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Abstract:  

 

Background: Little is known about neural oscillatory dynamics in first episode psychosis. 

Pathophysiology of functional connectivity can be measured through network activity of alpha 

oscillations, reflecting long-range communication between distal brain regions. 

Methods: Resting magnetoencephalographic activity was collected from 31 first episode 

schizophrenia-spectrum psychosis individuals (FESz) and 22 healthy controls. Activity was 

projected to the realistic cortical surface, based on structural MRI. The first principal component 

of activity in 40 Brodmann areas per hemisphere was Hilbert transformed within the alpha 

range. Non-negative matrix factorization was applied to single trial alpha phase locking values 

from all subjects to determine alpha networks. Within networks, energy and entropy were 

compared.  

Results: Four cortical alpha networks were pathological in FESz. The networks involved 

bilateral anterior and posterior cingulate; left auditory, medial temporal, and cingulate cortex; 

right inferior frontal gyrus and widespread areas; and right posterior parietal cortex and 

widespread areas. Energy and entropy were associated with the PANSS Total and Thought 

Disorder factors for the first 3 networks. Additionally, the left posterior temporal network was 

associated with Positive and Negative factors and the right inferior frontal network was 

associated with the Positive Factor.  

Conclusions: Machine learning network analysis of resting alpha-band neural activity identified 

several aberrant networks in FESz including left temporal, right inferior frontal, right posterior 

parietal, and bilateral cingulate cortices. Abnormal long-range alpha communication is evident at 

the first presentation for psychosis and may provide clues about mechanisms of disconnectivity 

in psychosis and novel targets for non-invasive brain stimulation.  
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Introduction 

  Schizophrenia is associated with disabling symptoms including visual and auditory 

hallucinations, blunted emotion, and deficiencies in attention, decision-making, and working 

memory. The disorder is often chronic and typically emerges in late adolescence and young 

adulthood. The exact pathology remains unknown, and its explication is complicated by the 

progressive course of the disorder (1-3) and the cumulative effects of secondary illness-related 

factors. These confounds are ameliorated by studying individuals near the emergence of 

psychosis within the schizophrenia-spectrum. Definitive diagnoses cannot always be made at 

first episode. Hence, the schizophrenia-spectrum at first episode includes schizophrenia, 

schizoaffective disorder, schizophreniform disorder, delusional disorder, and psychosis not 

otherwise specified (NOS).  

  Schizophrenia involves "disconnection" between neural regions (4-6). Functional 

connectivity is reduced in schizophrenia (7-11) and this reduction may have an anatomical 

component (12-14). For example, schizophrenia is associated with reduced structural 

connectivity in several polymodal hubs and so-called “rich clubs”, centralized hubs at the top of 

the cortical processing hierarchy (15). This disconnection is also evident in functional activity. 

 Electroencephalography (EEG) and magnetoencephalography (MEG) reflect summed dendritic 

fields and provide a high-resolution window into real-time neural network activity. MEG allows 

greater spatial resolution of the cortical sources of neural oscillations because magnetic fields, 

unlike electric fields, are unaffected by intervening tissue boundaries. In combination with 

accurate sulcal-gyral models of individual head shape based on structural MRI, MEG activity 

can be source-resolved to the cortical surface with reasonable spatial resolution of 5-10 mm.  

  Neural oscillations have a known role in coordinating activity in both local brain networks 

(16) and networks connecting brain regions over long distances (17). Changes in overall 

oscillatory activity are observed in schizophrenia (18). Distributed oscillatory networks are 

characterized through spectral frequency phase relationships between cortical regions. The 
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alpha rhythm, though to reflect, in part, information transfer between distal brain regions (19, 

20), is reduced in schizophrenia (11,21).   

 Alpha power was traditionally associated with vigilance and sustained attention, 

representing an underlying idle state of the brain. For example, alpha increases when the eyes 

are closed, and diminishes when the eyes are open (22,23). However, alpha has a role in 

working memory (24-26) and top-down control (27-30). Alpha phase impacts the synchrony of 

neuronal activity both locally and between regions of the brain (31). Additionally, alpha activity 

acts to suppress task-irrelevant processing (31), activate task-relevant processing (29), or both 

(29,32). Thus, in addition to reflecting the general “idling” of cortical areas, alpha likely plays a 

role in long-range communication between distal cortical areas.  

 In that regard, long-distance synchrony in gamma activity between distal cortical areas 

likely involves alpha oscillations that coordinate between areas (33-36). Importantly, attention 

effects are not only associated with the alpha-gamma power anti-correlation, but also with 

cross-frequency coupling. Gamma band bursts entrain to alpha phase, such that sensory 

gamma bursts become locally organized via PFC-controlled alpha modulations (37). Thus, 

alpha plays a role in modifying sensory processing via input from executive and other distributed 

areas. We therefore selectively targeted alpha oscillations for analysis of distributed networks, 

as it is a biologically viable, empirically demonstrated coordinating frequency between distal 

cortical areas.  

 We used alpha phase-locking (38) as an indicator of functional connectivity between 

regions during the resting state. We assume that there are multiple overlapping networks within 

the brain that contribute to the observed signal. Thus, we employed a machine-learning 

clustering technique, non-negative matrix factorization (NMF), to subdivide phase synchrony 

graphs into functional networks. NMF, traditionally used in applications such as image 

recognition (39), genetics (40), and natural language detection (41), has previously been used to 

investigate neural differences between subject groups using fMRI (42). We determined the 

energy and entropy of these networks to provide network-specific information on alpha 



5 

irregularity in schizophrenia. Energy measures the overall quantity of information transfer in a 

system and is akin to the power of the signal that is being communicated.  Entropy represents 

the order/disorder of communication and information transfer within each network and measures 

the degree of complexity in the neural signal. We specifically aimed to determine networks of 

interest by relatively light, data-driven computational methods to identify promising network 

features for future in-depth studies of pathology in early course psychosis, and for potential 

development of optimal patient-specific precision medicine treatments targeting specific circuits.  

 

Methods and Materials 

  Participants were 31 first episode schizophrenia subjects (FESz) and 22 healthy controls 

(HC), group matched for age, gender, and estimated premorbid IQ. FESz and HC differed on 

SES and MATRICS overall scores, consistent with the deleterious effects of psychosis on 

functioning and cognition. Parental SES was significantly lower in the FESz (Note: None of the 

energy or entropy measures reported below correlated with parental SES in either group.). 

Seven FESz were unmedicated. (See Table 1 for demographic and clinical data). This study 

was approved by the University of Pittsburgh Institutional Review Board (IRB). All subjects 

provided informed consent and were paid for participation.  

Five minutes of eyes open resting MEG data were collected in a magnetically shielded 

room. We acquired resting state data with eyes open as we were interested in entropy 

measures of network-level activity, and spectral entropy is greatest in eyes-open EEG (43). Both 

EEG and MEG were recorded, but only the resting MEG is reported here. MEG data were 

recorded using a 306-channel whole-head MEG system (Elekta Neuromag) with a sampling rate 

of 1000 Hz (online bandpass filter = 0.1-330 Hz). Bipolar leads were placed above and below 

the left eye (VEOG) and lateral to the outer canthi of both eyes (HEOG). Bipolar ECG leads 

were placed just below the left and right clavicle. Four head position indicator (HPI) coils were 

placed between electrodes on the surface of the EEG cap, and locations (relative to the nasion 

and preauricular points) were recorded using a 3D-digitizer (ISOTRAK; Polhemus, Inc., 
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Colchester, VT). Head position was tracked continuously throughout the experiment. Subjects 

were instructed to fixate upon a central cross for the duration of the test.  

Structural MRI was obtained for use in MEG source modeling. Sagittal T1-weighted 

anatomical MR images were obtained using a Siemens TIM Trio 3 Tesla MRI system with a 

multi-echo 3D MPRAGE sequence (TR/TE/TI = 2530/1.74, 3.6, 5.46, 7.32/1260 ms, flip angle = 

7°, field of view (FOV) = 220 x 220 mm, 1 mm isotropic voxel size, 176 slices, GRAPPA 

acceleration factor = 2). 

  Head movement correction was completed using Elekta MaxMove and external noise 

was reduced via the temporal extension of Signal Space Separation (44) implemented in Elekta 

MaxFilter. Eye-blink and heartbeat artifacts were removed using Adaptive Mixture Independent 

Component Analysis (45,46) implemented in EEGLab. The MEG sensor locations were 

registered to structural images using MRILab (Elekta-Neuromag Oy, Helsinki, Finland). The 

locations of sources were constrained to the gray/white matter boundary segmented from the 

structural MRI data using Freesurfer (http://www.surfer.nmr.mgh.harvard.edu). This boundary 

was tessellated into an icosohedron with 5 mm spacing between vertices, resulting in ∼5000 

current locations per hemisphere. A forward solution for vertices was modeled as a single 

sphere. Source activity was then estimated from 204 planar gradiometers using Minimum Norm 

Estimation (MNE) (47). The noise covariance matrix and forward solution were used to create a 

linear inverse operator using a loose orientation constraint of 0.4 (48), with depth weighting 

applied. Sensor covariance was estimated from MEG data collected without a subject in the 

magnetically shielded room on the same day as resting-state acquisition. Data from individual 

subjects were then morphed into a standard space (fsaverage) prior to functional connectivity 

analysis, with 5 mm smoothing. 

 For data reduction, following MEG cortical surface source projection, the cortical surface 

was parcellated into 80 Brodmann areas (see Figure 1, processing pipeline). The first principal 

component across the spatial dimension of the signals from each area was used to represent 
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regional cortical activity. These 80 component signals were bandpass filtered into the alpha 

band (8-12 Hz), using a 20th-order Butterworth bandpass filter applied bidirectionally to achieve 

zero-phase filtering. Nominal break frequencies were chosen so that after the zero-phase 

filtering, the true break frequencies would be at 8 and 12 Hz. Synchrony was estimated between 

phases of alpha for each pair of Brodmann areas using single-trial phase-locking values (S-PLV) 

(38). The calculation of S-PLV results in lower temporal resolution when compared to multi-trial 

PLV but is appropriate for estimating phase-locking between rest-state signals that lack event-

initiated epochs. S-PLV is defined as: 

S − PLV(t)  =   |
1

δ
  ∫  𝑒−𝑗(𝜙1(𝜏)−𝜙2(𝜏)) 𝑑𝜏

t+
δ

2

t−
δ

2

|, 

where δ is the width of the window, typically chosen between 6 and 10 times the length of the 

mid-band period (38). Non-overlapping windows of 600ms were chosen, corresponding to δ = 6 

times the mid-alpha band period of 100ms. The instantaneous phase 𝜙 of component signals 

was taken to be the phase of the analytic signal obtained using the Hilbert Transform (49). 

These S-PLV were then used to create a weighted, undirected connectivity graph C for each 

time window (50). The nodes of C correspond to Brodmann areas and the edges represent the 

S-PLV, taken to be the functional connectivity, between pairs of Brodmann areas. In total, T 

connectivity graph matrices C of size (b x b) are generated for each S subjects, where T, S, and 

b are the number of time windows per subject, subjects, and Brodmann areas, respectively. 

  To extract information from these connectivity graphs, the non-negative matrix 

factorization (NMF) technique was used. NMF is an unsupervised machine learning algorithm 

that can be used to decompose an input matrix A into two components: a matrix W of bases, or 

subgraphs, and a matrix H of their corresponding contributions to the input matrix A (39). 

Connectivity graphs were combined to serve as the input matrix (A) for NMF which yielded 

subgraphs (W), taken to be functional resting-state alpha networks, and associated timeseries of 

contributions (H), taken to be the relative temporal activation of each of these networks. As the 

synchrony graphs are undirected, all functional relationships were described in a single input 
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matrix A by unwrapping and concatenating the lower triangular of each S-PLV connectivity graph 

C, resulting in matrix A having dimensions (b*(b-1)/2 x N), where N is the number of time 

windows over all subjects, S multiplied by T. 

 Factorization was completed using the sparse, alternating non-negativity constrained 

least squares approach (51) that is given by the minimization: 

min
W,H

1

2
{‖𝐴 −𝑊𝐻‖𝐹

2 + 𝜂‖𝑊‖𝐹
2 + 𝛽∑‖𝐻(: , 𝑐)‖1

2

𝑁

𝑐=1

} , 𝑠. 𝑡.𝑊,𝐻 ≥ 0, 

where ‖𝑋‖𝐹 is the Frobenius norm given by √∑ ∑ |Xi,j|
2n

j=1
m
i=1 , ‖∙‖1 is the ℓ1-norm given by 

∑ |Xi|
n
i=1 , and H(: , c) is the cth column of H. Parameters β and η act to regulate the values in the 

subgraphs W and activations H, ensuring sparsity of the result while bounding the size of output 

values. The choice of β as 0.01 and 𝜂 as the square of the maximum value in A was used as 

these have been shown to be robust values for these parameters (42,52). The sizes of W and H 

are (b*(b-1)/2 x k) and (k x N) respectively, where k is the number of functional networks, which 

was chosen by performing NMF iteratively for increasing values of k and selecting the inflection 

point, or “elbow”, in the reconstruction residual sum of squares (RSS) error curve (51) (Figure 

2A). This is the point after which increasing the number of functional networks yields diminishing 

returns on model fit. Computationally, this was taken to be the point of first large change in 

curvature (Figure 2B), or more specifically, the point at which the smallest ratio of the curvature 

to previous curvatures was maximized (Figure 2C). This method was intended to provide a 

repeatable and conservative way to prevent over-fitting of the model. 

 The NMF algorithm was initialized using non-negative double singular value 

decomposition (NDSVD), which allows for improved factorization speed and provides stable 

outputs (53). NDSVD is best implemented on sparse inputs, and rather than apply an arbitrary 

threshold, sparsity of connectivity graphs C was obtained using a threshold from surrogate data 

analysis. The threshold was taken to be the 95th percentile of the maximum S-PLV generated 

from 500 pairs of independent white-noise surrogate signals. Previous studies including 
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measures of synchrony have used white-noise surrogates to determine thresholds and have 

shown this method to be equivalent to other, more computationally heavy methods such as trial-

shifted and phase-shuffled surrogates (54,55). Connectivity above what is seen in the surrogate 

data is likely to “real”, not just the result of noise or random chance. This, this method identifies 

a reasonable threshold value above which connectivity is unlikely to reflect the result of random 

error or noise. 

 The energy (ENG) and entropy (ENT) of the activations associated with each functional 

network were calculated for individual subjects (42). The energy of a given network, which 

represents overall activation, was calculated as: 

ENG =∑wi
2

N

i=1

, 

where N is the length of the activation vector w. The functional network entropy, which quantifies 

the dynamics of activation, was then calculated using the histogram-based method (56) as: 

ENT =∑−𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)

N

i=1

, 

where P(x) is the probability function derived from the histogram. Because the measures were 

not normally distributed (max kurtosis > 30 for each measure), the energy and entropy of 

functional network activations were compared between FESz and HC using the Wilcoxon rank-

sum test. Because this is the first examination of alpha functional networks derived in this 

fashion, we adopted more liberal initial exploratory analyses, where p <.05 was considered 

meaningful; however, these data were additionally corrected for multiple comparisons with the 

Benjamini-Hochberg procedure with a false discovery rate 0.15. To demonstrate the utility of 

factorization in the analysis, these energy and entropy calculations and comparisons were also 

performed on the data after filtering into the alpha band (i.e. prior to phase synchrony 

estimates). A correlation between whole-brain signal power (sum of the magnitude of the Fourier 

Transform across regions) was also performed. These whole-brain analyses were similarly not 
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normally distributed, so comparisons between subject groups were also made using the 

Wilcoxon rank-sum test.  

  Correlations between network activation measures and symptoms were investigated with 

Spearman’s rank order correlations. Due to the large number of possible correlations between 

energy and entropy for separate functional networks and individual symptoms, clinical measures 

were reduced to total, positive, negative, and thought disorder factors of the PANSS. (Significant 

associations with items are presented in supplemental material, but caution must be used in 

interpretation.)  

 

Results 

  No significant difference between subject groups was observed in whole-brain alpha 

energy (p = 0.203), entropy (p = 0.401), and power (p = 0.267). Using NMF, 17 functional 

networks (Figure S1) were determined. Comparisons between groups revealed 4 functional 

networks that exhibited significantly lower median energy in FESz, one of which survived 

correction for multiple comparisons (Figure 3). These were Network 6, which consists primarily 

of distributed alpha coherence in the cingulate cortex; Network 12, which connected left 

hemisphere auditory cortex with left medial temporal lobe and posterior cingulate; Network 13, 

which consist of a hub in right inferior frontal cortex Broca’s homologue (BA44 & 45) hub with 

widespread connectivity (bilateral cingulate, bilateral lateral and medial temporal lobes, right 

hemisphere prefrontal cortex, and bilateral sensorimotor cortex); and Network 14, a network 

between posterior cingulate cortex and bilateral superior parietal lobules. Of these four 

networks, the cingulate network, right inferior frontal network, and the posterior cingulate 

superior parietal network also showed significant decreases in median activation entropy in 

FESz. Changes in both entropy and energy of the posterior cingulate superior parietal network 

survived correction for multiple comparisons. 

 Within HC subjects, energy and entropy measures across networks were highly 

correlated (rho’s 0.48 to 0.99, all p’s <.05). In FESz, energy and entropy were correlated 
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amongst most networks, although Network 6 (bilateral cingulate) and Network 14 (posterior 

cingulate and bilateral superior parietal cortex) were uncorrelated. In FESz, there were 

widespread correlations between both energy and entropy measures and clinical symptoms for 

all networks except Network 14 (posterior cingulate and bilateral superior parietal cortex, See 

Table 2 and S2). Lower energy and entropy in Network 6 (bilateral cingulate) were associated 

with more total symptoms and greater thought disorder. Lower energy and entropy in Network 

12 (Left posterior temporal) was associated with more total, positive, and negative symptoms 

and greater thought disorder. Lower energy and entropy in Network 13 (right inferior frontal) 

were associated with more total and positive symptoms and greater thought disorder.  

 

Discussion 

  Using a data-driven approach to source-level functional connectivity analysis in alpha-

band MEG data, we identified 17 discrete distributed functional networks based upon phase-

locking (Figure S1). From the analytical side, the observation that NMF extracts reasonable 

brain networks from connectivity graphs is an important methodological advance. From the 

clinical neuroscience side, that several of these data-driven alpha networks were abnormal in 

FESz is an important new lead in understanding the pathophysiology of the disorder. 

  Four distributed networks (Figure 3) displayed lower energy in FESz, indicating less 

coherent alpha activation. The entropy decreases in three of these networks (Networks 6, 13, 

14) suggest the networks also are less variable (more stagnant) in their alpha-band activity. 

Even very early in the disease process, close to the emergence of psychosis in the 

schizophrenia spectrum, distinct distributed cortical networks are impaired, and can be detected 

through aberrant alpha band network dynamics. These abnormalities were isolated through S-

PLV and NMF and could not be determined using simple whole-brain analyses of alpha power 

or activity. Thus, NMF holds powerful potential for use on neural data through unbiased 

identification and isolation of functional networks. 
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 Three of the four abnormal alpha networks were associated with symptoms. From white 

matter-based connectome analyses, the bilateral cingulate (Network 6) comprises multimodal 

cortex and cortical hubs (57) and is one of the “rich club” areas of the brain (15). Thus, it is 

perhaps not surprising that resting pathophysiology in this network was associated with overall 

symptom severity, but particularly with thought disorder (Table 2). The left posterior medial and 

lateral temporal cortex network (Network 12) likewise was associated with thought disorder and 

overall, positive, and negative symptom severity. The associations of left posterior temporal 

cortex and positive symptoms and thinking disturbance in schizophrenia are well documented 

(58-60), as is the association of medial temporal pathology with paranoia and other psychosis-

like symptoms (61,62). The right inferior gyrus hub (Network 13) comprises the right hemisphere 

analogue of Broca’s area in ventrolateral PFC and is thought functionally to serve two main 

roles, stopping motor responses and inhibiting orienting to distracting stimuli (63,64). Adjacent 

right BA47 may be involved in response-reward processing, including delayed reward versus 

reward magnitude tradeoffs and risky choices (65,66). Schizophrenia is associated with 

increased distractibility and perseveration, likely reflecting some involvement of right vlPFC; for 

example, fMRI studies in schizophrenia show reduced right IFG activity on a stop-signal task 

(67) and reduced coupling of dorsolateral PFC working-memory areas and right IFG (among 

other PFC areas) when distractors were presented (68). Finally, the bilateral posterior cingulate 

and superior parietal network (Network 14) was associated fairly exclusively with emotional 

withdrawal. Although both the posterior cingulate and parietal cortex serve as cortical hubs (56) 

and “rich club” areas (15), the right parietal lobe is also associated with social behavior and 

spatial attention. Thus, these networks defined solely on the basis of source-resolved alpha 

phase-locking appear to reflect reasonable physiological networks derived via white matter-

based connectomics that are known to be compromised functionally and structurally in 

schizophrenia. It is reasonable to suggest that dysfunction of alpha communication between 

distal brain areas may play a role in some of the more complex behavioral symptoms in 

schizophrenia, such as thought disorder. Understanding the network architecture of a 
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biologically validated information carrier frequency (alpha) is an important first step in isolating 

the systems-level pathophysiology in psychosis. 

 The analysis in this study is limited by spatially down-sampling into Brodmann areas to 

reduce dimensionality. This regional simplification of the brain could explain why alpha activity 

could be substantially represented with 17 functional networks. The development of improved 

processing techniques, especially those that would decrease the computation load of S-PLV and 

NMF in higher-dimension datasets would allow for analysis of the brain with less spatial down-

sampling. This would remove any biases that may be present due to the Brodmann atlas as well 

as potentially facilitate in better localization of neural differences between the subject groups. 

Methods to perform spectral connectivity across all nodes have been developed (69), and do not 

suffer from potential issues associated with spatial down-sampling. However, accurate 

functional parcellation of the cortex is needed to translate these purely spatial networks into 

physiological systems. Currently we are developing methods to parse the brain based on the 

Human Connectome Project multimodal functional parcellation (70). This would be a significant 

improvement over anatomic sulcal-gyral schemes (i.e., Desikan, Destreaux methods) and our 

gross cytoarchitechtonic approach using down-sampled Brodmann areas. A major difference 

between our study and others is that resting state alpha activity is typically lower in 

schizophrenia patients, but that was not the case here. It is possible that differences in alpha 

power arise later in the disease, as these were all individuals at the first episode of psychosis. 

However, other studies (e.g.73) showed reductions of relative alpha power in EEG at Cz, 

suggesting the abnormalities is present early in disease course. Eyes open resting activity may 

identify functional networks that differ from on-task functional networks. Future studies should 

compare alpha power between eyes-open and eyes-closed conditions as well as active and 

passive tasks, and compare EEG vs MEG cortical surface resolved measures. Further, such 

work should investigate changes longitudinally and across the disease course, and compare 

network segmentation using NMF to other methods such as Graph-ICA (71) on the same MEG 

dataset. Additionally, while the sample size in this study is similar to others in the literature, it 
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limits the statistical significance of the findings and may allow for over-fitting of outliers in the 

model. Although this is a relatively large sample of FESz (n=31), it was underpowered for the 

large number of correlations performed. Thus, caution in interpretation, and replication in an 

independent sample are needed. However, because this is the first study to use NMF to derive 

data-driven functional networks in alpha activity showing aberrations in FESz, it is important to 

examine the full rich set of clinical symptoms in this special sample; 1% of the population at their 

first transition to psychosis. We leave it to the informed reader’s discretion to interpret the 

correlations reported for individual items. Medication may affect brain network function, and we 

are unable to address that possible confound. Still participants were only acutely medicated and 

had less than 2 months lifetime exposure, so chronic medication effects are unlikely. Future 

work should assess these possible confounds now that candidate systems have been identified. 

 Overall, we computationally derived neurophysiological networks that display deficient 

alpha activity in FESz. These abnormalities were associated most strongly with overall symptom 

severity and thought disorder, with the left posterior temporal network also associated with 

positive and negative symptom factors. By isolating these irregular networks hidden within the 

context of undetectable differences in global alpha activity, NMF proves to be a promising tool to 

isolate communication networks for detailed analyses of systems-level pathophysiology. Using 

methods that are relatively light computationally, it is possible to identify networks and regions 

that show selective dynamic abnormalities close to the emergence of psychosis, which may in 

turn be central to the etiology of psychopathology. These network locations and dynamic 

abnormalities also provide features to train future data-driven algorithms and guide investigation 

of pathology in more complex features. Alpha activity, one of the basic carrier frequencies in the 

brain that establishes distributed cortical circuits, identifies core areas of pathophysiology in the 

early schizophrenia spectrum. 
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Figure Legends: 

Figure 1. Processing pipeline. Magnetoencephalography (MEG) data (A) were spatially down-

sampled into Brodmann areas using Principal Component Analysis (B), bandpass filtered into 

the alpha band, and transformed into the analytic signal using the Hilbert transform (C). Analytic 

signal phases were compared using single-trial phase-locking values (S-PLV) to generate 

functional connectivity graphs in a windowed manner for each subject (D). Non-negative matrix 

factorization (NMF) was used iteratively to determine networks (E). The optimal number of 

networks was determined using error analysis (F). Finally, energy and entropy measurements 

associated with each network for every subject were determined (G) and compared between 

control and first episode schizophrenia-spectrum (FESz) subject groups (H). 

 

Figure 2. Method for determining number of functional networks. The optimal number of 

functional networks occurs at the inflection point of the reconstruction residual sum of squares 

(RSS) error curve generated from iterative runs of non-negative matrix factorization (NMF) with 

increasing numbers of functional networks (A). This point can be determined as the first point 

with a large change in curvature (B) or, most apparently, as the point at which the minimum ratio 

of curvature to the curvature at previous points is greatest (C). These points are represented by 

red diamonds which correspond to 17 functional networks. 

 

Figure 3. The 4 networks that differentiated healthy individuals from first episode schizophrenia 

spectrum individuals. Networks are represented as a connectivity graph and anatomically on a 

brain model. Control and first episode schizophrenia-spectrum (FESz) group comparisons of 

energy and entropy are also provided. In the connectivity graph, each pixel represents a phase-

locking relationship between two Brodmann areas. Values closer to the diagonal represent local 

communication while values in lower left represent cross-hemisphere communication. To further 

improve an anatomical understanding, dashed lines divide Brodmann areas from different lobes 



 

and are identified at the axes by their hemisphere (R-right, L-left) and lobe (F-frontal, P-parietal, 

T-temporal, O-occipital). The top third of connections by strength are also shown within the 

brain at sagittal, axial, and coronal views. FieldTrip software (72) was used in generation of 

these brain visuals. Energy and entropy values have been normalized between highest and 

lowest observed values across subjects and the p-value associated with the Wilcoxon rank-sum 

test is given. Comparisons with p < 0.05 are in bolded red text. 

 

 

 

 

 

 

  



 

Table 1. Subject demographic and clinical data.  

 FESz HC p 

n (M/F) 31 (20/11) 22 (13/9) 0.69 

Age 21.7 (5.0) 21.7 (3.7) 0.96 

SES 26.9 (13.2) 33.4 (12.5) 0.05 

PSES 39.6 (14.0) 53.3 (7.6) <.001 

WASI IQ 104.9 (15.2) 106.4 (8.6) 0.69 

MATRICS 35.0 (16.6) 49.1 (6.4) <.001 

    

GAS 38.1 (9.2)   

SAPS 6.6 (3.3)   

SANS 10.3 (3.1)   

PANSS Total 76.5 (15.0)   

PANSS Pos 19.4 (5.7)   

PANSS Neg 17.3 (4.8)   

PANSS TD 11.2 (3.2)   

MEDS 205.5 (160.1)   

DUP 36   

 

 

Note: Subject n and sex distributions are number of individuals. Duration of untreated psychosis 

(DUP) is median value in weeks. All other values are mean (sd). Age is in years. SES = 

Socioeconomic status. PSES = parental SES. WASI IQ = Wechsler Abbreviated Scale of 

Intelligence score. MATRICS = Measurement and Treatment Research to Improve Cognition in 

Schizophrenia Consensus Cognitive Battery composite score. GAS = Global Assessment Scale. 

SAPS = Scale for the Assessment of Positive Symptoms Global score. SANS = Scale for the 



 

Assessment of Negative Symptoms Global score. PANSS Total = Positive and Negative 

Syndrome Scale Total score. PANSS Pos = Positive and Negative Syndrome Scale Positive 

Factor score. PANSS Neg = Positive and Negative Syndrome Scale Negative Factor score. 

PANSS TD = Positive and Negative Syndrome Scale Thought Disorder Factor score. MEDS = 

Medication in chlorpromazine equivalents (oral dosages from Andreasen et al 2010 [36], depot 

dosages from Gardner et al 2010 [37]). Significant effects are bolded. 

  



 

Table 2. Spearman’s Correlations of Energy and Entropy with Clinical Measures.  

 

Bilateral 
Cingulate 

(Subnetwork 6) 
NRG      ENT 

Left Posterior 
Temporal 

(Subnetwork 12) 
NRG      ENT 

Right Inferior 
Frontal 

(Subnetwork 13) 
NRG      ENT 

Posterior 
Cingulate- Parietal 
(Subnetwork 14) 

NRG      ENT 

Between-Group 
Differences 

2.03      2.10 
0.04     0.04 

2.36     2.37 
0.03     0.06 

2.35     2.37 
0.02     0.02 

      2.68      2.82 
      0.01*    0.005* 

Correlations with Symptoms 

PANSS Total 
-.40      -.40 

0.04*     0.04* 
-.60      -.61 

0.001*     0.001* 
-.38      -.43 
0.06     0.03* 

-.10      -.08 
0.61     0.69 

PANSS Pos 
-.35      -.30 
0.08     0.14 

-.46      -.45 
0.02*     0.02* 

-.42      -.42 
0.03*    0.03* 

-.18      -.19 
0.38     0.35 

PANSS Neg 
-.22      -.23 
0.29     0.25 

-.54      -.56 
0.005*     0.003* 

-.15      -.22 
0.46    0.29 

-.15      -.13 
0.48     0.52 

PANSS TD 
-.46      -.40 

0.02*     0.04* 
-.54      -.50 

0.004*     0.009* 
-.61      -.66 

 0.001*    <0.001* 
-.25      -.24 
0.21     0.23 

 

Note: Values presented for between-group differences are Z scores, and those presented for 

correlations are Spearman’s rho. NRG = Energy, ENT= Entropy. PANSS Total = Positive and 

Negative Syndrome Scale Total score. PANSS Pos = Positive and Negative Syndrome Scale 

Positive Factor score. PANSS Neg = Positive and Negative Syndrome Scale Negative Factor 

score. PANSS TD = Positive and Negative Syndrome Scale Thought Disorder Factor score. 

PANSS Item scores follow Factor scores. GAS = Global Assessment Scale. Significant p values 

(p ≤.05) are bolded. Significant differences with corrections for multiple comparisons 

(FDR=0.15) are marked with an asterisk. 

 

 


