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University of Montenegro
Podgorica, Montenegro

Email: {milos, ljubisa}@ac.me

Ervin Sejdić
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Abstract—In this paper we considered windows used for local
vertex spectrum analysis of graph signals. In addition to a review
of the convolution based windowing method, two methods based
on the vertex neighborhood are presented. They are based on
the graph path lengths. In the first one the number of edges in a
path determine window size, while the edge weights are taken into
account in the second method. Signal localization is performed
by using these window functions. Windowing methods are used
for signal local vertex spectrum calculation with a test signal.
Norm one based concentration measure is used for comparison.

Index Terms—graph signal processing, windows, local vertex
spectrum, graph Laplacian

I. INTRODUCTION

Graph signal processing is a challenging, but rapidly de-
veloping, topic. Many real world signals can be considered
as graph signals, i.e., signals defined on a graph. Basic and
advanced graph signal processing techniques are presented in
[1]–[4], and some of its applications in biomedical systems
[5], [6] and big data analysis [7] are best examples of its real-
world potential.

In the case of large signals (graphs), we may not be
interested in the analysis of the entire signal, but rather
interested in its local behavior. A localized signal behavior can
be examined via window functions. An exemplary analysis
is signal averaging in a local neighborhood. This kind of
processing correspond to low-pass filtering in the classical
time-domain signal analysis. Another example could be a
classical time-frequency analysis [8], [9] where we consider a
local signal spectrum. In both examples, window functions are
used in order to perform signal localization in time. Window
functions are often symmetric, with a single maximum value
at a considered time instant. Window functions can be easily
shift in time in order to analyze a signal behavior at arbitrary
time instants.

This concept of signal localization by using window func-
tions can be extended to signals defined on graphs [6], [10]–
[14]. The extension is not straightforward since a simple
operation like time shifting cannot be easily defined in a graph
signal domain. Several solution approaches for this problem
are defined.

A common approach is to utilize the signal spectrum to
obtain window functions for each graph vertex [4]. Another
possibility is to define a window support as local neighborhood
for each vertex [14]. The localization window is defined by
a set of vertices that contain the current vertex n and all
vertices that are close to the vertex n. As in the classical

signal analysis, a window should be narrow enough in order
to provide good localization of the signal properties but wide
enough to produce high resolution.

In this paper, we will focus on the localized vertex spectrum
of a graph signal. The basic concepts are presented in Section
II. Localization methods are analyzed in Section III. The
obtained results are shown in Section IV.

II. GRAPH SIGNALS

Consider a weighted undirected simple graph with N ver-
tices where edge weights are denoted by wnm > 0 for an
edge that connects a vertex n with a vertex m and wnm = 0
if vertices n and m are not connected with an edge.

Edge weights could be defined in many ways. If the
considered graph correspond to the Euclidean network, where
vertices are points in a plane, edge weights could be defined
as the Euclidean distance between corresponding vertices. It is
common that higher wnm values indicate strong connections
and low wnm values indicates weak connections between
considered vertices. Then, we can use a decreasing function of
a distance as edge weights. A common approach is to define
weights as wnm = exp(−τrnm) or wnm = exp(−τr2nm)
where rnm is the distance between considered vertices and
τ > 0 is a constant. If a considered graph corresponds to the
resistive electrical circuit, the edge weights could be defined as
conductances wnm = 1/Rnm, where Rnm is the resistance of
the considered edge [14], [15]. These examples are just two
possibilities for defining the edge weights. We will assume
that edge weights are a-priori defined, in accordance with the
considered application.

Edge weights are often represented in a matrix form

W =


0 w12 w13 · · · w1N

w21 0 w23 · · · w2N

...
...

...
. . .

...
wN1 wN2 wN3 · · · 0

 (1)

The diagonal matrix elements of W are zeros, since the
graph is simple (without loops). The weighting matrix W is
a symmetric matrix since the considered graph is undirected.

Signal x(n), defined at each graph vertex n, is called graph
signal. Signal samples x(n) can be arranged in a N×1 vector
x = [x(1), x(2), . . . , x(N)]T .

The graph Laplacian plays an important role in graph signal
processing. It is defined as

L = D−W, (2)



where D is a diagonal degree matrix with dnn =
∑N
m=1 wnm

on the main diagonal.
The eigenvalue decomposition of the Laplacian matrix reads

L = UΛUT , (3)

where U is a matrix of eigenvectors (eigenvector uk is the
kth column of the matrix U), and Λ is a diagonal matrix with
eigenvalues λk on the main diagonal.

The spectrum of a graph signal is defined as X = UTx,
where the vector X contain spectral coefficients connected to
the kth eigenvalue and the corresponding eigenvector

X(λk) = uTk x =
N∑
n=1

x(n)uk(n). (4)

The inverse transformation is obtained as x = UX, with

x(n) =
N∑
k=1

X(λk)uk(n). (5)

The localized vertex spectrum (LVS) on a graph can be
calculated as the spectrum of a signal x(n) multiplied by an
appropriate window function hm(n)

LV S(m,λk) =
N∑
n=1

x(n)hm(n) uk(n). (6)

It is assumed that the window function hm(n) should be such
that it localizes the signal content around the vertex m.

The inversion, i.e. obtaining a signal x(n) from its local
spectrum LV S(m,λk) is performed by an inverse transfor-
mation and summation over all vertices

x(n) =
1∑N

m=1 hm(n)

M∑
m=1

N∑
k=1

LV S(m,λk)uk(n) (7)

For hm(n) = 1, the localized vertex spectrum is the equal
to the standard spectrum LV S(m,λk) = X(λk) for each m,
i.e., no vertex localization is performed. If hm(m) = 1 and
hm(n) = 0 for n 6= m, the localized vertex spectrum is equal
to the signal for each k and we do not have any spectral
resolution. In the next section, we will show how to create
a set of window functions hm(n) that provide good vertex
localization and good spectral resolution.

III. LOCALIZATION WINDOWS

We will present three methods for defining window func-
tions hm(n) on a given graph. The localization windows will
be illustrated on a simple graph with N = 8 vertices.

A. Method 1

This method is based on the spectral domain localization
windows [10], [11]. In order to define the localized spectrum,
consider two signals x(n) and h(n) on a graph. The signal
h(n) will be used to localize the spectral characteristics of
x(n). Spectra of signals are given by X(λk) and H(λk). For

two signals on a graph and their spectra Parseval’s theorem
holds

N∑
k=1

x(n)h(n) =
N∑
k=1

X(λk)H(λk). (8)

A shift of a signal on a graph can not be extended in a direct
way from the classical signal processing theory. To achieve
this, a generalized convolution operator on a graph is defined.
It is assumed that the spectrum of a convolution y(n) = x(n)∗
h(n) on a graph is equal to the product of signal spectra

Y (λk) = X(λk)H(λk). (9)

The generalized convolution operation x(n) ∗h(n) is equal to
the inverse transform of Y (λk),

y(n) = x(n) ∗ h(n) =
N∑
k=1

Y (λk)uk(n)

=
N∑
k=1

X(λk)H(λk)uk(n).

Let us consider the delta function located at a graph vertex
m and its spectrum. The delta function at the vertex m is
defined as

δm(n) =

{
1 for n = m

0 for n 6= m,
(10)

and the corresponding spectrum is given by

∆(λk) =

N∑
n=1

δm(n)uk(n) = uk(m). (11)

A shift on a graph can be defined as generalized convolution
of the signal h(n) and the delta function located at the vertex
m. Here, we use hm(n) to denote a shifted window. The
window localized at the vertex m is equal to

hm(n) = h(n) ∗ δm(n) =
N∑
k=1

H(λk)uk(m)uk(n). (12)

The window basic function is defined in a spectral domain,
for example, as H(λk) = C exp(−λkτ), where C is the
window amplitude and τ > 0 is the constant that determines
the window width. Windows obtained using this method are
presented in Fig. 1.

B. Method 2

Another approach is to define a neighborhood of the con-
sidered vertex and assume that the window function is zero
outside the considered neighborhood.

The vertex m neighborhood can be defined as a set of
vertices Jm where for each n ∈ Jm exists a path, no longer
than B from the vertex m to the vertex n. B determines
the window support. The length of the shortest path between
vertices n and m will be denoted with pnm. Note that pnm = 1
if there is an edge (a path of length 1) between vertices n ans
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Fig. 1. Method 1: Windows centered at vertices 1, 2, 3 and 7. Window values
at each vertex are presented with vertical red bars. Windows are obtained by
using shift operation defined by generalized convolution.
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Fig. 2. Method 2: Windows centered at vertices 1, 2, 3 and 7. Window
values at each vertex are presented with vertical red bars. For each vertex
window support is obtained as set of vertices that are reachable by at most
two steps form the considered vertex. Vertices that belongs to window support
are shaded.

m. We will assume that m ∈ Jm with pmm = 0. Window
functions can be defined as

hm(n) =

{
0 for n /∈ Jm
1 for n ∈ Jm

(13)

This window correspond to the rectangular window in classical
signal analysis. Better localization can be obtained by using
windows that decay when pnm increases, for example we can
define window values as

hm(n) =

{
0 for n /∈ Jm
exp(−τpmn) for n ∈ Jm

(14)

The window function defined by (14) assumes discrete val-
ues from the set {0, 1, e−τ , e−2τ , . . . , e−Bτ}. Sample windows
are depicted in Fig 2.
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Fig. 3. Method 3: Windows centered at vertices 1, 2, 3 and 7. Window values
at each vertex are presented with vertical red bars. Window support and values
are obtained by thresholding optimal path weight between considered vertex
and remaining vertices. Vertices that belongs to window support are shaded.

C. Method 3

Consider vertices n and m, and all possible paths Pmn from
n to m. The path Pmn is an ordered set of edges (k, l) where
the ending vertex of each edge is the starting vertex of the next
edge. For each path, we can define a path weight as the product
of corresponding edge weights wkl. The maximal product can
be used as a decision criterion whether a considered vertex n
should or should not be included in the localization window
centered at the vertex m. So, the vertex n belongs to the
localization window support with the generalized width hT
if

max
Pm

n

∏
(k,l)∈Pm

n

wkl = vnm ≥ hT , (15)

where Pmn is a path from the vertex n to the vertex m.
If the edge weights are 0 ≤ wkl ≤ 1 then 0 ≤ pnm ≤ 1.

A generalized window width hT ranges from 0 to 1 where 0
produces the widest possible window and 1 gives the narrowest
window.

Note that, as in the previous case, we can define a window
support as Jm and the corresponding window functions as

hm(n) =

{
0 for n /∈ Jm
vmn − hT for n ∈ Jm

(16)

By setting hm(n) = 1 for n ∈ Jm, the window analog
to the classical rectangular window is obtained. For better
localization, we should define window values hm(n) such
that they favor closer and decrease farther vertex samples.
Windows obtained by using this method are illustrated in Fig.
3.

Note that for the windowed signal x(n)hm(n) only M ≤
N samples are nonzero. It may be considered as a classical
zero padded signal. It means that for the reconstruction of this
signal we only need M spectral coefficients LV Sx(n, λk) for
M different values of λk. The remaining coefficients can be



calculated from the system of equations obtained by using the
fact that x(n)hm(n) = 0 outside the window support.

In order to visualize a local spectral content, we should
order vertices in the corresponding graph. This ordering is not
unique and one possible way is to define the order according
to the values of low order eigenvectors of the Laplacian. We
can, for example, try to minimize the number of zerro crossing
in the low order eigenvectors by an appropriate vertices
reordering. This can be achieved by reordering vertices such
that elements of b(n) are nondecreasing where b(n) is defined
as

b(n) =
K∑
k=2

(1 + sign(uk(n)))2−k (17)

where K is the number of considered eigenvectors. Note that
for k = 1, and the connected graph, we have λ1 = 0 and the
corresponding eigenvector is constant.

Finally, the energy of a signal on graph can be localized
without using any window, like in the case of the time-
frequency energy distributions. An example of such a vertex-
frequency distribution is introduced in [17] as

E(m,λk) = x(n)X(λk)uk(n) =
N∑
m=1

x(n)x(m)uk(m)uk(n).

It satisfies the energy marginal properties as well [8], [9].

IV. EXAMPLES

The presented windowing methods are already illustrated on
a simple graph with N = 8 vertices. The graph and windows
centered at vertices 1, 2, 3 and 7 are presented in Fig. 1 for
Method 1, Fig. 2 for Method 2 and Fig. 3 for Method 3.
Vertices that belongs to the window support are shaded.

More complex graph with N = 356 vertices is considered
next. Windows centered at vertices 51, 73, 171, and 279
are presented in Figs. 4, 5 and 6 for Methods 1, 2 and 3,
respectively. Vertices outside window support are presented
with small black dots, while large colored dots represent
nonzero window values. It is evident that support for windows
obtained by Method 1 is the whole graph, while the Methods
2 and 3 support is a subgraph defined as a neighborhood of
the considered vertex.

The local vertex spectrum of a sample signal is presented
in Fig 7. The signal on a graph is presented along with local
vertex spectra obtained by using Method 1, 2 and 3. The sam-
ple signal is obtained as the sum of several delta functions and
several eigenfunctions. It can be concluded that the presented
methods result in very similar vertex spectrum representations,
although Method 3 provides better concentration.

The concentration of the local vertex spectrum representa-
tion is measured using the normalized norm-one [16]

M =

N∑
m=1

N∑
k=1

|LV S(m,λk)|

N max
m,k
{|LV S(m,λk)|}

. (18)

This measure ranges from 1/N for best concentration (only
one nonzero value in LVS) up to N for maximal spread (all
LVS values are constant). For the considered case concentra-
tion measures obtained with Methods 1, 2 and 3 are

M(1) = 8.93

M(2) = 7.20

M(3) = 5.75,

meaning that the best concentration is achieved with Method
3. The window size can be optimized for each method using
this concentration measure and the approach presented in [16].

V. CONCLUSION

Localizing a signal spectrum on a graph is considered in
this paper. Three definitions of a localization windows set are
considered, analyzed and applied to an example graph signal.
It is shown that various windowing methods provide similar
vertex spectral representations. The highest concentration in
the vertex spectral domain is achieved by using the localization
method based on the smallest path weight.
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Fig. 4. Method 1: Windows centered at vertices 51, 73, 171 and 279. Window
values at each vertex are presented with appropriate color.
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Fig. 5. Method 2: Windows centered at vertices 51, 73, 171 and 279. Window
values at each vertex are presented with appropriate color.
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Fig. 6. Method 3: Windows centered at vertices 51, 73, 171 and 279. Window
values at each vertex are presented with appropriate color.
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Fig. 7. Signal on graph (positive values are presented with blue and negative
with red vertical bars) and local vertex spectrum representations obtained by
windowing method 1, 2 and 3.


