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1. Introduction

Auscultation is a useful procedure for diagnostics of pulmonary or cardiovascular disorders.
The effectiveness of auscultation depends on the skills and experience of the clinician. Further
issues may arise due to the fact that heart sounds, for example, have dominant frequencies
near the human threshold of hearing, hence can often go undetected (1). Computer-aided
sound analysis, on the other hand, allows for rapid, accurate, and reproducible quantification
of pathologic conditions, hence has been the focus of more recent research (e.g., (1-5)). During
computer-aided auscultation, however, lung sounds are often corrupted by intrusive quasi-
periodic heart sounds, which alter the temporal and spectral characteristics of the recording.
Separation of heart and lung sound components is a difficult task as both signals have over-
lapping frequency spectra, in particular at frequencies below 100 Hz (6).

For lung sound analysis, signal processing strategies based on conventional time, frequency,
or time-frequency signal representations have been proposed for heart sound cancelation.
Representative strategies include entropy calculation (7) and recurrence time statistics (8)
for heart sound detection-and-removal followed by lung sound prediction, adaptive filtering
(e.g., (9; 10)), time-frequency spectrogram filtering (11), and time-frequency wavelet filtering
(e.g., (12-14)). Subjective assessment, however, has suggested that due to the temporal and
spectral overlap between heart and lung sounds, heart sound removal may result in noisy
or possibly “non-recognizable" lung sounds (15). Alternately, for heart sound analysis, blind
source extraction based on periodicity detection has recently been proposed for heart sound
extraction from breath sound recordings (16); subjective listening tests, however, suggest that
the extracted heart sounds are noisy and often unintelligible (17).

In order to benefit fully from computer-aided auscultation, both heart and lung sounds should
be extracted or blindly separated from breath sound recordings. In order to achieve such a dif-
ficult task, a few methods have been reported in the literature, namely, wavelet filtering (18),
independent component analysis (19; 20), and more recently, modulation domain filtering
(21). The motivation with wavelet filtering lies in the fact that heart sounds contain large com-
ponents over several wavelet scales, while coefficients associated with lung sounds quickly
decrease with increasing scale. Heart and lung sounds are iteratively separated based on an
adaptive hard thresholding paradigm. As such, wavelet coefficients at each scale with ampli-
tudes above the threshold are assumed to correspond to heart sounds and the remaining coef-
ficients are associated with lung sounds. Independent component analysis, in turn, makes use
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of multiple breath sound signals recorded at different locations on the chest to solve a blind
deconvolution problem. Studies have shown, however, that with independent component
analysis lung sounds can still be heard from the separated heart sounds and vice-versa (20).
Modulation domain filtering, in turn, relies on a spectro-temporal signal representation ob-
tained from a frequency decomposition of the temporal trajectories of short-term spectral
magnitude components. The representation measures the rate at which spectral components
change over time and can be viewed as a frequency-frequency signal decomposition often
termed “modulation spectrum." The motivation for modulation domain filtering lies in the
fact that heart and lung sounds are shown to have spectral components which change at dif-
ferent rates, hence increased separability can be obtained in the modulation spectral domain.
In this chapter, the spectro-temporal signal representation is described in detail. Spectro-
temporal signal analysis is shown to result in fast yet accurate heart and lung sound signal
separation without the introduction of audible artifacts to the separated sound signals. Addi-
tionally, adventitious lung sound analysis, such as wheeze and stridor detection, is shown to
benefit from modulation spectral processing.

The remainder of the chapter is organized as follows. Section 2 introduces the spectro-
temporal signal representation. Blind heart and lung sound separation based on modulation
domain filtering is presented in Section 3. Adventitious lung sound analysis is further dis-
cussed in Section 4.

2. Spectro-Temporal Signal Analysis

Spectro-temporal signal analysis consists of the frequency decomposition of temporal trajecto-
ries of short-term signal spectral components, hence can be viewed as a frequency-frequency
signal representation. The signal processing steps involved are summarized in Fig. 1. First,
the source signal is segmented into consecutive overlapping frames which are transformed to
the frequency domain via a base transform (e.g., Fourier transform). Frequency components
are aligned in time to form the conventional time-frequency representation. The magnitude
of each frequency bin is then computed and a second transform, termed a modulation trans-
form, is performed across time for each individual magnitude signal. The resulting modula-
tion spectral axis contains information regarding the rate of change of signal spectral compo-
nents. Note that if invertible transforms are used and phase components are kept unaltered,
the original signal can be perfectly reconstructed (22). Furthermore, to distinguish between
the two frequency axes, frequency components obtained from the base transform are termed
“acoustic” frequency and components obtained from the modulation transform are termed
“modulation” frequency (23).

Spectro-temporal signal analysis (also commonly termed modulation spectral analysis) has
been shown useful for several applications involving speech and audio analysis. Clean speech
was shown to contain modulation frequencies ranging from 2 Hz - 20 Hz (24; 25) and due to
limitations of the human speech production system, modulation spectral peaks were observed
at approximately 4 Hz, corresponding to the syllabic rate of spoken speech. Using such in-
sights, robust features were developed for automatic speech recognition in noisy conditions
(26), modulation domain based filtering and bandwidth extension were proposed for noise
suppression (27), the detection of significant modulation frequencies above 20 Hz was pro-
posed for objective speech quality measurement (28) and for room acoustics characterization
(29), and low bitrate audio coders were developed to exploit the concentration of modulation
spectral energy at low modulation frequencies (22). Alternate applications include classifi-
cation of acoustic transients from sniper fire (30), dysphonia recognition (31), and rotating
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Fig. 1. Processing steps for spectro-temporal signal analysis

machine classification (32). In the sections to follow, two novel biomedical signal applica-
tions are described, namely, blind separation of heart and lung sounds from computer-based
auscultation recordings and pulmonary adventitious sound analysis.

3. Blind Separation of Heart and Lung Sounds

Heart and lung sounds are known to contain significant and overlapping acoustic frequencies
below 100 Hz. Due to the nature of the two signals, however, it is expected that the spectral
content of the two sound signals will change at different rates, thus improved separability
can be attained in the modulation spectral domain. Preliminary experiments were conducted
with breath sounds recorded in the middle of the chest at a low air flow rate of 7.5 ml/s/kg to
emphasize heart sounds and in the right fourth interspace at a high air flow rate 22.5 ml/s/kg
to emphasize lung sounds. Lung sounds are shown to have modulation spectral content up
to 30 Hz modulation frequency with more prominent modulation frequency content situated
at low frequencies (< 2 Hz), as illustrated in Fig. 2 (a). This behavior is expected due to the
white-noise like properties of lung sounds (33) modulated by a slow on-off (inhale-exhale)
process. Heart sounds, on the other hand, can be considered quasi-periodic and exhibit promi-
nent harmonic modulation spectral content between approximately 2-20 Hz; this is illustrated
in Fig. 2 (b). As can be observed, both sound signals contain important and overlapping acous-
tic frequency content below 100 Hz; the modulation frequency axis, however, introduces an
additional dimension over which improved separability can be attained. As a consequence,
modulation filtering has been proposed for blind heart and lung sound separation (21).
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Fig. 2. Spectro-temporal representation of a breath sound recorded at (a) the right fourth
interspace at a high air flow rate to emphasize lung sounds, and (b) the middle of the chest
at a low air flow rate to emphasize heart sounds. Modulation spectral plots are zoomed in to
depict acoustic frequencies below 500 Hz and modulation frequencies below 30 Hz.

3.1 Modulation Domain Filtering

Modulation filtering is described as filtering of the temporal trajectories of short-term spectral
components. Two finite impulse response modulation filters are employed and depicted in
Fig. 3. The first is a bandpass filter with cutoff modulation frequencies at 1 Hz and 20 Hz (dot-
ted line); the second is the complementary bandstop filter (solid line). Modulation frequencies
above 20 Hz are kept as they are shown to improve the naturalness of separated lung sound
signals. In order to attain accurate resolution at 1 Hz modulation frequency, higher order fil-
ters are needed. Here, 151-tap linear phase filters are used; such filter lengths are equivalent
to analyzing 1.5 s temporal trajectories.

For the sake of notation, let s(f,m), f = 1,...,N and m =1,...,T, denote the short-term
spectral component at the f* frequency bin and m!" time step of the short-term analysis.
N and T denote total number of frequency bands and time steps, respectively. For a fixed
frequency band f = F, s(F,m),m = 1,...,T, represents the " band temporal trajectory.
In the experiments described herein, the Gabor transform is used for spectral analysis. The
Gabor transform is a unitary transform (energy is preserved) and consists of an inner product
with basis functions that are windowed complex exponentials. Doubly over-sampled Gabor
transforms are used and implemented based on discrete Fourier transforms (DFT), as depicted
in Fig. 4.

First, the breath sound recording is windowed by a power complementary square-root Hann
window of length 20 milliseconds with 50% overlap (frame shifts of 10 milliseconds). An
N-point DFT is then taken and the magnitude (|s(f, m)|) and phase (Zs(f, m)) components of
each frequency bin are input to a “modulation processing" module where modulation filtering
and phase delay compensation are performed. The “per frequency bin" magnitude trajectory
|s(f,m)|,m =1,...,T is filtered using the bandpass and the bandstop modulation filters to
generate signals |3(f,m)| and |5(f, m)|, respectively. The remaining modulation processing
step consists of delaying the phase by 75 samples, corresponding to the group delay of the
implemented linear phase filters. The outputs of the modulation processing modules are the
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Fig. 3. Magnitude response of bandpass (dotted line) and bandstop (solid line) modulation
filters.

bandpass and bandstop filtered signals and the delayed phase components Z5(f, m). Two
N-point IDFTs are then taken. The first IDFT (namely IDFT-1) takes as input the N |§(f, m)]|
and Z5(f, m) signals to generate §(m). Similarly, IDFT-2 takes as input signals |3(f,m)| and
Z5(f,m) to generate 5(m). The outputs of the IDFT-1 and IDFT-2 modules are windowed
by the power complementary window and overlap-and-add is used to reconstruct heart and
lung sound signals, respectively. The description, as depicted in Fig. 4, is conceptual and the
implementation used here exploits the conjugate symmetry properties of the DFT to reduce
computational complexity by approximately 50%.

It is observed that with bandpass filtered modulation envelopes the removal of lowpass mod-
ulation spectral content may result in negative power spectral values. As with the spectral
subtraction paradigm used in speech enhancement algorithms, a half-wave rectifier can be
used. Rectification, however, may introduce unwanted perceptual artifacts to the separated
heart sound signal. To avoid such artifacts, one can opt to filter the cubic-root compressed
magnitude trajectories in lieu of the magnitude trajectories. In such instances, cubic power
expansion must be performed prior to taking the IDFT. In the experiments described herein,
cubic compression-expansion of bandpass filtered signals is used and negligible rectification
activation rates (<2%) are obtained.

3.2 Database of Breath Sound Recordings

The University of Manitoba breath sound recordings are used in the experiments; the data
has been made publicly available by the Biomedical Engineering Laboratory. Data is obtained
from two healthy subjects aged 25 and 30 years on three separate occasions (20). Piezoelectric
contact accelerometers were used to record the respiratory sounds from the subjects in sitting
position. Accelerometers were secured with double-sided adhesive tape rings at the following
five locations: (1) right and (2) left midclavicular, 2nd intercostal space, (3) right and (4) left
4th intercostal space, and (5) center of chest.
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Fig. 4. Block diagram of the modulation filtering approach for blind separation of heart sounds
(HS) and lung sounds (LS) from auscultation recordings.

Subjects were asked to maintain their target breathing at low (7.5 ml/s/kg), medium (15
ml/s/kg), and high (22.5 ml/s/kg) flow rates. Subjects were instructed to breathe such that
one full breath occurred every two to three seconds at every flow rate and had at least five
breaths at each target flow. Three recordings were made per subject and each recording con-
sisted of approximately 20 s at each target flow and concluded with an approximate 5s of
breath hold (total of ~ 65 s). During breath hold, subjects were asked to hold their breath with
a closed glottis, thus allowing for a reference heartbeat signal and background noise character-
ization. Breath sound signals were digitized with 10240 Hz sample rate and 16-bit precision.
In our experiments, data is downsampled to 5 kHz in order to reduce computational complex-

ity.

3.3 Benchmark Separation Algorithm

For comparison purposes, a wavelet-based heart and lung sound separation algorithm is used
as a benchmark (18); the reader is referred to the following references for a complete descrip-
tion of the algorithm: (18; 34; 35). In the experiments described herein, the threshold used
was given by the standard deviation of the wavelet coefficients multiplied by a constant mul-
tiplicative factor. As suggested in a previous study (14), values used for the multiplicative fac-
tor range from 2.5 — 3.0 (increments of 0.25) for breath sound segments of low, medium, and
high air flow rates, respectively. With the wavelet filtering algorithm, heart and lung sound
separation is achieved through an iterative reconstruction-decomposition process. The stop-
ping criterion is set such that the error between two consecutive reconstruction steps drops
below 107> (18).

3.4 Comparative Performance Analysis

Modulation domain and wavelet filtering algorithms are tested on breath sound signals cap-
tured at the five locations described in Section 3.2. The plots in Fig. 5 (a)-(b) illustrate short
segments of separated heart and lung sounds, respectively, for both systems using signals
recorded at the center of the chest during low air flow. Spectral plots of separated sig-
nals are further depicted in Fig. 6. Subplot (a) illustrates the spectra of “heart-sound-free"
breath sounds and the separated lung sound signals processed by the modulation domain
and wavelet filtering algorithms. Power spectra are averaged over 5s of heart-sound-free
breath sounds, which were randomly selected from segments of the breath sound recording
between successive heartbeats (selected segments were within £20% of the target low airflow
rate). Similarly, subplot (b) depicts average power spectra of breath-hold sounds and the sep-



Spectro-Temporal Analysis of Auscultatory Sounds

99

breath sound breath sound
(heart + lung) (heart + lung)
heart sound lung sound
modulation modulation
filtering filtering
heart sound lung sound
wavelet wavelet
filtering filtering
12 122 124 126 128 13 132 134 1.7 11.75 11.8 11.85 1.9
time (s) time (s)
(@) (b)

Fig. 5. Breath sound signals (top) and separated (a) heart sounds and (b) lung sounds using
modulation domain based filtering (center) and wavelet based filtering (bottom). Subplot (a)
depicts a pair of first and second (S1-S2) heart sound tones.

arated heart sound signal. Power spectra are averaged over the approximate 5 s breath-hold
duration at the end of the recording session.
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Fig. 6. Spectral plots of breath sounds and (a) separated lung sound and (b) heart sound
signals.

In order to quantitatively assess the performance of the blind separation methods, the aver-
age log-spectral distance (LSD) between the aforementioned breath sound spectra P(w) and
separated signal spectra P(w) is used. The LSD, expressed in decibel, is given by

LSD = ﬁln /j} {1010g10 ggzirdw

@
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Filtering LSD (dB)

method Heart Lung Processing time (s)
Modulation 0.61 £0.13 0.79 £+ 0.19 2.44 + 0.04

Wavelet 1.11 £0.21 1.26 £ 0.56 67.2 + 20.86

Table 1. Log-spectral distances (LSD) and algorithm processing times for wavelet and modu-
lation domain based filtering. Performance metrics are reported as mean + standard deviation
over the two participants and six recording sessions.

Table 1 reports LSD values obtained for wavelet and modulation domain filtering averaged
over the two participants and six recording sessions. In speech coding research, two signals
with LSD < 1 dB are considered to be perceptually indistinguishable (36). Using this same
difference limen for spectral transparency, results in Table 1 suggest that audible artifacts are
not introduced by modulation domain filtering; this is corroborated by subjective listening
tests conducted with three listeners. For wavelet filtering, however, listeners reported that
lung sounds could still be heard in heart sounds and vice versa; such finding is expected
given the LSD values greater than unity reported in the table.

Execution time is also an important metric to gauge algorithm performance. Both blind sepa-
ration algorithms have been implemented using Matlab version 7.6 Release 2008a and simula-
tions were run on a PC with a 2.2 GHz Dual Core processor and 3 GB of RAM. The execution
times for heart and lung sound separation, averaged over the five recorded 65 s breath sound
signals, are also reported in Table 1. As observed, the computational load of the modulation
filtering method is one order of magnitude lower relative to wavelet filtering (approximately
30 times lower processing time). Moreover, with modulation domain filtering, if only the
bandstop filter is applied (akin to heart sound cancelation) algorithm processing time can be
further decreased by a factor of 1.5. As can be seen, modulation domain filtering allows for
fast, yet accurate separation of heart and lung sounds from auscultatory recordings. Separated
signals are also shown to be artifact-free, an important factor for accurate clinical diagnosis.
In the section to follow, an additional application is presented and shown to also benefit from
spectro-temporal signal analysis.

4. Adventitious Lung Sound Analysis

Adventitious lung sounds refer to abnormal sounds present in conjunction with the normal
lung sound component (37). Adventitious lung sounds often signal abnormalities in pul-
monary conditions (33); representative sounds can include crackles, wheezes, and stridor.
Crackles are also referred to as discontinuous sounds as they are brief (in the order of tens of
milliseconds) and intermittent. Crackles are caused by fluid obstruction of the small airways
often due to inflammation of the bronchi. Crackle sounds, due to their short-term character-
istics, are difficult to analyze via spectro-temporal signal processing; crackles have, however,
been successfully analyzed via time-frequency wavelet processing (34; 38). Wheezes and stri-
dor, on the other hand, have longer-term behavior that can extend to more than 250 millisec-
onds (33), hence can be analyzed using modulation spectral analysis.

Wheezes commonly occur in patients with obstructed airways and can have acoustic fre-
quency components ranging from 100 Hz to 1 kHz (33; 39). Wheezes are characterized by
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Fig. 7. Subplot (a): spectrogram of a breath sound recording with adventitious wheeze sounds
indicated by arrows. Subplot (b) depicts the modulation spectrum of the approximate 0.25 s
region highlighted by the ellipsoid in subplot (a).

high-pitched, musical tones manifested most prominently during expiration. Wheezes can be
classified as “monophonic" or “polyphonic," if single or multiple tones are present, respec-
tively. The perception and quantification of such properties is difficult if done subjectively
via auscultation (39), hence automated methods based on spectrogram processing have been
proposed (40). Figure 7 (a) depicts the spectrogram of a breath sound recording with expira-
tory wheezing taken from the R.A.L.E repository (41). As can be seen, tones are visible dur-
ing expiration at frequencies around 400 Hz and 800 Hz and such tones are detectable with
spectrogram-based methods. The two tones, however, are not easily detectable during the
second respiration cycle highlighted by an ellipsoid in Fig. 7 (a). With the use of modulation
spectral analysis, the two tones can be easily detected as illustrated by the arrows in Fig. 7 (b),
thus can be used to assist inexperienced physicians in detecting pulmonary disorders.
Stridor, in turn, is characterized by a harsh, vibratory noise typically heard during inspiration.
Stridor is caused by partial obstruction of the upper airway resulting in turbulent airflow. Fig-
ure 8 (a) depicts the spectrogram of a breath sound recording with stridor adventitious sounds
taken from the R.A.L.E repository (41). Significant energy is observed at higher acoustic fre-
quencies and tonal sounds can be seen at approximately 200 Hz and in some breath cycles at
1000 Hz. During the last breath cycle, however, the tonal components are not easily observ-
able using spectrogram analysis. The two tonal components, however, are observable using
modulation spectral analysis, as depicted by the arrows in Fig. 8 (b).

5. Conclusion

This chapter describes a spectro-temporal signal representation which is shown to be a useful
tool for automatic auscultatory sound analysis. The representation, commonly termed “mod-
ulation spectrum," measures the rate at which breath sound spectral components change over
time. The signal representation is successfully applied to blind heart and lung sound sepa-
ration and shown to outperform state-of-the-art wavelet filtering both in terms of algorithm
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Fig. 8. Subplot (a): spectrogram of a breath sound recording with adventitious stridor sounds
during inspiration. Subplot (b) depicts the modulation spectrum of the approximate 0.25 s
region highlighted by the ellipsoid in subplot (a).

execution time and in separation performance. An alternate application in which the modu-
lation spectrum can be applied, namely, adventitious lung sound detection, is also described.
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