209(14.6%)
	6	33(2.30%)		pudding by spoon	94(6.6%)
	7	23(1.61%)		cookie	42(2.9%)
	8	33(2.30%)	Condon	male	155(58.49%)
Туре	single	498(34.73%)	Gender	female	110(41.51%)
	multiple(1)	360(25.10%)		neutral	1136(79.22%)
	multiple(2)	534(37.24%)	Head Position	chin down	252(17.57%)
	not record	42(2.93%)		not record	46(3.21%)

Table 1 Statistics and characteristics of patients involved in the investigation

Table 2 Final model with forward selection with 0.05 entry criterion

Parameter	Estimate	P value	Odds ratio	Odds 95% CI
type: multiple(1)	0.4545	0.0040*	1.58	1.16 - 2.15
max. dis. of anterior in horizontal direction	-0.0583	0.0064*	0.94	0.90-0.98
viscosity: thin	1.2862	0.0096*	3.62	1.37 - 9.58
age	0.0265	0.0178^{*}	1.03	1.00 - 1.05
type: single	-0.4435	0.0708	0.64	0.40-1.04
viscosity: nectar	0.7049	0.1664	2.02	0.75 - 5.49
utensil: spoon	0.1622	0.3538	1.18	0.83-1.66
viscosity: pudding	-0.5334	0.3789	0.59	0.18 - 1.92
sex: male	0.1398	0.6998	1.15	0.57 - 2.34
head position: neutral	0.0994	0.7104	1.18	0.65 - 1.87
swallow duration	-0.0004	0.9549	1.00	0.99 - 1.01
type: multiple(2)	0.0000		1.00	1.00
sex: female	0.0000		1.00	1.00
viscosity: cookie	0.0000		1.00	1.00
utensil: cup	0.0000		1.00	1.00
head position: chin down	0.0000		1.00	1.00

- 30 missing information or incorrect recording. The age range of the subjects was
- from 19 to 94 and the average \pm standard variation age was 64.8 \pm 13.6 years.
- ² 1129 swallows had PA scores of 1 or 2 and 304 swallows had PA scores greater or
- $_3$ equal to 3.

Table 2 illustrates the statistical results of focused-in clinical variables and aspects of hyoid bone displacement that met the 0.05 entry criterion for the model.
Clinical variables shown in Table 2 were forced-in to the model with forward

- $_{7}$ $\,$ selection. Maximum anterior-horizontal hyoid bone displacement was the only as-
- ⁸ pect of hyoid bone displacement that was significantly predictive of normal versus

Fig. 2 The predicted probability and the actual observed probability. The dot represents the actual observed probability in each subgroup and predicted probability are presented as intervals.

disordered PAS scores and included in the model. Patient age was significantly predictive of normal versus disordered PAS scores, although the confidence interval included OR = 1.00. For each additional year of age, the odds of a disordered 2 PAS score increased by 3% (OR=1.03, 95% C.I. = 1.00 1.05; p=0.0178). There was 3 trend toward a single swallow being less likely (36%) to have a disordered PAS а л score compared to multiple swallows, (OR=.64, 95% C.I. =.40-1.04; p=0.0708). 5 Two swallows per bolus (multiple 1) was significantly more likely to have a disor-6 dered PAS score (OR=1.58, 95% C.I = $1.16 \ 2.15; p=0.0040$) than more than two 7 swallows per bolus (multiple 2). There was strong evidence that swallows of thin 8 liquid had a significantly greater odds of a disordered PAS score than a cookie 9 swallow (OR=3.62, 95% C.I. = 1.37 9.58; p=0.0096). The model predicted the 10 risk of penetration and aspiration for each patient based on the variables included 11 in the model. Table 3 shows the predicted probability of having a disordered PAS 12 score in each decile compared to the observed percentage of disordered PAS scores 13 in each decile. For instance, as shown in the table, the predicted probability for 14 decile 1 indicates that 0-7% of the swallows will be disordered. The predictive 15 model effectively captured patient risk profiles for this decile because 6.72% of the 16 swallows had a disordered PAS score. Similar observations can be made for deciles 17 2, 4, 8, and 9. Deciles 3, 5, 6, 7, and 10 captured the increasing probability trend 18 of penetration and aspiration, although the observed percentage of swallows with 19 disordered PAS scores were slightly outside of the predicted ranges. 20

21 4 Discussion

- This study found that a predictive model that included maximum anterior-horizontal hyoid bone displacement and other variables known to affect penetration and aspiration risk can reasonably predict the risk of penetration and aspiration in patients with dysphagia. While this predictive model accurately captured the increasing
- ²⁶ probability trend of penetration and aspiration risk of patients, the predicted and

Predicted Probability	Predicted Percentage of	Number of	Actual Number (Percentage) of
Decile	High PA swallows	Swallows	High PA Swallows
1	0.0 - 7.0	134	9(6.72)*
2	7.0 - 10.4	134	13(9.70) *
3	10.4 - 13.9	134	20(14.93)
4	13.9 - 16.9	135	21(15.67)*
5	16.9 - 19.7	134	21(15.56)
6	19.7 - 22.8	134	37(27.61)
7	22.8 - 25.7	134	27(20.15)
8	25.7 - 30.0	134	38(28.36)*
9	30.0 - 36.4	134	41(30.60)*
10	36.4 - 100	135	44(32.59)

 Table 3 Predicted probability decile cut-off and observed percentage based on the model (

 * actual% of swallows with disordered PA scores was within the predicted probability range based on hyoid displacement features)

observed probabilities did not always match. Current clinical practice is for clin-27 icians to assess physiological impairments of swallowing and reduced airway pro-1 tection by subjectively interpreting VF images. However, one limitation of using 2 VF as an assessment tool is that aspiration may not be observed during VF due to 3 the time constraints of the examination to minimize radiation exposure. Creating 4 a predictive model based on objective measurements of physiological swallowing 5 events, such as the measurements of hyoid bone displacement that were used in 6 this study, would allow clinicians to more accurately capture patient risk profiles 7 of penetration and aspiration. This model could be used to improve assessment 8 of swallow function, effectively track progress in therapy, and proactively and ob-9 jectively identify physiologic markers of elevated risk of adverse events that occur 10 secondary to dysphagia, such as aspiration pneumonia. 11

12 5 Limitation

The GEE model in this study used anterior-horizontal hyoid bone displacement and other independent variables to reasonably predict penetration and aspiration risk for patients with dysphagia. However, swallowing and airway protection are complex, multifactorial processes. It is probable that the variables included in this model are not the only predictors of aspiration. One limitation of the current
predictive model is that it underestimates the risk of penetration and aspiration for
patients with disordered PAS scores. The predictive model will likely be improved
by including other swallow kinematic measurements.

4 6 Conclusion

This research work developed a preliminary GEE model that can reasonably pre-5 dict penetration and aspiration risk for patients with dysphagia. This is an impor-6 tant and necessary first step toward developing a more sophisticated and accurate 7 predictive model that can be used in clinical settings. In the future, clinicians 8 could use a predictive model based on physiological aspects of swallow function to q calculate penetration and aspiration risk profiles for patients by entering patient 10 specific information into the equation. By objectively determining patient risk 11 profiles, clinicians could develop individualized treatment plans to prevent ad-12 verse outcomes (i.e. dehydration, malnutrition, and aspiration pneumonia) based 13 on risk severity level, and objectively track the effectiveness of dysphagia treat-14 ment on functional patient outcome measures. Future research should examine the 15 predictive ability of additional swallow kinematic measures on penetration and as-16 piration risk in patients with dysphagia. Variables such as hyoid bone velocity, 17 initiation of the pharyngeal swallow, laryngeal elevation, laryngeal vestibular clo-18 sure, UES duration, and other physiological parameters related to swallow function 19 should be investigated. Including these kinematic events in the predictive model 20 may increase the models predictive value, which would further improve its clinical 21 application. 22

23 Compliance with Ethical Standards

- 24 1. Conflict of Interest: We have no conflict of interest to declare.
- 25 2. Ethical approval: All procedures performed in studies involving human par ticipants were in accordance with the ethical standards of the institutional
 and/or national research committee and with the 1964 Helsinki declaration
- ²⁸ and its later amendments or comparable ethical standards.

3. Informed consent: Informed consent was obtained from all individual partici pants included in the study.

2 References

- P. Clavé and R. Shaker, "Dysphagia: current reality and scope of the problem," Nature
 Reviews Gastroenterology and Hepatology, vol. 12, no. 5, pp. 259–270, 2015.
- 5 2. J. M. Dudik, J. L. Coyle, A. El-Jaroudi, M. Sun, and E. Sejdić, "A matched dual-tree
- wavelet denoising for tri-axial swallowing vibrations," *Biomedical Signal Processing and Control*, vol. 27, pp. 112–121, 2016.
- 8 3. A. J. Miller, "The neurobiology of swallowing and dysphagia," Developmental Disabilities
 9 Research Reviews, vol. 14, no. 2, pp. 77-86, 2008.
- F. Movahedi, A. Kurosu, J. L. Coyle, S. Perera, and E. Sejdić, "Anatomical directional dissimilarities in tri-axial swallowing accelerometry signals," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 25, no. 5, pp. 447–458, 2017.
- N. Bhattacharyya, "The prevalence of dysphagia among adults in the United States,"
 Otolaryngology-Head and Neck Surgery, vol. 151, no. 5, pp. 765-769, 2014.
- 15 6. J. Murray, Manual of dysphagia assessment in adults. Cengage Learning, 1999.
- C. Lazarus and A. Logemann, "Swallowing disorders in closed head trauma patients."
 Archives of Physical Medicine and Rehabilitation, vol. 68, no. 2, pp. 79–84, 1987.
- I. J. Cook and P. J. Kahrilas, "AGA technical review on management of oropharyngeal dysphagia," *Gastroenterology*, vol. 116, no. 2, pp. 455–478, 1999.
- C. Gordon, R. L. Hewer, and D. T. Wade, "Dysphagia in acute stroke." British Medical
 Journal, vol. 295, no. 6595, pp. 411–414, 1987.
- I. A. Humbert and J. Robbins, "Dysphagia in the elderly," *Physical Medicine and Reha- bilitation Clinics of North America*, vol. 19, no. 4, pp. 853–866, 2008.
- J. M. Gorell, C. C. Johnson, and B. A. Rybicki, "Parkinson's disease and its comorbid disorders An analysis of Michigan mortality data, 1970 to 1990," *Neurology*, vol. 44, no. 10, pp. 1865–1865, 1994.
- J. L. Coyle, L. A. Davis, C. Easterling, D. E. Graner, S. Langmore, S. B. Leder, M. A.
 Lefton-Greif, P. Leslie, J. A. Logemann, L. Mackay, B. Martin-Harris, J. T. Murray,
- B. Sonies, and C. M. Steele, "Oropharyngeal Dysphagia Assessment and Treatment Effi-
- 30 cacy: Setting the Record Straight (Response to Campbell-Taylor)," Journal of the Amer-
- ican Medical Directors Association, vol. 10, no. 1, pp. 62–66, 2009.
- M. Rugiu, "Role of videofluoroscopy in evaluation of neurologic dysphagia," Acta Otorhinolaryngologica Italica, vol. 27, no. 6, p. 306, 2007.
- 14. S. M. Molfenter and C. M. Steele, "Physiological variability in the deglutition literature:
 hyoid and laryngeal kinematics," *Dysphagia*, vol. 26, no. 1, pp. 67–74, 2011.
- 36 15. Y. Kim and G. H. McCullough, "Maximum hyoid displacement in normal swallowing,"
- 37 Dysphagia, vol. 23, no. 3, pp. 274–279, 2008.

- 16. B.-S. Kang, B.-M. Oh, I. S. Kim, S. G. Chung, S. J. Kim, and T. R. Han, "Influence of aging on movement of the hyoid bone and epiglottis during normal swallowing: a motion analysis," *Gerontology*, vol. 56, no. 5, pp. 474–482, 2010.
- B. Martin-Harris and B. Jones, "The videofluorographic swallowing study," *Physical Medicine and Rehabilitation Clinics of North America*, vol. 19, no. 4, pp. 769–785, 2008.
- 5 18. Z. Zhang, A. Kurosu, J. Coyle, S. Perera, and E. Sejdić, "Hyoid displacement during
 swallowing is related to penetration-aspiration scores," Under Review.
- 7 19. K. A. Kendall and R. J. Leonard, "Hyoid movement during swallowing in older patients
- with dysphagia," Archives of Otolaryngology-Head & Neck Surgery, vol. 127, no. 10, pp. 1224–1229, 2001.
- A. L. Perlman, B. Booth, and J. Grayhack, "Videofluoroscopic predictors of aspiration in patients with oropharyngeal dysphagia," *Dysphagia*, vol. 9, no. 2, pp. 90–95, 1994.
- 21. J. Su, C. Yuan, and K. Shu, "Hyoid bone displacement during swallowing have no association with penetration/aspiration severity in dysphagic stroke patients," Archives of
 Physical Medicine and Rehabilitation, vol. 95, no. 10, e16, 2014.
- 15 22. S. M. Molfenter and C. M. Steele, "Kinematic and temporal factors associated with
 penetration-aspiration in swallowing liquids," *Dysphagia*, vol. 29, no. 2, pp. 269–276, 2014.
- 17 23. H. G. Seo, B.-M. Oh, and T. R. Han, "Swallowing kinematics and factors associated
 18 with laryngeal penetration and aspiration in stroke survivors with dysphagia," *Dysphagia*,
- vol. 31, no. 2, pp. 160–168, 2016.
- 24. J. C. Rosenbek, J. A. Robbins, E. B. Roecker, J. L. Coyle, and J. L. Wood, "A penetration-aspiration scale," *Dysphagia*, vol. 11, no. 2, pp. 93–98, 1996.
- 22 25. G. L. Lof and J. Robbins, "Test-retest variability in normal swallowing," *Dysphagia*, vol. 4,
 no. 4, pp. 236–242, 1990.
- 24 26. M. Wang, "Generalized estimating equations in longitudinal data analysis: A review and
- ²⁵ recent developments," *Advances in Statistics*, vol. 2014, 2014.

26 Appendix A

- 27 Prediction Equation Steps:
- 28 1. Let $XB = -3.479 0.0583 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0265 \times (age) 0.0004 \times (x1_m in2max_d istance) + 0.0004 \times (x1_m in2max_d istance)$
- 29 (duration)
- 2. Subtract from XB 0.4435 if the swallow is single, add to XB 0.4545 if the
 swallow is multiple 1, or do nothing if multiple 2.
- 32 3. Subtract from XB 0.1398 if the sex=2(female?), or do nothing if sex=1(male?).
- 4. Add 1.2862 to XB if viscosity=thin, add 0.7049 if nectar, subtract 0.5334 if
- ³⁴ pudding, and do nothing if cookie.
- $_{35}$ 5. Add to XB 0.1622 if spoon, or do nothing if cup.

- $_{36}$ 6. Add to XB 0.0994 if chin down, or do nothing if head position is neutral.
- ¹ 7. Compute the probability of a high PA swallow as exp(XB)/(1 + exp(XB)).