Remote and Wearable ECG Devices with Diagnostic	Formatted: Numbering: Continuous
Abilities in Adults: A <u>State of the Science Narrative</u>	
<u>Scoping</u> Review	
Authors: Zeineb Bouzid, MS1*, Salah S. Al-Zaiti, RN, PhD2,3,4, Raymond Bond, PhD5, & Ervin	Formatted: Font: 11 pt
Sejdic, PhD ^{6,7}	
Affiliations:	Formatted: Font: 11 pt
uniduorio.	romatted: ront. 11 pt
¹ Department of Electrical & Computer Engineering at Swanson School of Engineering, University of Pittsburgh; Pittsburgh, PA, USA	
² Department of Acute & Tertiary Care Nursing, University of Pittsburgh; Pittsburgh, PA, USA	
³ Department of Emergency Medicine, University of Pittsburgh; Pittsburgh, PA, USA	
⁴ Division of Cardiology, University of Pittsburgh; Pittsburgh, PA, USA	
⁵ School of Computing, Ulster University; Belfast, UK;	
⁶ The Edward S. Rogers Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto; Toronto, Ontario, Canada	
Warth Vark Canaral Haspital: Taranta Ontaria Canada	Formatted: Font: (Default) +Body CS (Arial), 11 pt
⁷ North York General Hospital; Toronto, Ontario, Canada	Formatted: Font: 11 pt
Corresponding author. Email: <u>zeb12@pitt.edu</u>	Formatted: Font: (Default) +Body CS (Arial)
Disclosures: None of the authors have any conflicts of interest.	Formatted: Font: 11 pt
Disclosures, None of the authors have any connicts of interest.	Formatted: Font: 11 pt, Bold
Brief running title: Remote ECG devices	Formatted: Font: 11 pt
Word count: 7726 words	Formatted: Font: (Default) +Body CS (Arial), 11 pt
	Formatted: Font: 11 pt, Bold
<u>,Tables: 1 table</u>	Formatted: Font: (Default) +Body CS (Arial), 11 pt,
Figures: 4 figures	Formatted: Font: 11 pt, Bold
	Formatted: Font: 11 pt
	Formatted: Font: 11 pt, Bold
	Formatted: Font: 11 pt
	Formatted: Font: 11 pt
	Formatted: Font: 11 pt, Bold

Formatted: Font: 11 pt

Formatted: Font: 11 pt, Bold
Formatted: Font: 11 pt

Formatted: Font: (Default) +Body CS (Arial), 11 pt

39 ABSTRACT

40 The electrocardiogram (ECG) records the electrical activity in the heart in real-time, providing an 41 42 important opportunity to detecting various cardiac pathologies. The 12-lead ECG simultaneouslyacquires the electrical signal from several spatial directions, enabling the assessment of the heart-43 in a three-dimensional model and, thus, making it the currently serves as the "standard" ECG 44 acquisition technique for diagnostic purposes tool for most many cardiac pathologies other than 45 arrhythmias. However, the technical aspects of acquiring a 12-lead ECG are not easy and its 46 usage is currently restricted to trained medical personnel, limiting the scope of its usefulness. 47 48 Remote and wearable ECG devices have attempted to bridge this gap by enabling patients to take their own ECG using a simplified method at the expense of a reduced number of leads, usually a 49 single-lead ECG. In this review article, we summarize the studies which investigate the use of 50 remote ECG devices and their clinical utility in diagnosing cardiac pathologies. Eligible studies 51 discussed FDA-FDA-cleared, commercially available devices that were validated on an adult 52 population. We summarize technical logistics of signal quality and device reliability, dimensional 53 54 and functional features, and diagnostic value. In summary, our synthesis shows that reduced-set ECG wearables have huge potential for long-term monitoring, particularly if paired with real-time 55 notification techniques. Such capabilities make them primarily useful for abnormal rhythm 56 detection and there is sufficient evidence that a remote ECG device can be more superior to a-57 58 traditional 12-lead ECG in diagnosing specific arrhythmias such as atrial fibrillation. However, this review identifies important challenges faced by this technology, highlighting the limited availability 59 60 of clinical research examining their usefulness.

61 Keywords: ECG, electrocardiogram, diagnosis, remote, wearable, portable, atrial fibrillation,

Formatted: Font: Bold

Formatted: Font: (Default) Arial, 11 pt Formatted: Line spacing: Double

62	<u>1</u> Introduction	-	-
63 64	The Electrocardiograms electrocardiogram (ECG) are is the most widely used diagnostic		
65	tool in clinical cardiology and is also one of the most widely collected body signals in wearable		Ľ
66	devices intended for diagnostic use. The 12-lead ECC simultaneously acquires the electrical-		
67	signal from several spatial directions enabling the assessment of the heart in a three dimensional	•	
68	medelThe ECG-The ECG is is the most used diagnostic tool in cardiology and is abnormal in a		
69	significant proportion of cardiac pathologies other than arrhythmias (coronary artery disease, hear	<u>rt</u>	
70	failure, valvular heart disease, etc.), making it suitable for screening purposes but in all these		
71	pathologiesprior to subsequent evaluation by more specific , other diagnostic tests		
72	(echocardiography, CAGcoronary angiography, etc.)-are the ultimate diagnostic tools. The 12-lead	<u>a-</u>	
73	ECG is commonly acquired from 12 body surface leads simultaneously acquires to the electrical		
74	signal from several spatial directions enableing the spatial assessment of the heart in a three-		
75	dimensional model. However, This makes it the "standard" diagnostic tool for most cardiac		
76	pathologies, Tthe 12-lead ECG is traditionally acquired by clinicians and trained personnel via a		-
77	highly regulated procedure, limiting the scope of its clinical utility beyond the clinic. However, il		
78	one could trigger ECG recordings at the onset of worrisome cardiac symptoms, anytime and		
79	anywhere, clinicians would be provided with evidence of cardiac diseases that might no longer be	1	
80	apparent on the 12-lead ECG taken later at a medical appointment ¹ . The latter objective has led to	<u>o</u>	
81	a widespread use of consumer-oriented remote and wearable ECG devices in recent years.		
82	Information provided by the 12-lead ECG are interpreted following recommendations and		
83	expert-consensus statements. Fortunately, identifying basic arrythmias only requires one ECG		
84	lead ² , which drastically simplifies the task to the point of making possible its assignment to		
85	untrained individuals. Some solutions lie in the scope of wearables, which allow for a long-term		
86	ECG recording with an ergonomic design. There are also portable options, which do not provide		
87	continuous monitoring but allow a patient to quickly record one or multiple ECG leads in a range of	of	
88	non-clinical settings. These two types of devices-wearables and portables-make up the broader		

Formatted: Font: 14 pt, Bold

Formatted: Normal, Space Before: 0 pt, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"

Formatted: Numbering: Continuous

Commented [BZ1]: Reviewer 1: P2: "This makes it the "standard" diagnostic tool for most cardiac pathologies." Please rephrase: the ECG is the most used diagnostic tool in cardiology and is abnormal in a significant proportion of cardiac pathologies other than arrhythmias (coronary artery disease, heart failure, valvular heart disease, etc), but in all of these pathologies other tests (echocardiography, CAG, etc) are the ultimate diagnostic tools.

class of remote ECG devices. 89

90	A database search was conducted using PubMed to screen research articles with the	
91	following keywords 'wearable', 'portable', 'ECC' (or 'electrocardiogram') and 'diagnosis'. The	
92	targeted studies were the ones discussing commercially available, FDA cleared devices validated	
93	on an adult population. There was a restriction on study date to the last five years. Moreover, a	
94	manual search was carried out to identify commercially available remote ECG devices and link	
95	them to relevant research articles, forming a complete summary of the state-of-the-art products.	
96		
97	In this review article, we summarize the recent contributions, examine the reliability, and	
98	discuss the limitations of commercially available remote ECG devices in adult population. In doing	
99	so, we restrict our investigation to wireless products that claim a diagnostic value with a reduced	
100	set of electrodes. This paper is primarily addressingalso elaborates on-the following research	
101	questions: (1) how do-remote ECG devices overcome the disadvantages of the standard 12-lead	
102	ECG, ?as well as and (3) what is their clinical utility of remote ECG devices in diagnosing cardiac	
103	disease_?	
104	<u>1.1.1 _ Literature Search Strategy. •</u>	
105	A	K
106	This review was conducted in accordance with the adequate items of the Preferred	
107	<u>Reporting Items for {Tricco, 2018 #124}Systematic reviews and Meta Analyses extension</u>	
108	for Scoping Reviews (PRISMA_ScR) guidelines3{Tricco, 2018 #124}{Tricco, 2018	
109	#124}{Tricco, 2018 {Tricco, 2018 #124}{Tricco, 2018 #124}{Tricco, 2018 #124}#124} <u>. A</u>	
110	database search was conducted using PubMed to screen research articles with the	

- following keywords 'wearable', 'portable', 'ECG' (or 'electrocardiogram') and 'diagnosis'. 111
- The targeted studies were the ones discussing commercially available, FDA cleared devices 112

4

Commented [BZ2]: Is this a good place for this methods paragraph?

Commented [AZSS3R2]: Add section 1.1. below the aims paragraph below and move this paragraph there. Call this section "Literature Search Strategy". Start this section by stating something like this review was conducted in accordance with xxx guideline with a distribution of the section of the section between the section of the secti citation (as requested by the editors).

Formatted: Font: Georgia, 12 pt
Formatted: Font: 12 pt, Bold
Formatted: Font: 12 pt
Formatted: Space After: 6 pt, Line spacing: Double
Formatted: Font: Georgia, 12 pt
Commented [BZ4]: Because we do not adhere with all items of the guidelines, should we keep this expression?

Commented [AZSS5R4]: I would keep this here. Although we are not adhering 100%, but we are for sure using a systematic approach for this review.

113	<u>validated on an adult population. There was a restriction on study date to the last five</u>			
114	years. Moreover, a manual search was carried out to identify commercially available			
115	remote ECG devices and link them to relevant research articles, forming a complete			
116	summary of the state-of-the-art products.			
117	A	•		Format
118	2 <u>1</u> Basic 12-lead ECG function Review of Diagnostic statements	•		Format spacing:
110			\swarrow	Format
119	made by a standard ECG			Format Double,
120	A	•	-	0.42" +
121	The 12-lead ECG can be used as a non-invasive assessment of a plethora of			Format spacing:
122	abnormalities, including arrhythmias and ectopic rhythm abnormalities, conduction defects and			
123	heart blocks, chamber hypertrophies and cardiomyopathies, inherited syndromes and			
124	channelopathies, myocardial ischemia and infarction, electrolyte abnormalities, medication toxicity	÷		
125	secondary cardiopulmonary manifestations, and other non-cardiac etiologies ³ . Thus, Practice-			
126	practice guidelines by the American Heart Association / American College of Cardiology grouped			
127	the diagnostic statements for automated ECG interpretation in a list to promote uniformity of ECG			
128	diagnosis, yielding 117 potential diagnostic statements ⁴ . Figure 1 shows the ECG acquisition			
129	method and an example of the tracing and diagnostic statements available to clinicians.			
130	<u>۸</u>	•		Format
131	The abnormal alterations identified on a 12-lead ECG could be associated to one of four-			Format Before:
132	categories of heart pathologies. First, rhythm disorders or arrhythmias, which constitute-			
133	desynchrony in impulse propagation and interruption of the P-QRS-T sequence on the ECG.			
134	These arrhythmias can be supraventricular (occurring above the ventricles), including atrial-			
135	fibrillation (AF), atrial flutter or paroxysmal supraventricular tachycardia; or ventricular (occurring in	÷		
136	the ventricles), which comprise ventricular tachycardia and ventricular fibrillation. Identifying a-			

Formatted: Font: 12 pt Formatted: Space Before: 0 pt, After: 6 pt, Line spacing: Double

Formatted: Font: 12 pt, Bold

Formatted: Normal, Space After: 6 pt, Line spacing: Double, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"

Formatted: Font: (Default) Arial, 11 pt

Formatted: Space Before: 0 pt, After: 6 pt, Line spacing: Double

Formatted: Font: (Default) Arial

ormatted: Normal, Indent: First line: 0.5", Space efore: 0 pt, After: 6 pt, Line spacing: Double

137	basic arrythmia only requires one ECG lead because rhythm disturbance is present in all leads.		
138	The second category is conduction disorders. These abnormalities distort QRS signal morphology		
139	on the ECG. Many conduction defects require multi lead criteria for diagnosis. The third category-		
140	is chamber enlargement, which resembles a thickening of heart muscles. This results in altered		
141	voltage criteria and mean cardiac axis, and thus requires multi-lead ECG criteria for its diagnosis		
142	Finally, myocardial ischemia happens in the case of lack of blood and oxygen supply to the heart-		
143	muscles, which might lead to myocardial cell death (i.e., myocardial infarction). Cardiac ischemia-		
144	leads to regional myocardial distortions that can be captured by ECG leads facing those-		
145	myocardial regions, requiring multi-lead assessment for diagnosis.		
146	The ECG signal needs to be filtered before analyzing it for diagnostic purposes. This is	Formatted: Space After: 6 pt	
147	done by keeping a frequency band that preserves important prognostic physiological signatures		
148	needed for proper diagnostic statements. Guidelines specify the lower and upper filtering		
149	frequency bounds to guarantee an interpretable signal, respectively equal to 0.05 Hz and 150 Hz		
150	for adults ⁵ . Measuring abrupt events such as peak amplitude is more accurate when higher		
-	frequencies are kept in the signal after filtering ⁶		
151			
152	3 Methods	Formatted: Font: (Default) Arial	
153	*	Formatted: Normal, Indent: First line: 0.5", Space After: 6 pt, Line spacing: Double, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"	
154	1. <u>+2</u> Literature Search Strategy	Formatted: Font: 12 pt	
		Formatted: Space Before: 0 pt, After: 6 pt, Line spacing: Double	
155	This review was conducted in accordance with the Preferred Reporting Items for	Formatted: Font: Georgia, 12 pt	
156	Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)	Formatted: Font: 12 pt	
157	guidelines ⁷ . A database search was conducted using PubMed to screen research articles with the	Formatted: Space After: 6 pt, Line spacing: Double	:
158	following search term: "(((wearable or portable) and (ECG or electrocardiogram)) and adult) and		
159	diagnosis) not PPG". The most recent search was performed on 3/1/2021 and was limited to the		
160	past 5 years. The search yielded 243 articles, which were subsequently filtered, first based on their		
161	title and abstract, then based on whether they were suitable for the study of the review's topic. The		
I	6		

162	targeted studies were the ones discussing commercially available, FDA cleared devices validated	
163	on an adult population. Moreover, a manual search was carried out to identify commercially	
164	available remote ECG devices and link them to relevant research articles, forming a complete	
165	summary of the state-of-the-art products. Data extraction regarding study characteristics, device	
166	description and diagnostic utility metrics reported in that study was done by a single reviewer (ZB).	
167	A database search was conducted using PubMed to screen research-	Formatted: Font: Georgia, 14 pt
168	articles with the following keywords 'wearable', 'portable', 'ECG' (or-	
169	'electrocardiogram') and 'diagnosis'. The targeted studies were the ones-	
170	discussing commercially available, FDA cleared devices validated on an adult	
171	population. There was a restriction on study date to the last five years.	
172	Moreover, a manual search was carried out to identify commercially available-	
173	remote ECC devices and link them to relevant research articles, forming a	
174	complete summary of the state of the art products.	
175 176	<u>4</u> <u><u>S</u></u> <u>S</u> ummary of remote ECG devices with diagnostic capabilities	Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"
177	4.1 2.1 Commercialized ECG devices	
178 179	4.1 <u>2.1</u> Commercialized ECG devices	Formatted: Normal, Space Before: 0 pt, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"
180	Table 1 shows the remote ECG devices that appeared most in the examined studies.	Formatted: Font: 12 pt
181	Figure 2 specifies the placement of the electrodes used to obtain the ECG signal in each of these	
182	8 remote ECG systems, while Figure 3 compares the features of standard 12-lead ECG to those of	
183	remote ECG devices.	
184		
184 185	4-2 2.2 Real-time monitoring	Formatted: Normal, No bullets or numbering, Tab
186		stops: Not at 0.51" + 0.51"
187	Most of the studied remote ECG devices have real-time monitoring capabilities. For	Formatted: Font: 12 pt
188	example, intermittent portable ECGs recorded by AliveCor devices can be used as near real-time	

189 systems thanks to wireless communication through a web-based portal. However, multiple ECG patches are non-real-time ECG monitors. In the case of the Zio Patch, a study has found that the 190 median time to getting the clinicians to be aware of a significant symptomatic arrhythmia was 191 192 equal to 19 days due to the time needed to return the device, analyze the ECG signals, create the report, and then notify the clinician8. However, most significant symptomatic arrhythmias were 193 spotted on the patch within 7 days of the beginning of the monitoring, with all serious ones picked 194 up within 4 days⁸. The patch has a great ability to capture significant arrhythmias in a timely way 195 but there is a big gap between the time of detection and the time of diagnosis by the clinician. 196 Real-time monitoring would address this problem. 197

A good representative of a real-time ECG patch system is the one implemented by the 198 BioTel Heart MCOT Patch. Representative arrhythmia diagnostic strips are sent wirelessly to an 199 independent diagnostic testing facility upon activation of threshold triggers based on the analysis 200 201 of rate, rhythm irregularity, QRS morphology, and P-wave⁹. Notification criteria are set for a patient to alert the appointed physician and the patient9. In addition, clinical reports are made accessible 202 203 to the health care provider during the monitoring period and when it is finished. The MCOT Patch had a significantly higher diagnostic yield than the auto-trigger looping event recorder for AF, 204 bradycardia, ventricular pause, supraventricular tachycardia and ventricular tachycardia, as well as 205 a significantly shorter mean time to diagnosis9. The MCOT patch thus pairs good diagnostic value 206 with an efficient real-time use protocol and avoids the logistical problems associated with non-real-207 208 time monitoring devices.

209 210

Remote devices signal quality 5 3

211 212

a.

3.1

Factors that jeopardize signal quality

213 An ECG signal can be seriously compromised by noise, which might be a result of baseline 214 wander and abrupt drift, power line interference, or muscle artifact¹⁰. ECG signals corrupted with 215 216 noise are unreliable and must be filtered using noise-specific signal processing techniques before

Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: No bullets or numbering

any manipulation or discarded in case recovery of a good-quality signal is impossible¹⁰.
Ambulatory data recording from wearable devices is more likely to result in signals with artifacts
than data obtained from bed-bound patients¹¹ because of the new challenges that daily-life
movements introduce on the adherence of the electrodes and their placement. Also, external
factors such as the contact with water while showering or swimming, or because of perspiration,
may disrupt the recording system. Satija et al.¹⁰ provides a review of ECG signal quality
assessment methods to identify clinically acceptable single-lead and multi-lead ECG signals.

Remote ECG devices use alternative electrode positions (Figure 2) to record a specific 224 number of leads. However, the electrode placement impacts the quality of an ECG tracing¹², and 225 studies have demonstrated that a displacement as small as 20 mm might result in substantial 226 modifications in ECG signal morphology¹³. Moreover, changes in the standard electrodes' 227 positions affect the ECG tracings, where alterations along the left arm were the most visible 228 229 compared to the right arm because of their relative distance to the myocardium, and a lateral site along the lower limb was more vulnerable to modifications in electrode placement relative to an 230 231 anterior site14.

232 b.

233

3.28 Signal quality assessment

A few studies evaluated the signal quality of the obtained ambulatory ECGs. In particular, a 234 group of publications, which investigated the feasibility of recording more than one lead using the 235236 Apple Watch Series 4, focused on this topic. The Apple Watch Series 4 was developed to record 237 lead I. When lead II and lead III were self-recorded, the signals obtained were accurate and 238 consistent with the standard ECG leads¹⁵. There was no clinical difference between the values of intervals, amplitudes and polarity computed for ECG segments in both standard and watch-based 239 ECG leads I, II and III¹⁶. Setting the positive electrode situated at the back of the watch against the 240 mid-abdomen showed good agreement of the watch-based ECGs with the corresponding standard 241 ECGs. This method suggested the potential of the device to generate a 6-lead ECG by deriving 242 the augmented limb leads aVL, aVF and aVR¹⁷. A brief research report kept the reference point on 243

Formatted: Font: 12 pt

Formatted: No bullets or numbering

the leg to record leads II and III, but suggested recording bipolar chest leads as a substitute to the standard precordial leads (V1 to V6), impossible to trace in the need for an unavailable WCT "to connect the 3 limb electrodes", which were replaced by the right arm¹⁸. Consecutive recording of six-lead ECGs with the Apple Watch, representing Einthoven and Wilson-like leads, was possible with a good diagnostic signal quality and identical morphology as compared to standard 12-lead ECG^{18, 19}.

Further analysis to confirm those findings would qualify the Apple Watch to become a powerful tool that acquires a quasi-standard ECG anytime anywhere. Behzadi et al. highlighted the exceptional quality of the smartwatch ECG, free from significant baseline artifacts despite the absence of any skin preparation¹⁶. However, physical instability on the recording location (wrist or abdomen) could result in temporary artifacts¹⁶.

The fidelity of the recorded signals was also reflected by the ability to obtain a reliable and 255 accurate measurement of the QT interval from smartwatch recordings of lead I compared to the 256 one from a standard ECG²⁰. Similarly, a study using the 6-lead AliveCor KardiaMobile 6L ECG 257 258 device compared its mean interval duration measurements (QTcF, heart rate, PR, and QRS) based on lead II against the standard ECG and concluded that this device is potentially useful in 259 detecting clinically meaningful abnormalities²¹. However, it is important to be cautious when using 260 measurements from a single ECG lead because waveform segmentation is ideally done using 261 standard multi-lead criteria on 12 leads, for more stable and more accurate global measurements. 262 Temporal superposition of complexes allows the detection of the earliest onset and latest offset of 263 waveforms to compute more accurate intervals than those resulting from the segmentation of 264 265 individual leads⁵. Single-lead ECG systems are prone to miscalculations, and any attempt to segment a lead, i.e., make measurements, is not equivalent to that operated on a standard ECG. 266

267 e. <u>3.3</u>I_Implemented solutions to improve signal quality

268

Formatted: Font: 12 pt
Formatted: No bullets or numbering

269 Commercialized remote ECG devices may compensate for the lost information due to the 270 absence of a multi-lead recording by capturing the electrical activity in the heart from alternative

271	positions. In this framework, the BardyDx CAM, for instance, was developed to optimize P-wave
272	quality. P wave clarity, morphology and its relationship with QRS are key factors to elucidate the
273	mechanism of any arrhythmia ²² , which might compensate for the absence of multiple views of the
274	electrical activity in the heart. Moreover, the CAM patch is placed on the sternum which is located
275	close to the atria with previous evidence pointing to the fact that "myocardial currents flow through
276	the mediastinum to the skin overlying the sternum "22-25. Thus, the signal quality of the CAM patch
277	was shown to be comparable to that of a Holter monitor based on reported high correlation
278	coefficients between the two systems $^{\rm 22}$. In another study, the signal clarity of the CAM patch was
279	significantly improved compared to the Zio-XT patch as indicated by the physicians' degree of
280	certainty for deciding on a diagnosis ²⁶ .

282	4Diagnostic value of remote ECG devices
283 284 285	6.1 <u>4.1</u> Diagnostic capabilities of remote ECG devices
286 287	Most clinical guidelines are based on 12-lead ECGs, which limits the diagnostic capabilities
288	of reduced-set ECGs. Thus, most reduced-set ECG devices have primarily focused on abnormal
289	rhythm detection, namely the detection of AF. This was recently highlighted by a collaborative
290	statement on mHealth in arrhythmia management by leading societies in the field ²⁷ . Figure 4**
291	summarizes the diagnostic significance of remote ECG devices for AF detection. Yet, some other
292	studies focused on the role of remote ECG devices for QTc interval monitoring or myocardial
293	ischemia detection. A critical appraisal of this literature is provided herein.
 294	A recent review by Witvliet et al. ²⁸ emphasized the usefulness of handheld single-lead
295	electrocardiograms in detecting AF. A previous systematic review and meta-analysis by Wong et
296	al. evaluated the diagnostic accuracy of portable single-lead ECGs in comparison with a gold
297	standard 12-lead ECG or Holter monitor, reporting high pooled sensitivities and specificities in
298	community and in hospital settings ²⁹ . Meanwhile, another systematic review and meta-analysis
299	compared AF detection rate using portable ECG devices to Holter ECG monitoring, showing that
300	studies that performed intermittent, multiple ECG recordings using portable devices for 19 minutes
301	total produced equivalent AF detection rate to that of 24-hour Holter ECG recording ³⁰ .
302	Among the original research studies, Himmelreich et al. investigated the performance of an
303	integrated algorithm for AF detection of AliveCor KardiaMobile compared to cardiologists'
304	assessment of a simultaneously recorded standard 12-lead ECG showing that the AF detection
305	algorithm had a high sensitivity and specificity ³¹ . These metrics slightly declined when evaluating
306	the rhythm strips for any rhythm abnormality while a good diagnostic accuracy was maintained ³¹ .
307	Specifically, less than 50% sensitivity was found when cardiologists tried to detect any conduction
308	abnormality from the 1-lead ECG ³¹ . Another study showed the potential of this device to capture
309	recurrent atrial fibrillation or flutter earlier in patients who underwent ablation or cardioversion and

Formatted: Font: 14 pt, Bold Formatted: Numbering: Continuous Formatted: Normal, Space Before: 0 pt, No bullets or numbering, Tab stops: Not at 0.42" + 0.42" Formatted: Normal, Space Before: 0 pt, Tab stops: Not at 0.42" + 0.42" Formatted: Normal, Space Before: 0 pt, Tab stops: Not at 0.42" + 0.42" Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"

Formatted: Not Highlight

committed to daily intermittent monitoring, which was especially applicable for first month 310 recurrence³². A multicenter randomized control trial has also shown that there is a significantly 311 better identification of AF lasting 30 seconds or longer using a 30-day AliveCor KardiaMobile 312 313 monitoring (with serial, intermittent 30-second ECG strips recorded 3 times a day) compared to a repeated 24-hour Holter monitoring, which represents the routine procedure used for patients who 314 had a cerebral ischemic event but no known AF³³. However, the authors noted that the device 315 316 notifications indicating possible AF are mostly false positives with just a quarter of these detecting a true AF³³. This finding highlights a low positive predictive value and, thus, a need to formally 317 confirm the diagnosing before starting any treatment based solely on AF detection algorithms. 318

To further improve sensitivity, a 3-lead recording would reveal signatures of arrhythmias 319 320 featuring a shift in electrical axis possibly invisible on single-lead signals. It would also better identify aberrant/broader QRS complexes when the leading edge of the QRS complex is relatively 321 322 isoelectric to the only recorded lead (i.e., recorded lead is blind spotted); which is especially more applicable in the case of broad complex tachycardia³⁴. Before Even after the release of the 6-lead 823 824 AliveCor Kardia 6L³⁵, Frisch et al. slightly modified the currently available single-lead AliveCor KardiaMobile to extend its function to multiple-lead recordings³⁶. The authors useding an alligator 825 clip which enabled the device to record leads II and V1, in addition to lead I, for which the device is 326 conceived³⁶. It was demonstrated that the supplemental alternate leads significantly increased the 327 accuracy of the ECG interpretation by cardiologists alongside their confidence in their decision³⁶. 328

The integration of ambulatory ECG devices in clinical practice to ensure AF monitoring would ameliorate resources utilization. Aljuaid et al. studied the impact of using the ECG Check device in a post-AF ablation population and found that the device was 100% sensitive and 97% specific for identifying atrial fibrillation or flutter after a 100-day follow-up period, with a notable, statistically significant decrease of AF-related outpatient department and emergency department visits³⁷.

335

Finally, rRemote ECG devices with reduced-set leads are not conceptually tailored toward

336	acute myocardial infarction detection. In particular, STEMI cannot be practically detected using a
337	single-lead ECG since the diagnosis of STEMI requires the assessment of the ST-segment at the
338	J-point in two contiguous leads as per the Fourth Universal Definition of Myocardial Infarction
339	guidelines ³⁸ . Lead I might show some changes with anterolateral infarcts or reciprocal changes
340	with inferior infarcts, but it remains a poor screening tool, let alone, a diagnostic tool for STEMI.
341	For instance, Avila et al. examined the potential role of a 3-lead ECG taken by the smartwatch in
342	unveiling myocardial ischemia, where further specificity and sensitivity analysis are needed ¹⁷ . By
343	adopting the multi-channel method to record not only leads I, II, and III, but also leads V1, V2, V3,
344	V4, V5 and V6, the Apple Watch Series 4 could spot signatures of acute coronary syndrome
345	visible on a 12-lead ECG, and specifically localize ST-segment alterations ³⁹ . However, studies ^{36, 39}
346	record Wilson-like leads which are conceptually not equivalent to precordial leads of a standard
347	12-lead ECG.
1	

348 The surge of the COVID 19 virus impacted research in many ways. Mobile Remote ECG devices have been shown to play a role in s can help reduce patient-to-clinician contact while-849 350 enabling acceptable QT or QT c interval measurements for the purpose of (remote)-patient's monitoring, especially during the current The surge of the COVID-19 virus impacted research in-351 many wayspandemic-21, 40, 41. This was seen in a study using the AliveCor KardiaMobile 6L 352 conducted in an inpatient setting during the COVID-19 era, in which stricter protocols for the 353 monitoring of QTc intervals are required ⁴². In this early preliminary work (n=4), it was found that 854 remote ECG devices with 6 leads can be a reliable mean for accurate QTc measurements. Yet, 355 856 these findings lacked However, this work lacks a larger scale assessment of these findings, as well as a comparative study against between the QT intervals measurements obtained by the 6-357 858 lead remote ECG and a the 12-lead ECG as a gold standard one 42. Thus, in a more recent study comparing remote 6-lead ECG to a standard 12-lead ECG in a larger cohort (n=182), authors 859 found that Also, another study has shown that the time of ECG registration has significantly 360 361 diminished when adopting the same 6-lead device as compared to the 12-lead ECG, while QTc

362	measurements did not differ between the two approaches, but the overall reliability of remote ECG
363	was moderate (ICC = 0.56) prolongation did not differ between three monitoring strategies COVID-
364	19 patients were subject to (full monitoring using 12 lead ECG, 12 lead ECG at baseline and
365	follow-up with KardiaMobile 6L, and full monitoring using KardiaMobile 6L) ⁴³ . Besides, no-
366	statistically significant difference was obtained for the mean QTc using the 12-lead ECG or,
367	sequentially, the 6-lead device in a healthy control group 43. At lastNevertheless, the authors noted
368	the significantly lower time needed to obtain the remote-ECG compared to standard 12-lead ECG,
369	suggesting a potential clinical utility for real-time QTc monitoring moderate reliability of this
370	technique and its feasibility in non-severely ill conscious ambulatory COVID-19 patients 43. Table 2-
371	outlines the available published data examining the diagnostic utility of remote ECG devices
372	discussed above.
373	6.2 <u>4.2</u> Advantages of longer monitoring periods and self-recorded ECG ←

Long-term monitoring provides an increase in the diagnostic yield of heart monitoring methods for cardiac events such as AF^{34, 44}. A comprehensive study on the duration of rhythm monitoring and the detection rate of AF, where the gold standard reference was an implanted loop recorder, showed that the 10-second ECG resulted in a sensitivity of 1.5% for AF detection⁴⁵. This sensitivity increased to 8.3% for a 14-day monitoring period during which a 30-second ECG was recorded twice a day, and to 11%, 13%, 15%, 21%, and 34% for a single 24-hour, 48-hour, 72about, 7-day, or 30-day continuous monitoring, respectively⁴⁵.

374

Multiple studies tried to compare the signals recorded by Holter monitors, and other, remote ECG devices with continuous monitoring abilities. In fact, for long-term ECG analysis, Holter monitors are the gold standard to assign to patients suspected to have an underlying cardiac condition behind the preliminary findings of their medical assessment. The benefits of recording the ECG for a long period of time is to reveal the presence of transient cardiac events that might cause lethal heart problems if not detected timely. However, Holter monitors are cumbersome, and restrict the activities that can be performed while wearing them. Therefore, they Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"

are commonly used for 24 or 48 hours, or less frequently, a week.

390	Smith et al. studied ECG signals simultaneously recorded on the patients with the BardyDx	
391	CAM patch and the standard Holter monitor over 24 hours ²² . Their work revealed a statistically	
392	significant higher performance of the CAM patch in identifying clinically pertinent events, including	
393	arrhythmias misdiagnosed by the Holter ²² . This was the only study we found that exclusively	
394	compared the diagnostic yield of an ambulatory ECG device to the Holter monitor over exactly 24	
395	hours. Research on long-term ECG patches generally reports their performance over their optimal	
396	monitoring duration and compares the findings with the results of 24-hour Holter monitoring. In the	
397	case of the Zio Patch, a study opted for both approaches and reported the inability of the patch	
398	monitor to outperform the Holter over the 24-hour period, whereas the former identified	
399	significantly more events than the Holter monitor over a median wear time of 11.1 days ³⁴ . Also,	
400	intermittent recordings using portable devices for a total of 19 minutes were as good as the 24-	
401	hour Holter ECG recording in detecting AF ³⁰ .	
402	4.3 Lack of studies on clinical utility ←	
402 403	4.3 <u>Lack of studies on clinical utility</u> ←	
-	4.3 <u>Lack of studies on clinical utility</u> ←	
403	4.3 Lack of studies on clinical utility	
403 404		
403 404 405	We found a limited number of research articles examining the clinical utility of remote ECG	
403 404 405 406	We found a limited number of research articles examining the clinical utility of remote ECG devices. Besides, the median sample size for the reviewed studies is 102-5 subjects (IQR = 50-	
403 404 405 406 407	<u>We found a limited number of research articles examining the clinical utility of remote ECG</u> <u>devices. Besides, the median sample size for the reviewed studies is 102-5 subjects (IQR = 50-21420). Hence, the reviewed studies were likely underpowered to detect significant clinical</u>	
403 404 405 406 407 408	We found a limited number of research articles examining the clinical utility of remote ECG devices. Besides, the median sample size for the reviewed studies is 102-5 subjects (IQR = 50- 21420). Hence, the reviewed studies were likely underpowered to detect significant clinical differences, given that the rate of the cardiovascular diseases defined as outcome is low. Only one	
403 404 405 406 407 408 409	We found a limited number of research articles examining the clinical utility of remote ECG devices. Besides, the median sample size for the reviewed studies is 102-5 subjects (IQR = 50- 21420). Hence, the reviewed studies were likely underpowered to detect significant clinical differences, given that the rate of the cardiovascular diseases defined as outcome is low. Only one study was looking at a large-scale sample (n=78,490 subjects) ⁹ . More studies should investigate	
403 404 405 406 407 408 409 410	We found a limited number of research articles examining the clinical utility of remote ECG devices. Besides, the median sample size for the reviewed studies is 102-5 subjects (IQR = 50- 21420). Hence, the reviewed studies were likely underpowered to detect significant clinical differences, given that the rate of the cardiovascular diseases defined as outcome is low. Only one study was looking at a large-scale sample (n=78,490 subjects) ⁹ . More studies should investigate the performance of remote ECG devices on larger numbers of participants. Conducting power	
403 404 405 406 407 408 409 410 411	We found a limited number of research articles examining the clinical utility of remote ECG devices. Besides, the median sample size for the reviewed studies is 102.5 subjects (IQR = 50- 21420). Hence, the reviewed studies were likely underpowered to detect significant clinical differences, given that the rate of the cardiovascular diseases defined as outcome is low. Only one study was looking at a large-scale sample (n=78,490 subjects) ⁹ . More studies should investigate the performance of remote ECG devices on larger numbers of participants. Conducting power analyses before data collection would provide a solid ground to draw statistically significant.	

Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"

Field Code Changed

Formatted: Not Highlight

415	the comparison of the outputs of the two systems. Also, there were other articles that presented
416	different findings. For instance, as the Apple Watch Series 4 reads the ECG rhythm strip as sinus
417	rhythm, AF or inconclusive, it was shown that multiple AF events were missed by the algorithm
418	where it only provided notifications with a 41% sensitivity for AF and reported 31% of the ECGs to
419	be inconclusive ⁴⁶ .

| 420

421 5 Challenges and limitations of remote ECG devices

7-3 5.1 Signal filtering bandwidth

Recording higher frequency signal consumes more battery and memory, which is 426 problematic for remote ECG systems. Guidelines relax the upper frequency to 60 Hz in ambulatory 427 devices. Such frequency can suppress the excessive noise and interferences introduced by daily 428 activities, excessive movement, perspiration, electrodes' adhesion, and electrodes' detachment. 429 The downside is that a frequency as low as 40 Hz affects the QRS complex and nullify amplitude 430 measurements, impacting the performance of R peak detection used in almost all ECG signal 431 processing algorithms and, hence, potentially leading to imprecise diagnostic decisions, especially 432 in conditions such as AF⁴⁷. There is no analysis of the impact of signal filtering on the quality of the 433 434 ECG signal obtained from remote devices and its ability to derive diagnostic statements. For example, the ECG Check from Cardiac Designs has a very narrow bandwidth from 0.5 Hz to 25 435 Hz, which explains the limited statements that it can make ("Normal", "Irregular HR", "Unable to 436 read ECG"). On the other hand, AliveCor KardiaMobile and BioTel Heart MCOT patch have 437 438 sampling rates equal to 300 and 250 samples per second (Hz), respectively, which would allow an upper bound of the processing filter bandwidth to be at most equal to 150 Hz and 125 Hz, 439 respectively, based on the he Nyquist-Shannon sampling theorem to prevent aliasing. Precise 440 data about such technical aspect are very important in assessing the utility of the recorded signal, 441 yet they are hard to find in published studies. 442

Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.42" + 0.42"

Formatted: Normal, Tab stops: Not at 0.42" + 0.42" Formatted: Normal, No bullets or numbering, Tab

stops: Not at 0.51" + 0.51"

443	5.2 Real-time need	Formatted: Font: 12 pt, Bold
444	•	Formatted: Font: 12 pt
445 446	As mentioned in section 4.3, the high potential of remote ECG devices is hindered by both	Formatted: Normal, Tab stops: Not at 0.51" + 0.51"
447	the absence of real-time interaction with the healthcare professionals and the lack of a prompt	Formatted: Font: 12 pt, Bold
448	notification of the user in case of detection of possible abnormalities. The first week of monitoring	
449	using the Zio patch revealed most significant symptomatic arrhythmias ⁸ , but the report was only	
	available after 14 days. This issue is extended to many remote ECG devices, where the lack of a	
450		
451	timely alarm constitutes a missed opportunity to provide timely diagnosis and treatment.	
452	5.3 Device acceptability	Formatted: Font: 12 pt, Bold
453 454	A	Formatted: Font: 12 pt
455 456	aUser acceptability and compliance	Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"
457		Formatted: Normal, Tab stops: Not at 0.51" + 0.51"
458	The main factors to investigate in the assessment of the user acceptability of the device	Formatted: Font: Bold
459 460	depend on the nature of the device. Handheld devices and smartwatches are simple to manipulate as opposed to patch devices, for which it is challenging to identify the correct location; a solution	Formatted: List Paragraph, Numbered + Level: 1 + Numbering Style: a, b, c, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5", Tab stops:
461	for better compliance would be including a patch placement template in the kit as done for BioTel	Not at 0.51" + 0.51" Formatted: Font: 12.5 pt, Bold
462	Heart MCOT Patch. However, it is worth noting that the use of portable ECG devices might be	Formatted: Normal, Tab stops: Not at 0.51" + 0.51"
463	difficult for older adults. In the case of the AliveCor KardiaMobile 6L, for instance, the application of	
464	the device to the left knee or ankle might be challenging for elderly patients and the data	
465	acquisition might be hindered due to their clinical status which could result in a lack of	
466	collaboration from the subjects ⁴³ .	
467	Additionally, skin irritation is a big challenge to user acceptability and compliance in the	
468	case of wearable ECG patches, which are intended for an extended monitoring period. The	
469	BardyDx CAM, for instance, was found to be gentler on the skin with no severe skin irritation	
470	reported over 24-hour use compared to 3 cases of severe reactions in Holter patients,	
471	representing 6% of the studied sample ²² . Since the CAM patch interfered significantly less with	
472	daily activities and sleep, and has better adherence, the surveyed patients preferred it to the	

473 Holter monitor, and the technicians noted that it is easier to attach to patients²².

474 475

a.

b. Acceptability among healthcare professionals

476 A survey of current perspectives on consumer-available digital health devices for detecting atrial fibrillation among cardiac healthcare practitioners revealed that most of them have 477 recommended a digital device for AF detection⁴⁸. While 42.7% of the respondents indicated that 478 the 30-second single-lead ECG was enough to recommend oral anticoagulation for patients at 479 480 high risk for stroke, a majority required further investigation of the performance of digital devices relative to conventional AF monitoring devices, and 53.4% demanded their professional societies 481 issue guidelines to ensure their optimal use⁴⁸. Pitman et al. found that relying solely on the 482 automated algorithm of the AliveCor KardiaMobile to screen for AF does not reach the desired 483 484 performance, but the latter can become very good if the algorithm's output is supplemented by clinical judgement and recordings are repeated in case of an insufficient quality⁴⁹. Regarding the 485 use of portable single-lead ECGs by cardiologists in particular, Himmelreich et al. showed that 486 487 cardiologists can accurately diagnose AF from a single-lead ECG with high sensitivity and 488 specificity for detecting any rhythm abnormality, and a less than 50% sensitivity and a perfect 489 specificity for detecting any conduction abnormality³¹. These results demonstrate single-lead ECG device is well accepted by cardiologists for detecting rhythm abnormalities, but less suitable for 490 identifying conduction abnormalities, which might raise patient safety concerns in the context of 491 false negatives. On the other hand, a study investigated general practitioners' skills in interpreting 492 handheld single-lead ECG and showed that they are competent in excluding cardiac arrhythmias 493 without risk⁵⁰. However, the low positive predictive value of general practitioners for the 494 identification of AF or flutter as compared to consensus by a panel of cardiologists suggests the 495 pressing need for cardiologist's over-reading of remote ECG tracings⁵⁰. It was found in the same 496 study that providing the outcome of the automatic AF-detection algorithm didn't ameliorate the 497 498 interpretation skills of the general practitioners⁵⁰.

499

A main challenge of the increasing use of remote ECG devices is their burden on

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Normal, Space After: 0 pt, Line spacing: single, No bullets or numbering

500	healthcare professionals as a potential consequence of the enormous increase in false positive
501	referrals. For example, it has been shown that a diagnosis of AF could be confirmed by
502	cardiologists in only 34% of cases identified by Apple Watch and up to 65% of cases identified by
503	Kardia Mobile ⁵¹ . Thus, automated diagnosis of AF using mobile devices remains an approximation
504	of the current reference standard. Nevertheless, the demonstrated benefits of mobile devices for
505	early detection of AF in those with unknown history and in need of oral anti-coagulation is
506	undeniable. Chan et- al. report that the number needed to screen for a new AF diagnosis in adults
507	older than 50 years of age is 145 at device detection rate of 2.6% and positive predictive value of
508	65% ⁵² . To interpret these numbers, if a cardiologist prescribes a device for 145 patients, a mobile
509	device will identify roughly 3 patients with possible AF. Among those three: one would be a false
510	positive referral; one would be a known history of AF; and one would be a newly diagnosed AF
511	case. Yet, continuous refinement of current automated ECG interpretation algorithms, including
512	the adoption of artificial intelligence (AI)-enabled classification algorithms, can play a significant
513	role in improving the specificity of device-provided AF diagnosis and, hence, in reducing the
514	absolute number of false positive referrals in the upcoming decade53.
515	Finally, Little little has been done about the integration of remote ECG devices with existing
516	electronic health record (EHR) systems, which brings additional challenges, including the burden
517	of a large amount of information on physicians ⁵⁴ . For example, physicians might have to deal with
518	too many false positive referrals, forcing them to look over great quantities of ultimately
519	unimportant information.
520 521	7-4 <u>5-4</u> Privacy, security and safety

Wearable biomedical devices inherently deal with confidential health information unavailable for public access by healthcare entities, which employ strict methods to enforce related regulations. This raises multiple issues especially with the poor integration of this data with EHR. Izmailova et al.⁵⁵ provides methodological and logistical considerations for the implementation of wearable technologies in clinical trials, presenting data security as one of the **Formatted:** Normal, No bullets or numbering, Tab stops: Not at 0.51" + 0.51"

Formatted: Font: 12 pt

challenges to the deployment of these devices. General issues also include guaranteeing secure
data collection, storage, transmission and receipt, secure account management, and data
encryption and blinding⁵⁵. The practicality and diagnosis automation of the novel portable ECG
devices come at the expense of an increased manipulation of health information, raising questions
about the reliability of the storage medium and the access protocol.

532 One approach to address this problem may be by taking decisions at the hardware level. 533 One can design a "physically secure communication" by opting for human body communication 534 which constrains the signals to be in the body⁵⁶. The large-scale Apple Heart Study examined 535 measures taken to prevent any violation of data security and privacy regulations, such as Title 21 536 Part 11 of the Code of Federal Regulations, and made private health information inaccessible to 537 Apple, the sponsor of the study and the manufacturer of the phone, the watch and the algorithm⁵⁷.

538 **7.57.3 Lack of studies on clinical utility**

539

We found a limited number of research articles examining the clinical utility of remote ECG 540 541 devices. Besides, the median sample size for the reviewed studies is 102.5 subjects (IQR -Hence, the reviewed studies were likely underpewered to detect significant clinical-542 differences, given that the rate of the cardiovascular diseases defined as outcome is low. Only one 543 study was looking at a large-scale sample (78490 subjects)9. More studies should investigate the 644 of remote ECC devices on larger numbers of participants. Conducting power-545 546 analyses before data collection would provide a colid ground to draw statistically significant-A further problem is that, while studies acquired remete and standard ECG (or Helter 547 ;48 monitor) recordings simultaneously^{22, 31, 34, 39}, other studios accomplished this task in a coquential-shion. This lack of rigor might joopardize the findings of the study by a loss of fairness during the 549 f comparison of the outputs of the two systems. Also, there were other articles that presented-550 551 different findings. For instance, as the Apple Watch Series 4 reads the ECG rhythm strip as sinus-552 inconclusive, it was shown that multiple AF events were missed by the algorithm

Field Code Changed

53 where it only provided netifications with a 41% consitivity for AF and reported 31% of the ECGs to

554 be inconclusive⁴⁶.

556 **6** <u>6</u> Conclusion

558 Remote ECG devices have provide incremental benefits in comparison to over the gold-

559 standard 12-lead ECG or <u>ambulatory</u> Holter monitors in multiple aspects. They can facilitate the

accurate and timely diagnosis of heart rhythm abnormalities, namely AF. The potential integration

561 of these tools in clinical settings or at home conditions give an unprecedented flexibility for patients

to self-monitor their heart health without interrupting daily activities or scheduling doctor visits.

563 They also improve diagnostic value by allowing for long-term monitoring, particularly if paired with

564 real-time notification techniques. Multiple aspects and applications of the devices, such as factors-

565 <u>compliance issues to theirfor</u> consistent use, are still to be investigated but their current use is

566 promising 58.

567 **References**

568

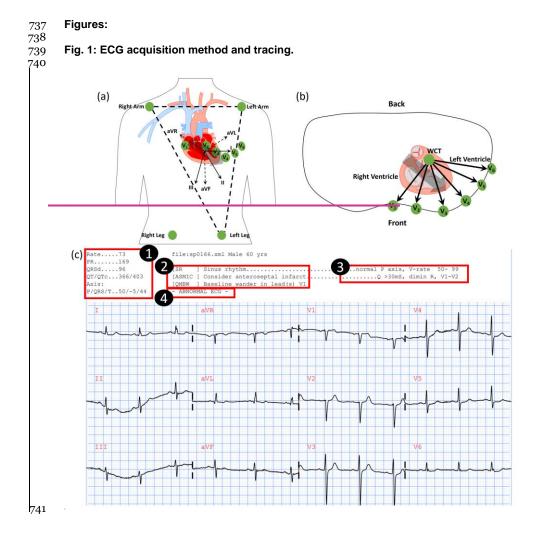
555

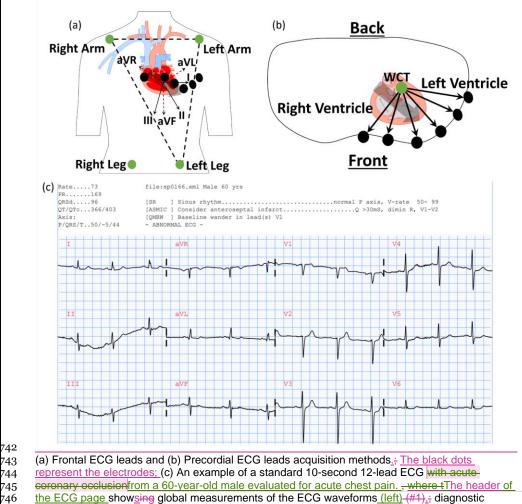
557

- 5691.Ringwald M, Crich A, Beysard N. Smart watch recording of ventricular tachycardia: Case570study. The American journal of emergency medicine 2020;38:849. e843-849. e845.
- 5712.Becker DE. Fundamentals of electrocardiography interpretation. Anesthesia progress5722006;53:53-64.
- Al-Zaiti SS, Faramand Z, Rjoob K, Finlay D, Bond R. The role of automated 12-lead ECG
 interpretation in the diagnosis and risk stratification of cardiovascular disease.
 Cardiovascular and Coronary Artery Imaging: Elsevier; 2022:45-87.
- 4. Mason JW, Hancock EW, Gettes LS. Recommendations for the standardization and interpretation of the electrocardiogram: part II: Electrocardiography diagnostic statement list. Circulation 2007;115:1325-1332.
- 5. Kligfield P, Gettes LS, Bailey JJ, et al. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology. Journal of the American College of Cardiology 2007;49:1109-1127.
- 582 6. Berson AS, Pipberger HV. Electrocardiographic distortions caused by inadequate high 583 frequency response of direct-writing electrocardiographs. American heart journal
 584 1967;74:208-218.
- Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR):
 checklist and explanation. Annals of internal medicine 2018;169:467-473.
- 8. Reed MJ, Grubb NR, Lang CC, et al. Diagnostic yield of an ambulatory patch monitor in patients with unexplained syncope after initial evaluation in the emergency department: the PATCH-ED study. Emergency Medicine Journal 2018;35:477-485.
- 590 **9.** Derkac WM, Finkelmeier JR, Horgan DJ, Hutchinson MD. Diagnostic yield of 591 asymptomatic arrhythmias detected by mobile cardiac outpatient telemetry and autotrigger

Formatted: Normal, No bullets or numbering, Tab stops: Not at 0.42"

looping event cardiac monitors. Journal of cardiovascular electrophysiology 2017;28:1475-1478.


- 59410.Satija U, Ramkumar B, Manikandan MS. A review of signal processing techniques for595electrocardiogram signal quality assessment. IEEE reviews in biomedical engineering5962018;11:36-52.
- 597 11. Clifford GD, Clifton D. Wireless technology in disease management and medicine. Annual
 598 review of medicine 2012;63:479-492.
- 59912.Khunti K. Accurate interpretation of the 12-lead ECG electrode placement: A systematic600review. Health Education Journal 2014;73:610-623.
- Herman MV, Ingram DA, Levy JA, Cook JR, Athans RJ. Variability of electrocardiographic
 precordial lead placement: a method to improve accuracy and reliability. Clinical
 cardiology 1991;14:469-476.
- Pahlm O, Haisty Jr WK, Edenbrandt L, et al. Evaluation of changes in standard
 electrocardiographic QRS waveforms recorded from activity-compatible proximal limb lead
 positions. The American journal of cardiology 1992;69:253-257.
- 5. Samol A, Bischof K, Luani B, Pascut D, Wiemer M, Kaese S. Recording of bipolar
 multichannel ECGs by a smartwatch: modern ECG diagnostic 100 years after Einthoven.
 Sensors 2019;19:2894.
- Behzadi A, Sepehri Shamloo A, Mouratis K, Hindricks G, Arya A, Bollmann A. Feasibility
 and reliability of smartwatch to obtain 3-lead electrocardiogram recordings. Sensors
 2020;20:5074.
- Avila CO. Novel use of Apple Watch 4 to obtain 3-lead electrocardiogram and detect cardiac
 ischemia. The Permanente Journal 2019;23.
- 615 18. Cobos Gil MÁ. Standard and precordial leads obtained with an Apple Watch. Annals of
 616 internal medicine 2020;173:249-250.
- 617
 19. Samol A, Bischof K, Luani B, Pascut D, Wiemer M, Kaese S. Single-lead ECG recordings
 618
 619 ECG differential diagnosis of cardiac diseases? Sensors 2019;19:4377.
- Spaccarotella CAM, Migliarino S, Mongiardo A, et al. Measurement of the QT interval using
 the Apple Watch. Scientific reports 2021;11:1-8.
- Kleiman R, Darpo B, Brown R, et al. Comparison of electrocardiograms (ECG) waveforms
 and centralized ECG measurements between a simple 6-lead mobile ECG device and a
 standard 12-lead ECG. Annals of Noninvasive Electrocardiology 2021;26:e12872.
- Smith WM, Riddell F, Madon M, Gleva MJ. Comparison of diagnostic value using a small,
 single channel, P-wave centric sternal ECG monitoring patch with a standard 3-lead Holter
 system over 24 hours. American heart journal 2017;185:67-73.
- 423. Jorgenson DB, Haynor DR, Bardy GH, Kim Y. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model. IEEE transactions on biomedical engineering 1995;42:172-184.
- 44. Jorgenson DB, Schimpf PH, Shen I, et al. Predicting cardiothoracic voltages during high
 energy shocks: methodology and comparison of experimental to finite element model data.
 IEEE transactions on biomedical engineering 1995;42:559-571.
- Shrinidhi N, Haynor DR, Wang Y, Jorgenson DB, Bardy GH, Kim Y. An efficient tissue classifier for building patient-specific finite element models from X-ray CT images. IEEE transactions on biomedical engineering 1996;43:333-337.
- 637 26. Rho R, Vossler M, Blancher S, Poole JE. Comparison of 2 ambulatory patch ECG monitors:
 638 The benefit of the P-wave and signal clarity. American heart journal 2018;203:109-117.
- 639 27. Varma N, Cygankiewicz I, Turakhia M, et al. 2021 ISHNE/ HRS/ EHRA/ APHRS
 640 collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for 641 Heart Rhythm Professionals. Annals of Noninvasive Electrocardiology 2021;26:e12795.
- 642 28. Witvliet MP, Karregat EP, Himmelreich JC, de Jong JS, Lucassen WA, Harskamp RE.
 643 0644 064
 644 064
 645
 646
 647
 648
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649
 649


- Wong KC, Klimis H, Lowres N, von Huben A, Marschner S, Chow CK. Diagnostic accuracy of handheld electrocardiogram devices in detecting atrial fibrillation in adults in community versus hospital settings: a systematic review and meta-analysis. Heart 2020;106:1211-1217.
- 80. Ramkumar S, Nerlekar N, D'Souza D, Pol DJ, Kalman JM, Marwick TH. Atrial fibrillation detection using single lead portable electrocardiographic monitoring: a systematic review and meta-analysis. BMJ open 2018;8:e024178.
- 452 31. Himmelreich JC, Karregat EP, Lucassen WA, et al. Diagnostic accuracy of a smartphone-operated, single-lead electrocardiography device for detection of rhythm and conduction abnormalities in primary care. The Annals of Family Medicine 2019;17:403-411.
- 655**32.**Goldenthal IL, Sciacca RR, Riga T, et al. Recurrent atrial fibrillation/flutter detection after656ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results. Journal657of cardiovascular electrophysiology 2019;30:2220-2228.
- Koh KT, Law WC, Zaw WM, et al. Smartphone electrocardiogram for detecting atrial
 fibrillation after a cerebral ischaemic event: a multicentre randomized controlled trial. EP
 Europace 2021.
- Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring
 with 14-day novel adhesive patch electrocardiographic monitoring. The American journal
 of medicine 2014;127:95. e11-95. e17.
- **35.** Stavrakis S, Garabelli PJ, Smith L, Albert D, Po SS. Clinical Validation of a Smartphone Based, 6-lead ECG Device. Circulation 2017;136:A15576-A15576.
- Frisch DR, Weiss M, Dikdan SJ, Keith SW, Sarkar K. Improved accuracy and confidence
 with multiple-lead recordings from a single-lead mobile electrocardiographic device. Pacing
 and Clinical Electrophysiology 2019;42:1191-1196.
- Aljuaid M, Marashly Q, AlDanaf J, et al. Smartphone ECG monitoring system helps lower
 emergency room and clinic visits in post–atrial fibrillation ablation patients. Clinical
 Medicine Insights: Cardiology 2020;14:1179546820901508.
- **38.** Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Journal of the American College of Cardiology 2018;72:2231-2264.
- 89. Spaccarotella CAM, Polimeni A, Migliarino S, et al. Multichannel electrocardiograms
 obtained by a smartwatch for the diagnosis of ST-segment changes. JAMA cardiology
 2020;5:1176-1180.
- 677 40. Strik M, Caillol T, Ramirez FD, et al. Validating QT-interval measurement using the apple
 678 watch ECG to enable remote monitoring during the COVID-19 pandemic. Circulation
 679 2020;142:416-418.
- Titus-Lay EN, Jaynes HA, Tomaselli Muensterman E, et al. Accuracy of a single-lead mobile
 smartphone electrocardiogram for QT interval measurement in patients undergoing
 maintenance methadone therapy. Pharmacotherapy: The Journal of Human Pharmacology
 and Drug Therapy 2021.
- Frisch DR, Frankel ES, Farzad DJ, Woo SH, Kubey AA. Initial Experience in Monitoring QT
 Intervals Using a Six-lead Contactless Mobile Electrocardiogram in an Inpatient Setting.
 The Journal of Innovations in Cardiac Rhythm Management 2021;12:4433.
- 43. Minguito-Carazo C, Echarte-Morales J, Benito-González T, et al. QT Interval Monitoring
 with Handheld Heart Rhythm ECG Device in COVID-19 Patients. Global Heart 2021;16.
- Reiffel JA, Schwarzberg R, Murry M. Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour Holter monitors for arrhythmia detection.
 The American journal of cardiology 2005;95:1055-1059.
- 45. Diederichsen SZ, Haugan KJ, Kronborg C, et al. Comprehensive evaluation of rhythm monitoring strategies in screening for atrial fibrillation: insights from patients at risk monitored long term with an implantable loop recorder. Circulation 2020;141:1510-1522.
- **46.** Seshadri DR, Bittel B, Browsky D, et al. Accuracy of Apple Watch for detection of atrial fibrillation. Circulation 2020;141:702-703.
- 697 47. Garson Jr A. Clinically significant differences between the "old" analog and the "new"

digital electrocardiograms. American heart journal 1987;114:194-197.

- **48.** Ding EY, Svennberg E, Wurster C, et al. Survey of current perspectives on consumeravailable digital health devices for detecting atrial fibrillation. Cardiovascular digital health journal 2020;1:21-29.
- Pitman BM, Chew S-H, Wong CX, et al. Performance of a Mobile Single-Lead
 Electrocardiogram Technology for Atrial Fibrillation Screening in a Semirural African
 Population: Insights From "The Heart of Ethiopia: Focus on Atrial Fibrillation"(TEFF-AF)
 Study. JMIR mHealth and uHealth 2021;9:e24470.
- 50. Karregat EP, Himmelreich JC, Lucassen WA, Busschers WB, van Weert HC, Harskamp RE.
 Evaluation of general practitioners' single-lead electrocardiogram interpretation skills: a
 case-vignette study. Family practice 2021;38:70-75.
- 70951.Frisch DR. Diagnosing atrial fibrillation by mobile technology: physician decision or device710provision? Vol 106: BMJ Publishing Group Ltd and British Cardiovascular Society;7112020:629-630.
- 71252.Chan N-Y, Choy C-C, Chan C-K, Siu C-W. Effectiveness of a nongovernmental713organization-led large-scale community atrial fibrillation screening program using the714smartphone electrocardiogram: an observational cohort study. Heart Rhythm7152018;15:1306-1311.
- 71653.Siontis KC, Yao X, Pirruccello JP, Philippakis AA, Noseworthy PA. How will machine717learning inform the clinical care of atrial fibrillation? Circulation research 2020;127:155-718169.
- 71954.Brisk R, Bond R, Finlay D, McEneaney D. Personal ECG Devices: How Will Healthcare720Systems Cope? A Single Centre Case Study. Paper presented at: 2019 Computing in721Cardiology (CinC)2019.
- 722 **55.** Izmailova ES, Wagner JA, Perakslis ED. Wearable devices in clinical trials: hype and hypothesis. Clinical Pharmacology & Therapeutics 2018;104:42-52.
- 72456.Xiang J, Dong Y, Xue X, Xiong H. Electronics of a wearable ECG with level crossing725sampling and human body communication. IEEE transactions on biomedical circuits and726systems 2018;13:68-79.
- Turakhia MP, Desai M, Hedlin H, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. American heart journal 2019;207:66-75.
- 73058.Masterson Creber RM, Reading Turchioe M, Biviano A, et al. Cardiac symptom burden and
arrhythmia recurrence drives digital health use: results from the iHEART randomized
controlled trial. European Journal of Cardiovascular Nursing 2021.
- 733 734

698

statements made by the machine and an overall automated interpretation (center)-(#2), and the

corresponding decision criteria (right). -(#3),; and the overall automated interpretation (#4).-WCT:

27

Wilson's central terminal for calculating the ECG signal for the unipolar precordial leads.

742 743

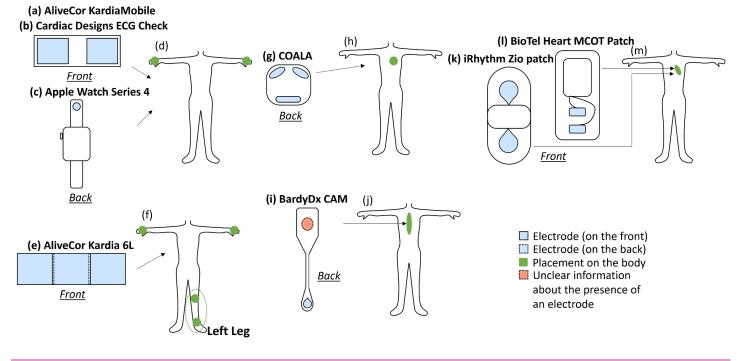
745 746

747

748

749 750 Commented [BZ6]: For Dr Al-Zaiti to answer the comment: Reviewer 1: Figure 1: this ECG does not meet the

universal definition of myocardial infarction criteria STsegment elevation myocardial infarction



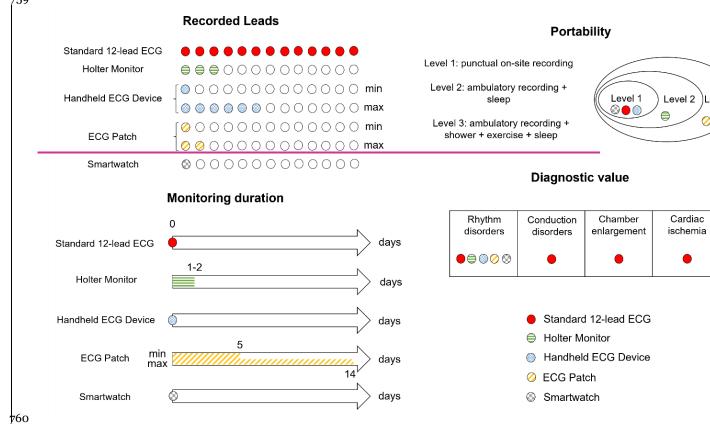
751~ Fig. 2: Commercialized remote ECG devices and their placement.

752

753

Formatted: Numbering: Continuous

(d) the placement of the two sensors of (a), (b) and (c); (f) the placement of the three sensors of (e); (h) the placement of the three sensors of (g); (j) the placement of the sensors of (i); and (m) the placement of the sensors of (l) and (k) to record the ECG signal.



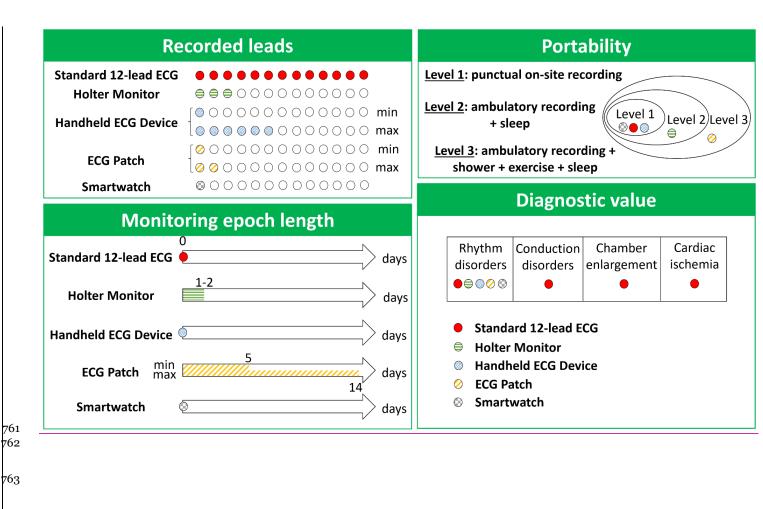
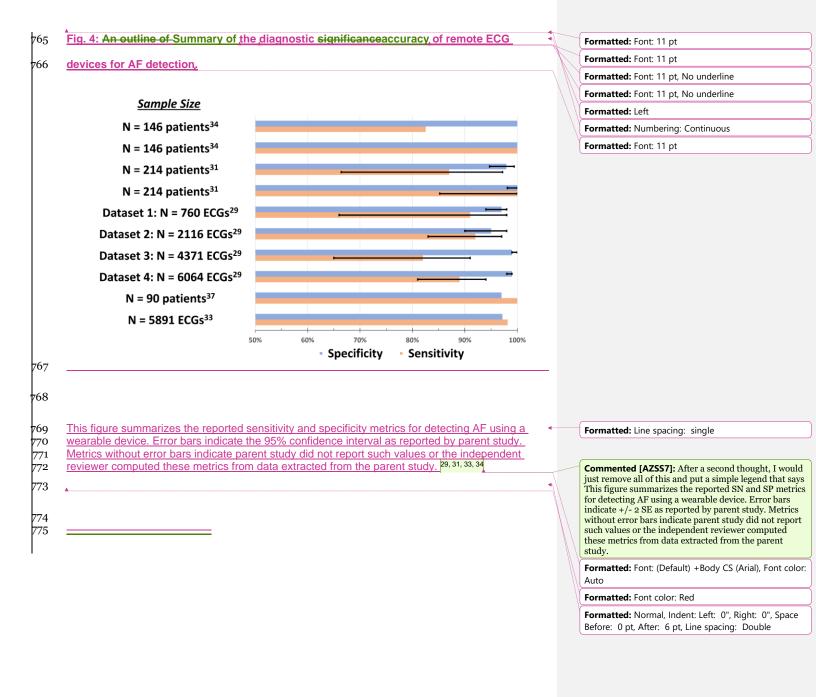



Fig. 3: Comparison of the features of standard vs. remote ECG monitoring systems.

Formatted: Numbering: Continuous

Formatted: Indent: Left: 0"

Table 1: Examples of Remote ECG Devices

Remote ECG Device	Number Of ECG Leads	Continuous Monitoring Duration	Real-time	Require prescription?	Data storage and manipulation	Diagnostic claims
Handheld device		•			·	
AliveCor KardiaMobile	1 lead	NA	Yes	No	Stores data on the phone or emails it to doctor	Detects Atrial Fibrillation, Bradycardia,
AliveCor Kardia 6L	1 lead/6 leads	NA	Yes	No	Provides secured cloud storage and cardiologist reviews	Tachycardia, Sinus Rhythm with SVE, Sinus Rhythm with Wide QRS, and Sinus Rhythm with PVCs
Cardiac Designs ECG Check	1 lead	NA	Yes	No	Stores and transmits the ECG data to a medical professional via a secure cloud server or email for users with a prescription	Displays normal, Irregular HR, Unable to read
COALA	2 leads	NA	Yes, with on demand ECG reports	Yes	Recordings are easy to access with automatic interpretation and real-time r ports in the cloud based COALA Care portal	Diagnoses symptomatic arrhythmias (9 of the most common arrhythmias) or murmurs, P-wave based AF detection
Patch					·	
BardyDx CAM	1 lead	14 days	No	-	Upload data to the Cloud through a secure web- based portal	P-wave centric sternal ECG monitoring
BioTel Heart MCOT Patch	2 leads	5 days	Yes	Yes	Data transferred to trained technicians and look for specific heart activity 24/7 and may contact your health care professional,	Assists in diagnosing certain heart arrhythmias

					clinical reports are avail- able to your clinician during and at the end of your service			
iRhythm Zio patch	1 lead	up to 14 days	No	Yes	-	Generates main findings in a report		
Smartwatch	Smartwatch							
Apple Watch Series 4	1 lead	NA	Yes	No	Saves the results (ECG and analysis) in the Health app of the iPhone and can be shared as a PDF with the doctor	Classifies the recording as sinus rhythm, bradycardia, tachycardia, or atrial fibrillation or as inconclusive		