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Abstract— As different scientific disciplines begin to converge
on machine learning for causal inference, we demonstrate the
application of machine learning algorithms in the context of lon-
gitudinal causal estimation using electronic health records. Our
aim is to formulate a marginal structural model for estimating
diabetes care provisions in which we envisioned hypothetical (i.e.
counterfactual) dynamic treatment regimes using a combination
of drug therapies to manage diabetes: metformin, sulfonylurea
and SGLT-2i. The binary outcome of diabetes care provisions was
defined using a composite measure of chronic disease prevention
and screening elements [27] including (i) primary care visit, (ii)
blood pressure, (iii) weight, (iv) hemoglobin A1c, (v) lipid, (vi) ACR,
(vii) eGFR and (viii) statin medication. We used several statistical
learning algorithms to describe causal relationships between the
prescription of three common classes of diabetes medications and
quality of diabetes care using the electronic health records con-
tained in National Diabetes Repository. In particular, we generated
an ensemble of statistical learning algorithms using the Super-
Learner framework based on the following base learners: (i) least
absolute shrinkage and selection operator, (ii) ridge regression, (iii)
elastic net, (iv) random forest, (v) gradient boosting machines, and
(vi) neural network. Each statistical learning algorithm was fitted
using the pseudo-population generated from the marginalization of
the time-dependent confounding process. Covariate balance was
assessed using the longitudinal (i.e. cumulative-time product) sta-
bilized weights with calibrated restrictions. Our results indicated
that the treatment drop-in cohorts (with respect to metformin,
sulfonylurea and SGLT-2i) may have improved diabetes care pro-
visions in relation to treatment naı̈ve (i.e. no treatment) cohort. As
a clinical utility, we hope that this article will facilitate discussions
around the prevention of adverse chronic outcomes associated
with type II diabetes through the improvement of diabetes care
provisions in primary care.

Index Terms— Causal Inference, Machine Learning, Super-
Learner, Longitudinal Interventions, Chronic Disease Prevention,
Electronic Health Records, Primary Care

I. INTRODUCTION

We may describe the multi-faceted data analytics landscape using
three paradigms: (i) data exploration, (ii) inference and (iii) pre-
diction. Causal methods focus on an inference paradigm in which
hypothetical interventions are constructed, and the philosophical dis-
cussions around “causal methods” can be traced back many centuries
[14]. In this article, our aim was to formulate marginal structural
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models in which we envisioned hypothetical (i.e. counterfactual)
treatment regimes using several machine learning algorithms. In
particular, we constructed the hypothetical treatment cohorts using a
treatment naı̈ve cohort and treatment drop-in cohort. We described the
“treatment naı̈ve” cohort as the absence of treatment regimen while
the “treatment drop-in” cohort as the initiation of treatment post-
baseline [22]. As an example, we considered a hypothetical cohort
in which the type II diabetes patients were not prescribed glucose-
lowering medications during the study period, and we use this cohort
to describe the treatment naı̈ve cohort.

It is essential to distinguish between the etiological and the
intervening genres of causality in medicine [17]. In this article,
we emphasized that the hypothetical treatment of glucose-lowering
medications were not assumed to be etiological with respect to
the diabetes care provisions. Rather the focus was limited to the
estimation of diabetes care provisions in which we intervened on
longitudinal treatment regimes indexed with respect to annual cal-
endar time. There is an emerging focus in causal literature around
precision medicine with individualized treatment regimes [37]. We
characterized the individual-level treatment regimes with respect to
the clinical profile of each patient using the conditional average
treatment effect. In particular, we described the clinical profile of each
patient presenting at primary care clinics within a calendar year using
the time-varying outcome-predictors (i.e. effect modifiers) including
annual laboratory requisitions (e.g. hemoglobin A1c), vaccination
(e.g. influenza), lifestyle information (e.g. smoking documentation),
diagnostic codes and billing codes. Although the marginal structural
model supported the individualized estimation, we chose to simplify
the causal risk difference to population-averaged estimation as the
validity of individualized treatment regimes in causal literature is
often debated [35].

Our aim was to construct hypothetical estimation of diabetes
care provisions (in future) by reducing bias arising due to temporal
confounding and other epidemiological sources. For example, the use
of older glucose-lowering medications (e.g. Sulfonylurea) might have
been associated with worse health outcomes than newer glucose-
lowering medications (e.g. SGLT-2i). We described this phenomena
as “confounding by indication”, and this phenomena coupled with
unmeasured or hidden confounders may thwart our ability to cor-
rectly identify the causal estimates [37]. Although the randomization
procedure in controlled experiments nullifies these causal challenges
whereby the controlled experiments are by design unconfounded
and associations imply causation [13], we need to account for these
causal and statistical challenges when drawing valid estimation from
longitudinal cohorts. This, in turn, allow us to generate reliable
estimation with greater scope of generalizability when the application
of machine learning algorithms is shifted from training sample to test
or validation sample.
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A. Motivation and Knowledge gap

The objective of this article was to demonstrate the application
of SuperLearner using the amalgamation of the machine learning
algorithms in the context of hypothetical interventions for diabetes
care provisions using the primary care electronic health records
(EHRs). Although the hypothetical interventions were not directly
observable in practical sense, the aim of this study was to facilitate
the discussion around the prevention of chronic adverse outcomes
associated with diabetes through the improvement of diabetes care
provision in primary care.

II. MATERIALS AND METHODS

The material section described the data source, and the methods
section is split into two sub-sections: (i) notational framework and
(ii) machine learning algorithms. The notational framework described
the causal notation, followed with identifiability assumptions and the
stabilizing weight function to account for time-dependent confound-
ing process. A collection of diverse machine learning algorithms were
described so that we can construct the stacked estimation using the
SuperLearner framework.

A. Data Source

Diabetes Action Canada’s National Diabetes Repository (NDR)
was created in 2017 with the collective goal of enhancing care among
patients with diabetes. The NDR curated EHRs on patients living with
diabetes across multiple practice-based research networks (PBRNs)
located in Alberta, Manitoba, Quebec, Ontario, and Newfoundland.
As of July 1st 2020, the NDR collected information on 148, 707
diabetes patients distributed across 1, 342 primary care providers
with 145, 558 age and sex matched controls (i.e. patients not liv-
ing with diabetes) for comparative research. The EHRs in NDR
contained patient-level demographics, medical diagnosis, procedures,
medications, immunization, laboratory test results, vital signs and
risk factors. Since the EHRs in NDR comprised of PBRNs across
multiple provinces in Canada, we limited the scope of the data
source for this study to PBRNs within Ontario: (i) University of
Toronto Practice-Based Research Network (UTOPIAN), (ii) Eastern
Ontario Network (EON). This allowed us to control for the possibility
of data heterogeneity arising due to uncontrollable sources (e.g.
data extraction practice; commercialized software of EHR systems;
provincial health regulatory bodies) in EHRs [38]. The estimation
tools developed using the causal methods were more likely to be
generalizable and portable when applied to homogeneous EHR data
sources, as the possibility of distributional shift of the training set was
reduced [1]. Analyses were performed using the R software (v.4.1.0)
in a Secure Analytic Virtual Environment at the Centre for Advanced
Computing located at Queen’s University, Ontario, Canada.

B. Notational framework

We specified the notational framework using the potential out-
comes (i.e. counterfactual outcomes). We introduced the notation
for longitudinal repeated-measures outcomes, followed by sequential
variants of causal assumptions. We formulated a stabilizing weight
function with calibrated restrictions to account for time-dependent
confounding process.

1) Notation: A longitudinal model is considered for n indi-
viduals (i = 1, ..., n) in j discretized calendar time points (i.e.
j = {2016, 2017, 2018, 2019}). We denoted the longitudinal binary
outcome of diabetes care provisions as Yij . The treatment at time
t with respect to the eight combinations of glucose lowering med-
ications (i.e. metformin, sulfonylurea, SGLT-2i) is denoted as Aij .

We denoted the patient demographics with respect to kth baseline
covariates as Xik. We partitioned the time-varying covariates as con-
founders (i.e. common cause of treatment process and outcome pro-
cess) and outcome-predictors (i.e. effect-modifiers). The time-varying
covariates included International Classification of Disease version
9 (ICD9) codes contained in cumulative patient profile (CPP), and
Anatomical Therapeutic Chemical Classification System (ATC) med-
ications codes while time-varying outcome-predictors included vac-
cination, lifestyle information, annual laboratory requisition, billing
ICD9 codes and Ontario Health Insurance (OHIP) billing codes.
We denoted the time-varying covariates as Lijk and time-varying
outcome-predictors as Mijk for kth predictors of ith individual be-
longing to jth calendar year. We constructed the histories with respect
to discrete time points for treatment as Āij = {Ai1, Ai2, ...Aij},
time-varying covariates as L̄ijk = {Li1k, Li2k, ...Lijk}, time-
varying outcome-predictors M̄ijk = {Mi1k,Mi2k, ...Mijk}, and
repeated-measures outcomes as Ȳij = {Yi1, Yi2, ...Yij}. We de-
scribed the latent health status for patients i as Ui. For the sake of
brevity, we suppressed the index for individual i in some instances
with the assumption that the random vector for each individual i is
sampled independently with respect to other individuals.

2) Diabetes care provision: We described “diabetes care provi-
sions” using a modification of the summary quality index inspired by
Grunfeld et al. [11] and Nietert et al. [27]. We defined the longitudinal
primary endpoint for diabetes care provisions as the sum of eight
elements as

(Diabetes care score)j =1(Visit count ≥ 2)j

+ 1(Blood pressure count ≥ 2)j

+ 1(Weight count ≥ 2)j

+ 1(Hemoglobin A1c count ≥ 2)j

+ 1(Lipid count ≥ 1)j

+ 1(ACR count ≥ 1)j

+ 1(eGFR count ≥ 1)j

+ 1(Statin count ≥ 1)j

where 1(·) denoted the indicator function indexed with respect to
calendar year j. We further defined a composite binary endpoint
using the sum of eight elements of diabetes care provisions within a
calendar year: (i) primary care visit, (ii) blood pressure, (iii) weight,
(iv) hemoglobin A1c, (v) lipid, (vi) albumin to creatinine ratio (ACR),
(vii) estimated glomerular filtration rate (eGFR) and (viii) statin med-
ication. We binarized the longitudinal score of (Diabetes care score)j
as

Yij =

{
1 = Adequate service: (Diabetes care score)j ∈ {4, 5, 6, 7, 8}
0 = Inadequate service: (Diabetes care score)j ∈ {0, 1, 2, 3}

.

(1)
3) Identifiability assumptions: Identifiability assumptions were

necessary to ensure that we estimated the causal estimands from
longitudinal studies with observational design. The necessary identi-
fiability assumptions included: (i) sequential exchangeability; (ii) se-
quential postivity; (iii) sequential consistency [13]. We described the
sequential exchangability as “no unmeasured confounding” whereby
the probability of treatment assignment at each discretized time point
j was independent of the potential outcome (with respect to the causal
treatment regimes) conditioned on the observed history. We may write
the sequential exchangability assumption as Y g

j ⊥ Aj |H̄j−1 where
Y g
j denoted the potential outcome under the causal treatment regime

g, and where H̄j−1 ≡ {Āi,j−1, L̄i,j−1,k, M̄i,j−1,k, Ȳi,j−1, Xik}
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Fig. 1. Directed acyclic graph with time-dependent treatment-
confounder feedback

was the observed history up to and including time point j − 1.
We described the sequential positivity assumption as the non-zero
probability of treatment assignment at each time point j conditional
on the observed history H̄j−1. We may write the sequential posi-
tivity assumption as P (Aj |H̄j−1) > 0. The sequential consistency
assumption was used to connect the potential (i.e. counterfactual)
outcome with respect to the causal treatment regimen to the observed
outcome under the same observed treatment regimen. We may write
the sequential consistency assumption as Y g

j = Y ā
j where g = ā.

We used the potential framework to formulate the causal models for
Y ā
j in which we estimate the diabetes care provisions with respect to

causal interventions ā. We assumed that the censoring mechanism
Cij was completely at random in which the censoring process
was independent of discretized time points Tij and longitudinal
outcome Yij , conditioned on observed cumulative history H̄ij as
Cij ⊥ {Yij , Tij}|H̄i,j−1.

4) Model-based dynamic estimation: We used the directed
acyclic graph (Figure 1) to describe the relationships among time-
dependent treatment process Aj , time-varying covariates Ljk, time-
varying outcome-predictors Mjk, baseline covariates Xjk, latent
health status Ui, and repeated-measures outcome Yj . We used the
directed acyclic graph to describe the treatment-confounder feedback,
denoted using red edges in Figure (1) in which the past treatment
Aj−1 affects the current confounder Ljk, and the current confounder
Ljk in turn affects the current treatment Aj . In traditional context,
we account for treatment-confounder feedback using G-methods (e.g.
marginal structural models or G-computation) [25]. In this article,
we described the treatment-confounder feedback using recurrent
prescriptions (discretized annually) for glucose-lowering medications
and appropriate time-dependent confounding features (e.g. 100 most
common diagnostic ICD9 CPP codes and ATC codes). We concep-
tualized the time-dependent confounders Ljk as a surrogate measure
to capture the latent health status of patients.

Since we were interested in the causal estimation of the treatment
process Aij with respect to the outcome process Yij in the presence
of treatment-confounder feedback, we encoded the marginal structural
model with respect to time-varying covariates Li,j−1,k and Yij−1

as
Ψā

ij = Pr(Y ā
ij |Āi,j−1, M̄i,j−1) = Φ

(
āij ,mi,j−1,k

)
(2)

where Φ(·) denoted an arbitrary marginal function of outcome pro-
cess with respect to time-dependent covariates Li,j−1,k and Yij−1.
We noted the exclusion of time-dependent confounders in Equation
(2) because this may bias the direct or indirect treatment effects in
the longitudinal causal structure [31]. In similar fashion, we encoded
the treatment model with respect to time-dependent covariate process
as

Pr(Aij |H̄i,j−1/M̄i,j−1) = Ω
(
xi, lijk, yij , ai,j−1

)
(3)

where Ω(·) denoted an arbitrary function of treatment process. We
employed the cumulative-time weight functions to marginalize the
outcome process with respect to the time-varying covariates process.

5) Dynamic estimands using causal treatment modalities:
We evaluated the hypothetical treatment contrast using “pairwise
estimands” as a change in probability (i.e. causal risk difference) of
receiving optimal diabetes provision within a calendar year with re-
spect to two mutually exclusive treatment modalities. We formalized
the pairwise estimands for hypothetical treatment modality ā under
the dynamic treatment regimen as

Average treatment effect =
(
Ψā

ij −Ψā′
ij

)
× 100% (4)

where Ψā
ij characterized the hypothetical outcome probability with

respect to treatment modality ā, and where ā ̸= ā′. We formulated
the hypothetical treatment modality using multinomial propensity
score equations with 23 = 8 possible treatment combinations within
each calendar year. Since the hypothetical treatment modalities were
indexed with respect to longitudinal calendar year (i.e. j = {2016,
2017, 2018}), this gave rise to (23)3 = 512 possible treatment
regimen. We restricted the hypothetical pairwise estimands to homo-
geneous treatment modalities with respect to longitudinal follow-up
(e.g. only Metformin in 2016, 2017, 2018). This simplification of

counterfactual treatment modalities led to the comparison of
(
8
2

)
=

28 pairwise estimands, and thereby mitigating the combinatorial
explosion of hypothetical treatment regimen indexed with respect to
calendar year (i.e. (23)3 = 512 possible treatment regimen).

6) Stabilizing weight function: We introduced the stabilizing
weight function to reduce the associations between the time-varying
covariate process Lijk and time-varying outcome process Yij . Re-
gardless of the functional relationships imposed using the statistical
learning algorithms, we described the stabilizing weight function with
respect to longitudinal treatment process Aij as

SW Ā
ij =

j∏
t=1

Pr(Ait|H̄i,t−1/{Li,j−1,k, Yij−1})
Pr(Ait|H̄i,t−1)

(5)

where the numerator Pr(Aij |H̄i,j−1/{Li,j−1,k, Yij−1}) described
the stabilizing factor with the exclusion of time-dependent covariates
while the denominator Pr(Aij |H̄i,j−1) ≡ Pr(Aij |Li,j−1, Yij−1)
described the inverse probability of treatment assignment with the
inclusion of time-dependent covariates. Pajouheshnia et al. [28] used
an inverse probability censoring weights to account for informative
censoring in estimating the treatment-naı̈ve risk. The application
of the censoring weights was not considered since the censoring
mechanism was assumed to be completely at random with respect
to the discretized time points and longitudinal outcome, conditioned
on appropriate covariate history. Instead, the stabilized inverse proba-
bility treatment weights (with the calibrated restrictions) were used to
create the pseudo-population in which the time-dependent treatment
process Aij was exogenous. Similar to Dong [9], we truncated the
stabilizing weight function and the calibrated weight function at
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0.5% and 99.5% quantiles to improve the estimation of the marginal
treatment effects [47].

7) Calibration of stabilizing weight function: In survey sam-
pling, the calibration of weight functions is performed to integrate
the auxiliary information in which the distance between the initial
weights and final weights is minimized subject to calibrating restric-
tions [8]. We introduced the calibration framework in this article to
improve the finite-sample covariate balance of the stabilizing weight
function [48]. In particular, we formulated the calibration procedure
for the stabilizing weight function to improve the covariate balance
with respect to the observed time-dependent covariates Lik,t−1 as

n∑
i=1

2019∑
j=2016

SW Ā
ij (λ)

j∑
t=1

[
(Ait − êAit)× Lik,t−1

]
= 0 (6)

where SW Ā
ij (λ) = SW Ā

ij × exp(Kλ) denoted the calibrated sta-
bilized weights with the unknown parameter λ and data-dependent
covariate restrictions in matrix K. In Equation (6), we observed that
the residual of propensity scores (i.e. (Ait − êAit), where êAit =

Pr(Aij |H̄i,j−1)) must be orthogonal to Lik,t−1 since SW Ā
ij (λ)

were constrained to be non-negative. This orthogonality constraint en-
sured that the propensity score residuals are linearly independent with
respect to the time-varying covariates Lik,t−1 in high-dimensional
Euclidean space [32].

Although the stabilized weights in the pseudo-likelihood function
of marginal structural models satisfy the property of unity mean (i.e.
E(SW Ā

ij ) = 1 at each time-point j) [12], this property is not guar-
anteed to hold for calibrated stabilized weights [48]. In additional to
the time-dependent covariate balancing constraints (above in Equation
(6)), we also imposed the restriction for average calibrated weights
to be equal to one at each time-point j as

E(SW Ā
ij (λ)) =

1

n

n∑
i=1

SW Ā
ij (λ) = 1. (7)

We used the calibrated weights satisfying Equation (6) and (7) to
construct the pseudo-population for the longitudinal diabetes cohort
and to assess the covariate balance in hypothetical treatment regimes
with respect to metformin, sulfonylurea and SGLT-2i. The constrained
optimization was implemented using the Barzilai-Borwein gradient
method in R software [43].

C. Machine learning algorithms

In similar spirit to Blakely et al. [5] and Karim et al. [16],
our aim was to estimate the marginal means using the machine
learning algorithms. We were interested in conducting supervised
machine learning using a collection of mainstream statistical learning
algorithms including least absolute shrinkage and selection operator
(lasso), ridge regression, elastic net, random forest, gradient boosting
machine and neural network. We provided a brief summary of each
base learner in the Supplementary Section.

1) SuperLearner: The SuperLearner algorithm combined the
estimation from individual base learner to create a stacked estimation
[7]. Since both causal effects and longitudinal estimation (in the
context of machine learning) can be described as an estimation
problem, the idea was to further improve the causal estimation
using the SuperLearner in which the stacked estimand was indexed
with respect to multiple base learners [41]. In earlier settings, the
SuperLearner algorithm outperformed individual base learners (e.g.
regularization methods, ensemble-based trees or deep learning using
neural networks) to generate an optimal system for estimation [40].

Fig. 2. Analytic workflow for propensity score estimation and Super-
Learner framework

Unlike ensemble based methods (e.g. tree-based), the stacked ensem-
bles in SuperLearner algorithm represents a “diverse group of strong
base learners” with parametric, semi-parametric or non-parametric
assumptions [6]. In similar spirit to Rose [34], we formulated the
SuperLearner algorithm in the context of hypothetical estimation
using the following steps:

1) We selected the brute-force configuration of the hyperparameter
grid search (see Supplementary section) for a collection of
machine learning algorithms: (i) lasso regression, (ii) ridge
regression, (iii) elastic net regression, (iv) random forest, (v)
gradient boosting machine, (vi) neural network.

2) We applied the patient-level data split on training sample to
create 10 mutually exclusive and exhaustive blocks of equal
(or approximately equal) size. We applied the clustered 10-fold
cross-validation (CV) in which the cumulative-time product
treatment weights were preserved for each patient within 10
blocks.

3) We fitted each machine learning algorithm (i)-(vi) using 10-fold
CV with calibrated weights. We used the validation set in the
training sample (using 10-fold CV) to predict the probability of
diabetes provision Ψā

ij(W ) for ith individual at jth time-point
for wth machine learning algorithm.

4) We collected the estimated probabilities Ψā
ij(W ) for the entire

training set and then estimate the CV MSE for each machine
learning algorithm w (see Equation (10)).

5) We estimated the optimal weight combinations for machine
learning algorithms indexed with respect to the weight vector
α using the non-negative least square estimation as

Ψā
ij(SL) =

L∑
l=1

αlΨ
ā
ij(W )

where αl were the SuperLearner weights and Ψā
ij(SL) denoted

the predicted probability of the SuperLearner.
6) We used the estimated weights for each machine learning

algorithm in the SuperLearner to generate estimation in the
held-out test sample.

Since the estimation problem of diabetes provision (in next
calendar year) can be considered as repeated-measures problem,
we performed sample-split on each independent patient units [3].
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Splitting the training and test set at the patient level (rather than at
the repeat observations) preserved the cumulative-time products of
stabilized weight function within each sample split, and reduced the
time-dependent confounding process. We estimated the counterfactual
probabilities (in the test sample) with respect to eight treatment
groups (separately) for each base learner with non-negative weight
contributions to the SuperLearner. The counterfactual probabilities
of the base learners were then amalgamated using the non-negative
least squares to generate stacked estimations for each counterfactual
treatment.

D. Implementation of Machine Learning pipelines

We described the machine learning pipelines using the generation
of longitudinal diabetes cohort and its data splitting into training and
test sample, followed with the discussion on the marginalization of
covariate process to generate hypothetical estimation. We described
the criteria for tuning the hyperparameter grid search of machine
learning algorithms, and criteria to assess the performance of machine
learning algorithms using the appropriate evaluation metrics.

1) Generation of longitudinal diabetes cohort: We constructed
a longitudinal diabetes cohort in which patients were enrolled when
the following conditions were satisfied: (i) patients were at least 40
years of age as of January 1st of each index year; (ii) patient had an
indication in EHRs corresponding to diabetes; (iii) research quality
criteria for EHRs was satisfied [39]; (iv) patient had at least one
visit recorded in billing or encounter fields within calendar year; (v)
type I diabetes patients were excluded [44]. The age restriction for
condition (i) was in agreement with the diabetes provision guidelines
[30], while condition (ii) was borrowed from earlier work on diabetes
phenotype [45]. We imposed administrative censoring where the
patients were censored at the end of the study period (December 31,
2019). We used the open cohort design with time-dependent risk-
set to make hypothetical estimation of diabetes care provision. We
enriched the prediction matrix with elements captured from EHRs
including (i) patient demographics, (ii) diabetes medication classes,
(iii) lab characteristics, (iv) vaccination, (v) lifestyle information, (vi)
ICD-9 billing codes, (vii) ICD-9 CPP codes, (viii) ATC codes and
(ix) OHIP codes.

2) Data splitting: During the data pre-processing step, it was
necessary to prevent “data leakage” whereby the information may
propagate outside the training set [18]. A trivial example of data
leakage may include the use of individual diabetes care elements (e.g.
blood pressure count) of target output (i.e. composite binary index of
“diabetes provision”) as inputs. We mitigated the possibility of “data
leakage” with two data pre-processing steps. First, we generated
a dynamic cohort in which the predictors (including the individual
elements of diabetes care) were time-lagged with one calendar year
with respect to the composite binary outcome of “diabetes provision”.
Second, we performed the data splitting step for training sample and
testing sample prior to re-sampling iterations of machine learning
algorithms. The second step ensured that we did not screen for any
strong predictors prior to 10-fold CV [10]. Using the total number of
unique patients as the sampling unit, we partitioned the longitudinal
diabetes cohort data as 80% training sample and 20% test sample.

3) Feature Engineering: We captured several elements of pri-
mary care EHRs, and incorporated them as high-dimensional pre-
diction matrix using “one-hot” (dummy) encoding. In particular,
we implemented the feature engineering as boolean design matrix
for the following elements in EHRs using the annual calendar-time
discretization: (i) demographics (Xik): age group (as of January 1 of
index year), sex, income quintiles, rurality, deprivation index, ethnic
concentration; (ii) laboratory requisition (Mijk): hemoglobin test,

hemoglobin A1c test, low and high density lipoprotein test, serum
cholesterol test; thyroid-stimulating hormone test, fasting blood glu-
cose test, prostate antigen test, human chorionic gonadotropin (HCG)
test, international normalization ratio (INR) test, 25-Hydroxy Vitamin
D test, Hepatitis B Blood test; (iii) vaccination and lifestyle (Mijk):
influenza vaccination, alcohol consumption, smoking status; (iv)
diabetes medications (Aij): Metformin, Sulfonylurea, SGLT-2i; (v)
100 most common diagnostic International Classification of Diseases
v9 (ICD-9) billing codes (Mijk); (vi) 100 most common diagnostic
ICD-9 cumulative patient profile (CPP) codes (Lijk); (vii) 100
most common medications using Anatomical Therapeutic Chemical
Classification (ATC) nomeclature (Lijk); (viii) 100 most common
Ontario Health Insurance plan (OHIP) billing codes (Mijk). The
feature engineering of these predictors was implemented using binary
encoding scheme and can be described as

Feature(t) =

{
1 if present within calendar year t
0 if absent within calendar year t

(8)

where we indexed each feature with respect to discrete calendar year
t. We constructed a rank-ordered (time-invariant) index for “100 most
common” features using the overall frequency count in NDR. The
rank-ordered ICD-9 diagnostic codes, ATC codes and OHIP billing
codes remained unchanged with respect to each index year from 2016
to 2019.

4) Marginalization of the covariate process: We applied the
machine learning algorithms using two models: (i) treatment model
to estimate the probability of receiving post-baseline treatment; (ii)
an outcome model for “diabetes care provision” in next calendar year
using the inverse probability treatment weights. Prior to the outcome
model, we reduced the associations between covariate process Lijk

and treatment process Aij using the cumulative-time product weight
function with calibrated restrictions as described in Section (II-B.6).
The marginalization with respect to covariate process generated the
hypothetical estimation for diabetes care provision. McCaffrey et al.
[23] estimated propensity score for multiple treatment assignment
using the generalized boosted models. Building on McCaffrey et
al. [23], we applied the ensemble-based gradient boosting trees
to compute the propensity scores for multinomial prescriptions of
glucose-lowering medications: metformin, sulfonylurea and SGLT-2i,
and their corresponding combinations. Using the estimated propensity
scores, we built the stabilized weight functions as discrete cumulative-
time product to account for the time-dependent confounding and then
used the calibrated constraints to improve covariate balance in the
pseudo-population of longitudinal diabetes cohort (as described in
Section (II-B.6)).

5) Tuning hyperparameter grid search: We constructed a hy-
perparameter grid for each machine learning algorithm using the
factorial configuration (described in Supplementary section). We
applied the hyperparameter grid of gradient boosting machine on
the treatment process (i.e. glucose lowering medications) to compute
the cumulative-time product weights. We applied the criteria for the
minimization of MSE to achieve improved estimation of multinomial
propensities of glucose-lowering treatment assignment, which were
then transformed into cumulative-time product weight functions.

Once the calibrated weights were estimated, we used the hyper-
parameter grid of statistical learning algorithms to generate stacked
estimation. In particular, we applied the hyperparameter grid of
base learner to the training (and held-out 10-fold CV) set using
the cumulative-time product weights. We stacked the CV prediction
in the training set and externally validate the performance of the
SuperLearner using the test set.

6) Standardized mean difference: We evaluated the covariate
balance in the pseudo-population based on standardized mean dif-
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ference (SMD). The covariate balance was assessed for k time-
dependent covariates used in the treatment model as

SMDjk =
p̂t − p̂c√

(p̂t)(1−p̂t)+(p̂c)(1−p̂c)
2

(9)

where p̂t denoted the weighted average of treatment drop-in cohorts
while p̂c denoted the weighted average for treatment naı̈ve cohort.
The denominator in equation (9) corresponded to pooled standard
deviation of treatment and control regimen. The covariate balance in
the pseudo-population was assessed using the difference in prevalence
measured relative to the units of the pooled standard deviation [2].

7) Mean square error: We used the mean square error (MSE) to
assess the performance of each base-learner with non-negative weight
contribution to the SuperLearner prediction. We used the predicted
probabilities Ψij(W ) to estimate the MSE for each machine learning
algorithm w as

MSE(w)=

∑n
i=1

∑2019
j=2016(Yij −Ψij(W ))2

N
(10)

where Yij denoted the diabetes provision for individual i at jth time-
point, and N denoted the sample size of training set.

III. RESULTS

We described the results in three subsections: (i) longitudinal
cohort description using annualized aggregation; (ii) covariate balance
using cumulative product time weights; (iii) hypothetical predictions
for diabetes provision in the test sample using the SuperLearner.

A. Cohort description
We noticed an improvement in diabetes provision with respect

to increase in age groups with the exception for 80+ years (see
Supplementary tables). Male patients tended to receive improved
diabetes care with higher prevalence than female patients. A slight
increase in prevalence of diabetes provision was observed in low-
est income quintiles while no difference in prevalence of diabetes
provision was observed with respect to urban or rural regions. The
adequate prevalence of diabetes provision was consistently lower
(for three consecutive years) among patients who did not receive a
prescription for Metformin, Sulfonylurea and SGLT-2i. Any combi-
nation of prescriptions related to glucose-lowering medications led to
improved prevalence of adequate diabetes provision in next calendar
year. Patients who received diabetes screening services in previous
year were likely to receive better diabetes provision in next calendar
year: (i) two or more primary care visits (77% vs 56%), (ii) two or
more blood pressure count (84% vs 61%), (iii) two or more weights
recorded (87% vs 67%), (iv) two or more HbA1c test (87% vs 60%),
(v) one or more lipid panel test (82% vs 64%), (vi) one or more ACR
test (87% vs 69%), (vii) one or more eGFR test (81% vs 57%), (viii)
one or more statin prescription (85% vs 65%).

B. Covariate balance
The stabilized weight function was used to construct a pseudo-

population in which the balance was achieved with respect to the
distributions of the time-dependent covariates in each treatment
regimen. Figure (3) describes the scatter plot between stabilized
weights and calibrated weights for eight treatment groups. The side
panels in Figure (3) show the density plots of stabilized and calibrated
weights with respect to each treatment group. The interquartile range
of (cumulative-time) stabilized weights ranged was 0.111 and 0.395
with mean value 0.270 while the interquartile range of calibrated
weights was 0.308 and 1.363 with mean value 0.890. The correlation

Fig. 3. Scatterplot of stabilized and calibrated treatment weights

between the stabilized weights and calibrated stabilized weights was
noted to be 0.725 (95% CI: 0.722- 0.727). SMD was used to describe
the covariate balance in each treatment cohort (using a combination of
Metformin, Sulfonylurea and SGLT-2i) with respect to the treatment
naı̈ve cohort (i.e. no treatment regimen). Most of the covariates were
within the ±0.20 caliper range with few notable exceptions. Out
of 197 time-dependent covariates, the calibrated weights contained
182 covariates (92.4%) within ±0.20 caliper range of SMD (see
Supplementary Section).

C. Stacked estimation using the SuperLearner algorithm
The SuperLearner had area under the receiver operating curve

(AUROC) estimate of 0.761 (95% 0.758 - 0.765) in the training
sample and 0.773 (95% 0.766 - 0.780) in the test sample. The
AUROC estimates of SuperLearner algorithm were higher than the
AUROC of all base learners (see Supplementary Section).

D. Causal estimation
We generated the causal estimation with respect to homogeneous

treatment groups in 2017, 2018 and 2019. Figure (4) describes the
average treatment effect using causal risk difference between two
mutually exclusive treatment groups in the test sample. In general,
any combination of glucose lowering medications (i.e. metformin,
sulfonylurea, or SGLT-2i) led to improved diabetes care provisions
in relation to treatment naı̈ve groups. As an example, the treatment
group of metformin in each calendar year (i.e. 2016, 2017 and 2018)
improved diabetes care provisions by 1.6% in relation to the treatment
naı̈ve cohort.
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Fig. 4. Hypothetical risk difference using the SuperLearner prediction
in test sample

IV. DISCUSSION

There is a rich history for the application of statistical learning
algorithms in the context of clinical epidemiology research of diabetes
[4]. For example, the machine learning algorithms have been used
to forecast glycaemia in Type 1 Diabetes Mellitus patients [33].
However, less emphasis is placed on research using causal estimation
in diabetes context using EHRs. The overarching aim of this article
was to demonstrate how the causal estimation of diabetes care
provisions (indexed with respect to glucose-lowering medications)
can be applied using an ensemble of machine learning algorithms.
Reasonable covariate balance was achieved using the calibrated
weights with respect to time-dependent covariate distributions in
eight treatment modalities. Our results indicated that hypothetical
treatment regimens (with respect to metformin, sulfonylurea and
SGLT-2i) may improve diabetes care provisions in next calendar year
while accounting for time-dependent covariates using the calibrated
weights.

Kohane et al. [21] described six aspects of critically appraising
EHR research studies: (i) data completeness, (ii) data collection
and handling (e.g. harmonization), (iii) data type, (iv) robustness of
methods against EHR variability, (v) transparency of data and analytic
code, (vi) multidisciplinary collaborations. We incorporated these el-
ements in this article with the hope that it will foster rigor, quality and
reliability for future studies using primary care EHRs. In similar spirit
to Kohane et al. [21], we described the completeness of EHR features
(e.g. specific lab test, OHIP billing codes, diagnostic ICD-9 codes)
with regards to the absence or presence of specific feature within
a discrete calendar year. Unlike other EHR studies, this study only
considered structured EHR information with minimal risk of patient
identifiers in relation to EHR studies using unstructured information
(e.g. free-text for natural language processing task). During the data
collection and harmonisation process, the de-identification procedures
(with detailed documentation) are the cornerstone of building a
national primary care chronic disease surveillance (e.g. diabetes)
network in Canada [19] and we also strive for transparent data
collection, and data harmonization procedures at NDR. We limited
the scope of this study to EHRs within Ontario (using UTOPIAN and
EON data at NDR) to ensure “robustness of methods against EHR
variability”, as data extraction practices across multiple provinces in
Canada are likely to impact the causal estimation due to the presence
of data heterogeneity.

It is necessary to ground the application of statistical learning
algorithms with the formal framework of counterfactuals in causal
inference, as the methodological aspects of “causal prediction mod-
els” are further developed in the literature [22]. Balzer and Petersen
[3] provide practical recommendations on how to integrate statistical
learning algorithms with causal analyses, and we incorporated the

recommended “Causal Roadmap” in this article. For example, it is
necessary to state the research question with appropriate description
of the target population, treatment groups and primary outcome.
We encapsulated the longitudinal causal relationships, along with
potential source of biases (e.g. time-dependent treatment-confounder
feedback), in the directed acyclic graph (as shown in Figure 1). Since
time-dependent confounders existed as a mediating factor in recurrent
treatment process and outcome process, we cannot adjust for the time-
dependent confounders in the outcome model, and instead we must
use the inverse probability treatment weights in marginal structural
models [46].

A. Limitations
There were several notable limitations of this study. We used

non-negative least square estimation as the meta-learning algorithm
for the SuperLearner, although it is possible to use other machine
learning classifiers including regularization methods, other ensemble-
based trees or a neural network [6], [35]. The causal estimands of
diabetes care provisions were generated using statistical algorithms in
R software (v.4.1.0) which did not support the functionality to account
for clustering arising due to repeated-measures outcomes. We may
further diversify the collection of base learners with other machine
learning classifiers including support vector machines, generalized
additive models, multivariate additive regression splines [34]. In
this longitudinal design, we estimated the causal effects using the
discretized (annual) time intervals rather than conceptualizing the
causal effects under the framework of continuous-time. Although the
estimation of causal effects using discrete time-intervals has been
the standard practice in causal literature [31], the emerging research
indicated how the inverse probability estimation using the continuous-
time may produce statistical inference with desirable properties (e.g.
more accuracy (i.e. reduced biased) and more precision (i.e. reduced
standard errors) of the causal estimands) [46].

The implementation of machine learning algorithms were often
considered as “black box” due to their complexity. We may benefit
from the incorporation of several recent advancements in machine
learning for generating longitudinal causal inference, and notable of
which includes automated machine learning and interpretable ma-
chine learning [6]. Targeted maximum likelihood estimation (TMLE)
is robust to misspecification of either the treatment or the outcome
model [29], and TMLE may be applied to the longitudinal cohort
to ensure proper standard errors in a case when either the treatment
or outcome model is misspecified [24], [41]. It might be appropriate
to construct confidence intervals of causal estimands using targeted
bootstrap (or its bias-corrected analogue) which is known to be robust
to model misspecification and also satisfy the regularity conditions
of ensemble learning [42]. As an extension to this work, high-
dimensional propensity score (HDPS) algorithm can be applied in
this longitudinal cohort when predicting diabetes care provisions with
time-varying treatment and confounders [26]. An appealing feature
of HDPS algorithm includes an improvement in the performance
of causal estimation through proxy adjustment of unmeasured con-
founders [36].

B. Conclusion
This study demonstrated that three common classes of diabetes

medications (SGLT-2i, Meformin, Sulfonylurea) may improve the
quality of diabetes care with respect to the appropriate provision
of primary care resources. Moreover, patients who received diabetes
screening services in previous year were likely to receive improved
diabetes provision in next calendar year. These findings may help to
inform the clinical practice guidelines for diabetes patients in which
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the allocation of primary care services may be designed proactively
[15]. For example, if we may hypothetically predict which patients
with type 2 diabetes, under normal circumstances, would be less
likely to attend for care, do their laboratory tests and/or be prescribed
recommended medications, we may better plan outreach programs
using virtual care in this pandemic [20]. As a clinical utility, we
hope that this study will facilitate discussions around the prevention
of adverse chronic outcomes associated with type II diabetes through
the improvement of diabetes care provision in primary care.
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